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Abstract

Nowadays, understanding the traffic statistics in real

city-scale camera networks takes an important place in the

intelligent transportation field. Recently, vehicle route un-

derstanding brings a new challenge to the area. It aims to

measure the traffic density by identifying the route of each

vehicle in traffic cameras. This year, the AI City Challenge

holds a competition with real-world traffic data on vehicle

route understanding, which requires both efficiency and ef-

fectiveness. In this work, we propose Zero-VIRUS, a Zero-

shot VehIcle Route Understanding System, which requires

no annotation for vehicle tracklets and is applicable for the

changeable real-world traffic scenarios. It adopts a novel

2D field modeling of pre-defined routes to estimate the prox-

imity and completeness of each track. The proposed sys-

tem has achieved third place on Dataset A in stage 1 of the

competition (Track 1: Vehicle Counts by Class at Multiple

Intersections) against world-wide participants on both ef-

fectiveness and efficiency, with a record of the top place on

50% of the test set.

1. Introduction

The rapid technological change in all the industries

galvanizes the development of systems that allow high-

autonomous production and control. Intelligent utilities

compose the missing link to smart city construction. Partic-

ularly, transportation is one of the domains remaining un-

derdeveloped, which can largely benefit from the collection

and mining of traffic information to facilitate further uni-

fied scheduling and dispatching. Pedestrians and vehicles

make up the main components of traffic executing differ-
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Figure 1: System Overview

ent activities. Although tremendous traffic rules have been

formed to ensure efficient operation and safety, autonomous

traffic systems are indispensable. To date, a large num-

ber of datasets and algorithms [5, 39, 30] are devoted to

the study of pedestrians’ tracking, identification, and ac-

tion prediction. In contrast, vehicles are more convenient



to identify and uniformly dispatch than pedestrians with the

sensor data recorded. Unfortunately, the lack of supervised

information and high-quality models constrain those bene-

fits.

Proposed by the AI City Challenge workshop1,

AIC20 track dataset provides videos collected from differ-

ent city-scale traffic monitoring cameras. As a new topic,

Vehicle Counts by Class at Multiple Intersections is pro-

posed upon the AIC20 track dataset, where four-wheel cars

and freight trucks are the target objects. With movements

pre-defined for each camera scene, e.g., left-turning, right-

turning, and straight through the given traffic intersection,

the objective is to count the number of each type of vehi-

cle by the class of movement. In order to benefit from the

practical value of the outcome from the vehicle countings,

not only the effectiveness and but also the efficiency of the

algorithm will be measured in the final score.

Facing the dire need of algorithms tackling the vehicle

counts task, the poor quality of data comparing to the well-

formed and fully annotated tracking datasets [10, 35, 22]

sets a considerably high threshold. The difficulties exist-

ing in the annotation for the humongous vehicle in the low-

quality camera hinder the development of vehicle tracking

and counting tasks. Beyond that, it is also confronted with

challenges of the variance of scenes and cameras, e.g., fish

eye camera, long-range PTZ camera, tilted view cast in un-

settled weather. Furthermore, the key challenge lies in how

to effectively fuse information of target vehicles for better

tracking over proper handling of the variabilities and uncer-

tainties of camera view.

So as to effectively count target vehicle with different

movements, it is noted that the first barrier to break is the

lack of annotation either for the vehicle or the infrastructure,

e.g., region of transport road, green belts, road signs. The

proposed Zero-shot VehIcle Route Understanding System

(Zero-VIRUS) is built upon tracking-by-detection paradigm

and designed for arbitrary traffic cameras with the modeling

of designated routes in the 2D field.

Our main contributions exist in the following aspects:

1. We propose a novel 2D field modeling of vehicle

routes as a better representation for identification pur-

poses.

2. A zero-shot vehicle route understanding system is de-

signed for intelligent transportation, which demon-

strates high effectiveness with zero annotation of ve-

hicle tracklets.

3. Our system achieves third place on Dataset A in Stage

1 of the competition (Track 1: Vehicle Counts by Class

at Multiple Intersections) and the top place on 50% of

the dataset.

1https://www.aicitychallenge.org/

2. Related Work

Vehicle Counts by Class at Multiple Intersections re-

quires simultaneous vehicle detection, multi-target tracking,

and movement classification in real city-scale traffic camera

videos. Our work can be summarized in the following as-

pects.

