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Abstract

Nowadays, understanding the traffic statistics in real

city-scale camera networks takes an important place in the

intelligent transportation field. Recently, vehicle route un-

derstanding brings a new challenge to the area. It aims to

measure the traffic density by identifying the route of each

vehicle in traffic cameras. This year, the AI City Challenge

holds a competition with real-world traffic data on vehicle

route understanding, which requires both efficiency and ef-

fectiveness. In this work, we propose Zero-VIRUS, a Zero-

shot VehIcle Route Understanding System, which requires

no annotation for vehicle tracklets and is applicable for the

changeable real-world traffic scenarios. It adopts a novel

2D field modeling of pre-defined routes to estimate the prox-

imity and completeness of each track. The proposed sys-

tem has achieved third place on Dataset A in stage 1 of the

competition (Track 1: Vehicle Counts by Class at Multiple

Intersections) against world-wide participants on both ef-

fectiveness and efficiency, with a record of the top place on

50% of the test set.

1. Introduction

The rapid technological change in all the industries

galvanizes the development of systems that allow high-

autonomous production and control. Intelligent utilities

compose the missing link to smart city construction. Partic-

ularly, transportation is one of the domains remaining un-

derdeveloped, which can largely benefit from the collection

and mining of traffic information to facilitate further uni-

fied scheduling and dispatching. Pedestrians and vehicles

make up the main components of traffic executing differ-

∗Written in the era of Coronavirus Disease 2019 (COVID-19), with a

sincere hope for a better world.

Figure 1: System Overview

ent activities. Although tremendous traffic rules have been

formed to ensure efficient operation and safety, autonomous

traffic systems are indispensable. To date, a large num-

ber of datasets and algorithms [5, 39, 30] are devoted to

the study of pedestrians’ tracking, identification, and ac-

tion prediction. In contrast, vehicles are more convenient



to identify and uniformly dispatch than pedestrians with the

sensor data recorded. Unfortunately, the lack of supervised

information and high-quality models constrain those bene-

fits.

Proposed by the AI City Challenge workshop1,

AIC20 track dataset provides videos collected from differ-

ent city-scale traffic monitoring cameras. As a new topic,

Vehicle Counts by Class at Multiple Intersections is pro-

posed upon the AIC20 track dataset, where four-wheel cars

and freight trucks are the target objects. With movements

pre-defined for each camera scene, e.g., left-turning, right-

turning, and straight through the given traffic intersection,

the objective is to count the number of each type of vehi-

cle by the class of movement. In order to benefit from the

practical value of the outcome from the vehicle countings,

not only the effectiveness and but also the efficiency of the

algorithm will be measured in the final score.

Facing the dire need of algorithms tackling the vehicle

counts task, the poor quality of data comparing to the well-

formed and fully annotated tracking datasets [10, 35, 22]

sets a considerably high threshold. The difficulties exist-

ing in the annotation for the humongous vehicle in the low-

quality camera hinder the development of vehicle tracking

and counting tasks. Beyond that, it is also confronted with

challenges of the variance of scenes and cameras, e.g., fish

eye camera, long-range PTZ camera, tilted view cast in un-

settled weather. Furthermore, the key challenge lies in how

to effectively fuse information of target vehicles for better

tracking over proper handling of the variabilities and uncer-

tainties of camera view.

So as to effectively count target vehicle with different

movements, it is noted that the first barrier to break is the

lack of annotation either for the vehicle or the infrastructure,

e.g., region of transport road, green belts, road signs. The

proposed Zero-shot VehIcle Route Understanding System

(Zero-VIRUS) is built upon tracking-by-detection paradigm

and designed for arbitrary traffic cameras with the modeling

of designated routes in the 2D field.

Our main contributions exist in the following aspects:

1. We propose a novel 2D field modeling of vehicle

routes as a better representation for identification pur-

poses.

2. A zero-shot vehicle route understanding system is de-

signed for intelligent transportation, which demon-

strates high effectiveness with zero annotation of ve-

hicle tracklets.

3. Our system achieves third place on Dataset A in Stage

1 of the competition (Track 1: Vehicle Counts by Class

at Multiple Intersections) and the top place on 50% of

the dataset.

1https://www.aicitychallenge.org/

2. Related Work

Vehicle Counts by Class at Multiple Intersections re-

quires simultaneous vehicle detection, multi-target tracking,

and movement classification in real city-scale traffic camera

videos. Our work can be summarized in the following as-

pects.

Vehicle Detection Recently, deep-learning-based meth-

ods were proposed due to its great success in many com-

puter vision tasks [4, 19]. Object detection and tracking in

videos have attracted a surge of interest lately. SSD [20],

YOLOv3 [28] are designed in a single-stage style which

performs the extraction of feature and location end-to-

end. There are also many successful proposal-based meth-

ods [11, 29, 18, 17, 27] which perform more accurately by

optimizing regressions on the generated proposals.

Multi-Object Tracking Multiple Object Tracking

(MOT), or Multiple Target Tracking (MTT), plays an

important role in computer vision, which is widely used in

video-based systems such as in [38, 21, 1]. Most of the re-

cent methods for MOT are CNN-based. Many approaches

adopt post-processing elaborately designed for the final

tasks on top of the detection models. MOT methods mostly

follow the tracking-by-detection paradigm [3, 2, 23, 24],

to associate detection results per-frame or tracklets into

longer tracks with consistency across space and time.

DeepSORT [13] is a simple feed-forward network with no

online training required, which allows tracking objects at a

fast speed. It also aids in tracking novel objects by learning

a generic representation of the motion and appearance of

objects in different frames. Toward Real-time MOT [33]

proposes a shared model to perform the target localization

and appearance embedding learning which takes anchor

classification, bounding box regression, and embedding

learning as multi-task learning. In order to achieve tempo-

ral consistency, the tracking results of the previous frames

are used as a guidance [23, 13, 33, 9]. Methods [14, 16]

have been proposed to leverage spatial-temporal contextual

information.

Vehicle Count Vehicle count by movement class in the

city-scale video is a new topic in AI City Challenge 2020.

The number of vehicles in a city camera view with different

movements, e.g., going straight or turning, is quite valu-

able information for real-time control in a traffic system.

A Kalman-Filter-based method [32] is proposed to produce

reliable estimates of real-time measurements of detectors.

Pang et al. [25] proposed a method for counting the num-

ber of vehicles with occlusions, based on the resolvability

of each occluded vehicle. Traffic videos from real-world

cameras usually come with relatively lower quality. What’s



more, there is no available annotation for the vehicles to

count. Zero-shot learning has been a long-standing prob-

lem in computer vision tasks [31, 15, 7, 8]. Thus, a naive

combination of detector and tracker can perform poorly,

while standard vision algorithms such as background mod-

eling and optical flow can work in a limited setup. Thus, we

choose to resolve this dilemma by first identifying the target

vehicle routes for pre-defined movements. With the tracks

of target vehicles aggregated by the tracking-by-detection

paradigm, the tracks are identified and regressed to the mod-

eled routes for the pre-defined movements.

3. Method

In this paper, we propose Zero-VIRUS, a zero-shot sys-

tem to identify vehicle routes in still-camera videos for in-

telligent transportation purposes. With 2D-field modeling

of designated routes, this system is built upon zero known

vehicle tracks and designed for arbitrary traffic cameras.

Zero-VIRUS consists of two stages, where we first obtain

vehicle trajectories and then identify them with field mod-

eling of pre-defined routes.

3.1. Vehicle Detection and Tracking

In a video sequence, we detect vehicles on each frame

and track their locations along time. State-of-the-art object

detection and tracking techniques are adapted for the traffic

scenarios to produce initial trajectories. Then we enhance

the trajectories through localization, smoothing, and filters

to provide a more explicit representation for the latter stage.

3.1.1 Vehicle Detection

Model Architecture We adopt the instance segmentation

network Mask R-CNN [12] with a ResNeXt-101 [36] fea-

ture pyramid network [17] backbone as our frame-level ve-

hicle detection model. On a given frame It at time t, it out-

puts a series of detected vehicles {Vt,i} with vehicle class

c(Vt,i), confidence score s(Vt,i), bounding box B(Vt,i), and

segmentation mask M(Vt,i).

Object Classes of Interest In the traffic scenarios, we

mainly focus on vehicles of the following classes. The cor-

responding classes in the Microsoft COCO [19] dataset are

listed in the parentheses.

1. Car: sedan car, SUV, van, bus, small trucks such as

pickup truck, UPS mail trucks, etc. (COCO: Car, Bus)

2. Truck: medium trucks such as moving trucks, garbage

trucks; large trucks such as tractor-trailers, 18-wheeler,

etc. (COCO: Truck)

Our definition of Truck is inconsistent with COCO in that

we do not include small trucks such as pickups. This is in-

tended to be fixed partially by the inter-class non-maximum

suppression and the track label assignment.

Weighted Inter-class Non-maximum Suppression

Some vehicles, especially those small trucks, could result

in double detections of both Car and Truck. In such cases,

we would prefer to remove the Truck detection. Therefore,

we additionally apply a weighted inter-class non-maximum

suppression(NMS) [6] on the detections. Object classes are

assigned different weights as

wc =

{

1, c = Car

0, c = Truck
(1)

All detections are sorted in the descending order according

to a weighted confidence score as

ŝ(Vt,i) = s(Vt,i) + wc(Vt,i) (2)

Then we select the detection one by one and skip if there

exists a detection with intersection over union (IoU) of at

least IoU nms . Samples of detected vehicles are shown in

Figure 2.

Figure 2: Sample results of vehicle detection

3.1.2 Online Multi-Vehicle Tracking

Feature Extraction To reduce computational complex-

ity, we directly use the Mask R-CNN backbone to extract

the feature representation of a detected object. The feature

maps are aligned by region of interest (RoI) pooling [11]

into size sroi according to the bounding box. Then an av-

erage pooling into size savg is applied to obtain the final

feature vector.

Online Association We adopt the association algorithm

from [33] to get the vehicle ID ID(Vt,i) for each detection.

Basically, new detections are assigned to existing tracklets

based on feature similarity and compliance with spatial con-

straints. Since we are tracking Car and Truck together, a

tracked vehicle is classified as Truck when it is detected as

Truck for at least ftruck fraction of all frames.



3.1.3 Trajectory Enhancement

Localization with Segmentation Given the bounding

box of a vehicle Vt,i in the top-left bottom-right representa-

tion as

B(Vt,i) =
[

x0 y0 x1 y1
]

t,i
(3)

its location is usually defined at the center of the bounding

box

PA(Vt,i) =
[

x0+x1

2
y0+y1

2

]

t,i
(4)

or at the bottom center

PB(Vt,i) =
[

x0+x1

2 y1
]

t,i
(5)

As shown in Figure 3, these two definitions both have obvi-

ous shortcomings for ground tracking of vehicles. PA(Vt,i)
is typically on the vehicle body, but far from the ground.

PB(Vt,i) is more likely on the ground, but can be off the

vehicle.

Figure 3: Comparison between localization points

Therefore, we propose a segmentation based location

point defined as

PC(Vt,i) =
[

x0+x1

2 max(y0+y1

2 , ym)
]

t,i
(6)

where

ym = argmax
y

M(Vt,i) x0+x1
2

,y
(7)

It selects the bottom of its segmentation mask at the center

column of its bounding box, with a constraint of no higher

than its center row.

As the visual size of an object changes according to its

distance to the camera, we also record the diagonal of each

bounding box as a scale factor along with its location.

S(Vt,i) = ‖
[

x1 − x0 y1 − y0
]

‖2 (8)

Interpolation and Smoothing For a tracked vehicle with

ID x, we now have its full available history as

Hx = {Vt,i | ID(Vt,i) = x} (9)

Due to occlusions and detection failure, a tracked vehicle

may be lost for a short period before it is re-found in later

frames. This would result in gaps in Hx while viewing in

the chronological order. Therefore, we apply linear interpo-

lation to fill in the gaps for values of PC and S with adjacent

available frames.

Also, to deal with jittering of the detected objects, a 1D-

gaussian smoothing of standard deviation σg is applied to

the values of PC and S after interpolation.

Movement and Region Filter Vehicles may stop some-

where for a while due to traffic lights or jams. For route

identification, we would like to filter out the stopped period

from the trajectory. We calculate the local average speeds of

the trajectory with a sliding-window of size wv using PC .

Then points with a speed lower than vmin are removed from

the track.

Additionally, a region filter is applied to select the part of

the trajectory within the region of interest (RoI), as shown

in Figure 4. The RoI is defined as the inside of a polygon,

which ensures the image border to be outside. The region

filter is applied at the end to prevent loss of information for

the previous operations. At this point, trajectories with a

length of less than lmin would be discarded. After all these

filters, we get an enhanced trajectory as Tx = (Px,Sx),
where Px = {PC} are the locations and Sx = {S} are the

scale factors.

Figure 4: Region of interest (area marked with blue line)

and pre-defined routes (colored lines with arrows)

3.2. Route Modeling and Identification

To realize this route identification task with zero training

data while also provide a straightforward generalization to

arbitrary traffic scenes, we employ 2D-field modeling of the

pre-defined routes to identify detected vehicle tracks. This

allows our system to be applied to any new camera solely

with the route definition.

3.2.1 Route Modeling

Route In this task, we are dealing with videos from still

cameras with a pre-defined RoI. A route Ri is described as

a polyline that consists of n points.

Ri =
[

P i
1 P i

2 . . . P i
n

]T

i
(10)

where P i
1 and P i

n should be outside the RoI, as illustrated in

Figure 4. This definition ensures that a trajectory from the

previous stage would be spatially consistent with its corre-

sponding route.



Proximity Field For each point X in the view space, we

would like to estimate its distance to a specific route Ri.

This is achieved by defining a 2D proximity field Fp,Ri
, as

illustrated in Figure 5.

Fp,Ri
(X) = min

j
d(X,P i

jP
i
j+1) (11)

where d(X,P i
jP

i
j+1) is the point-segment distance func-

tion. Although it is rather simple, we would contain some

details here to simplify the following definition of the com-

pleteness field.

d(X,P i
jP

i
j+1) =



















‖
−−→
XP i

j‖ αj ≤ 0

‖
−−−→
XXi

j‖ 0 < αj < 1

‖
−−−−→
XP i

j+1‖ αj ≥ 1

(12)

where

Xi
j = P i

j + αi
j(X)

−−−−→
P i
jP

i
j+1 (13)

αi
j(X) =

−−→
P i
jX ·

−−−−→
P i
jP

i
j+1

‖
−−−−→
P i
jP

i
j+1‖

2
(14)

Here αi
j(X) is the relative location of the projection of X

on
−−−−→
P i
jP

i
j+1.

Figure 5: 2D and 3D visualizations of proximity fields for

route 8 and 10 in Figure 4

Completeness Field For each point X in the view space,

we would also like to estimate its relative location within

a route Ri in the case it belongs to this route. This allows

us to evaluate the completeness of a track to see where it

starts and ends regarding Ri. Like the proximity field, this

is defined as the 2D completeness field Fc,Ri
, as illustrated

in Figure 6.

Fc,Ri
(X) =

αi
j∗(X)‖

−−−−−−→
P i
j∗P

i
j∗+1‖+

∑j∗−1
j=1 ‖

−−−−→
P i
jP

i
j+1‖

∑n−1
j=1 ‖

−−−−→
P i
jP

i
j+1‖

(15)

where j∗ indicates the nearest segment.

j∗ = argmin
j=1,2,...,n−1

d(X,P i
jP

i
j+1) (16)

Figure 6: 2D and 3D visualizations of completeness fields

for route 8 and 10 in Figure 4

3.2.2 Route Identification

Given a vehicle tracklet Tx and a set of routes {Ri | i =
1, 2, . . . ,m}, our task is to determine whether Tx belongs

to one of the routes and if so, find out which one it is. Since

we are building this system with no annotation of vehicle

tracklets for training, a set of metrics are proposed to solve

this as a multi-class classification problem.

Proximity Metric An obvious and reasonable metric is

the average distance from the track to each route. However,

the absolute distance in the image varies according to the

object scale. Therefore, a scale-normalized distance is cal-

culated with the scale factors and the proximity field.

d(Tx,j ,Ri) =
Fp,Ri

(Px,j)

Sx,j

(17)

For the normalization purpose, the final proximity metric is

defined as

Mp(Tx,Ri) = σ(a− b
1

n

n
∑

j=1

d(Tx,j ,Ri)) (18)

where σ is the Sigmoid function and a, b are additional pa-

rameters.



Completeness Metric It is clearly not enough to only rely

on the proximity metric, as it cannot tell the direction a ve-

hicle is moving towards. In fact, a stable vehicle at any

point within a route would yield a small distance. There-

fore, another important metric is about how the vehicle goes

through the route step by step. With the completeness field

Fc,Ri
, we can track the progress of the vehicle along a spe-

cific route, as shown in Figure 7. A linear model is used to

approximate the change of the completeness as

Fc,Ri
(Px,j) = cx,i

j

n
+ dx,i (19)

The slope cx,i is solved with least squares. As its ideal value

should be 1, the completeness metric is defined as

Mc(Tx,Ri) = min(cx,i,
1

cx,i
) (20)

Figure 7: Completeness graph for a vehicle going along

track 9 in Figure 4

Stability Metric The stability metric is designed to esti-

mate if the vehicle is going along the route at a constant dis-

tance from it. It uses another linear model to approximate

the change of the scale-normalized distance.

d(Tx,j ,Ri) = ex,i
j

n
+ fx,i (21)

The slope ex,i is also solved with least squares. In an

ideal track where the vehicle moves in a fixed lane along

the route, the distance should remain unchanged, yielding

a zero slope. On the other hand, a non-zero value indicates

the vehicle is approaching or leaving the route. The stability

metric is defined similarly to a normal distribution as

Ms(Tx,Ri) = exp(−
1

2
e2x,i) (22)

Aggregation and Classification With all three metrics

defined above, the final confidence score of a track belong-

ing to a route can be simply aggregated as

S(Tx,Ri) =min(1,max(0, wpMp(Tx,Ri)))

+ min(1,max(0, wcMc(Tx,Ri)))

+ min(1,max(0, wsMs(Tx,Ri)))

(23)

If maxi S(Tx,Ri) is above a threshold Smin , the predic-

tion for the track is

C(Tx,R) = argmax
i

S(Tx,Ri) (24)

Otherwise, it will be discarded.

4. Experiments

4.1. System Implementation

We adopted the Mask R-CNN model from Facebook

Detectron2 [34] with pre-trained weights on Microsoft

COCO [19]. Due to efficiency concerns, we followed the

practice in [37] to build a pipeline system for detection,

tracking, and classification, as shown in Figure 8. It utilizes

frame-level parallelism and out-of-order-execution mecha-

nisms for the bottle-neck detection stage. According to our

test, each Nvidia Geforce RTX 2080Ti GPU can process 9

frames each second. This design makes our system easily

scalable, with support for up to 8 GPUs. We use a common

code base with Track 3 [26] and it is publicly available2 .

Figure 8: System pipeline

4.2. Dataset and Settings

We evaluated our proposed system on Track 1 of the

2020 AI City Challenge. The dataset split A contains videos

of 5 hours from 20 unique cameras in different light and

2https://github.com/Lijun-Yu/AICity2020-track1



weather conditions. Since the dataset only provides dia-

grams of the routes with simple descriptions, we manually

labeled the polygon for each route. Apart from the routes

and region of interest in each camera view, no additional

information is used.

For the parameters in our system, the values listed in Ta-

ble 1 are used for a video with a frame rate of z fps.

Table 1: Parameter Values

Name Value Name Value

IoU nms 0.8 ftruck 0.8
σg 0.3z wv z

vmin 10 lmin 0.3z
a 4 b 5

wp 1 wc 1.25

ws 1 Smin 0.3

4.3. Official Metrics

As no additional data is available or allowed for self-

testing, we will only provide the experiment results on the

official metrics from the leaderboard. The official metrics

combine efficiency score and effectiveness score as

S1 = αS1,efficiency + βS1,effectiveness (25)

where α = 0.3, β = 0.7. The efficiency score is based on

the total execution time T as

S1,efficiency = max(0, 1−
T × base factor

5× video time
) (26)

The effectiveness score is computed as a weighted average

of normalized weighted root mean square error nwRMSE

across all videos, movements, and vehicle classes, with pro-

portional weights based on the number of vehicles of the

given class in the movement.

wRMSE =

√

√

√

√

k
∑

i=1

i
∑k

j=1 j
(x̂i − xi)2 (27)

Before the leaderboard finalizes, it was using 50% of the

test to evaluate. The snapshot of the leaderboard at that time

is shown in Table 2, where our system ranked the top one.

However, after the finalization, our performance dropped

to the 3rd place, with a score of 0.9292. As it is un-

likely that our model with very few parameters would over-

fit the dataset, a potential explanation of this drop is the

un-balanced split of the test data.

4.4. Qualitative Results

In Figure 9, we provide qualitative visualizations of each

camera under different conditions. Video demonstrations of

Table 2: Leaderboard snapshot before finalization (using

50% test data)

Rank TeamID Score

1 Ours 0.9444

2 99 0.9415

3 110 0.9381

Table 3: Finalized leaderboard (using all test data)

Rank TeamID Score

1 99 0.9389

2 110 0.9346

3 Ours 0.9292

4 26 0.8936

5 22 0.8852

6 74 0.8829

7 6 0.8540

8 119 0.8254

9 80 0.8064

10 65 0.7933

all cameras are available online3. As we can see from the

figures, vehicles are typically assigned to the correct route.

However, there are still failures caused by certain reasons:

1. A vehicle gets occluded by other vehicles or surround-

ings, such as trees.

2. The image is blurred due to weather conditions, such

as rainy or snowy days.

3. Mis-classification of vehicle types between car and

truck. This is currently believed to be the key draw-

back as we are using inconsistent definitions of trucks.

4.5. Ablation Study

We explore the effectiveness of the three metrics we pro-

posed for route identification. Due to lack of labeled data,

the experiments are performed on a 60-second clip, which

has the only ground truth in the dataset. As shown in Table

4, each of the three metrics contribute to the final perfor-

mance.

5. Conclusion

In this paper, we proposed a zero-short vehicle route un-

derstanding system, Zero-VIRUS. It has been proved to suc-

cessfully identify vehicle routes in the vehicle counting task

via a novel 2D field modeling. The performance of the pro-

posed approach shows its effectiveness and robustness in

3https://drive.google.com/drive/folders/

1s3TPykPa3JTaPOHUVOQF8S4iUi3SduAN?usp=sharing



Figure 9: Visualization of results on sample frames from different scenes and different conditions, where colored dots indicate

identified routes

Table 4: Effectiveness of metrics on a 60-second Clip

Metrics Effectiveness Score

Mp 0.8903

Mp,Mc 0.9455

Mp,Mc,Ms 0.9554

identifying the vehicle route in variant camera views. The

proposed system has achieved the third place on Dataset A

in stage 1 of the competition (Track 1: Vehicle Counts by

Class at Multiple Intersections). Future works are suggested

on improving the efficiency of the proposed solution as per-

forming real-time and also learning to build better models

for the route that can be adaptive to new scenes and new

vehicle actions.
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