Vehicle Detection Recently, deep-learning-based meth-

ods were proposed due to its great success in many com-

puter vision tasks [4, 19]. Object detection and tracking in

videos have attracted a surge of interest lately. SSD [20],

YOLOv3 [28] are designed in a single-stage style which

performs the extraction of feature and location end-to-

end. There are also many successful proposal-based meth-

ods [11, 29, 18, 17, 27] which perform more accurately by

optimizing regressions on the generated proposals.

Multi-Object Tracking Multiple Object Tracking

(MOT), or Multiple Target Tracking (MTT), plays an

important role in computer vision, which is widely used in

video-based systems such as in [38, 21, 1]. Most of the re-

cent methods for MOT are CNN-based. Many approaches

adopt post-processing elaborately designed for the final

tasks on top of the detection models. MOT methods mostly

follow the tracking-by-detection paradigm [3, 2, 23, 24],

to associate detection results per-frame or tracklets into

longer tracks with consistency across space and time.

DeepSORT [13] is a simple feed-forward network with no

online training required, which allows tracking objects at a

fast speed. It also aids in tracking novel objects by learning

a generic representation of the motion and appearance of

objects in different frames. Toward Real-time MOT [33]

proposes a shared model to perform the target localization

and appearance embedding learning which takes anchor

classification, bounding box regression, and embedding

learning as multi-task learning. In order to achieve tempo-

ral consistency, the tracking results of the previous frames

are used as a guidance [23, 13, 33, 9]. Methods [14, 16]

have been proposed to leverage spatial-temporal contextual

information.

Vehicle Count Vehicle count by movement class in the

city-scale video is a new topic in AI City Challenge 2020.

The number of vehicles in a city camera view with different

movements, e.g., going straight or turning, is quite valu-

able information for real-time control in a traffic system.

A Kalman-Filter-based method [32] is proposed to produce

reliable estimates of real-time measurements of detectors.

Pang et al. [25] proposed a method for counting the num-

ber of vehicles with occlusions, based on the resolvability

of each occluded vehicle. Traffic videos from real-world

cameras usually come with relatively lower quality. What’s



more, there is no available annotation for the vehicles to

count. Zero-shot learning has been a long-standing prob-

lem in computer vision tasks [31, 15, 7, 8]. Thus, a naive

combination of detector and tracker can perform poorly,

while standard vision algorithms such as background mod-

eling and optical flow can work in a limited setup. Thus, we

choose to resolve this dilemma by first identifying the target

vehicle routes for pre-defined movements. With the tracks

of target vehicles aggregated by the tracking-by-detection

paradigm, the tracks are identified and regressed to the mod-

eled routes for the pre-defined movements.

3. Method

In this paper, we propose Zero-VIRUS, a zero-shot sys-

tem to identify vehicle routes in still-camera videos for in-

telligent transportation purposes. With 2D-field modeling

of designated routes, this system is built upon zero known

vehicle tracks and designed for arbitrary traffic cameras.

Zero-VIRUS consists of two stages, where we first obtain

vehicle trajectories and then identify them with field mod-

eling of pre-defined routes.

3.1. Vehicle Detection and Tracking

In a video sequence, we detect vehicles on each frame

and track their locations along time. State-of-the-art object

detection and tracking techniques are adapted for the traffic

scenarios to produce initial trajectories. Then we enhance

the trajectories through localization, smoothing, and filters

to provide a more explicit representation for the latter stage.

3.1.1 Vehicle Detection

Model Architecture We adopt the instance segmentation

network Mask R-CNN [12] with a ResNeXt-101 [36] fea-

ture pyramid network [17] backbone as our frame-level ve-

hicle detection model. On a given frame It at time t, it out-

puts a series of detected vehicles {Vt,i} with vehicle class

c(Vt,i), confidence score s(Vt,i), bounding box B(Vt,i), and

segmentation mask M(Vt,i).

Object Classes of Interest In the traffic scenarios, we

mainly focus on vehicles of the following classes. The cor-

responding classes in the Microsoft COCO [19] dataset are

listed in the parentheses.

1. Car: sedan car, SUV, van, bus, small trucks such as

pickup truck, UPS mail trucks, etc. (COCO: Car, Bus)

2. Truck: medium trucks such as moving trucks, garbage

trucks; large trucks such as tractor-trailers, 18-wheeler,

etc. (COCO: Truck)

Our definition of Truck is inconsistent with COCO in that

we do not include small trucks such as pickups. This is in-

tended to be fixed partially by the inter-class non-maximum

suppression and the track label assignment.

Weighted Inter-class Non-maximum Suppression

Some vehicles, especially those small trucks, could result

in double detections of both Car and Truck. In such cases,

we would prefer to remove the Truck detection. Therefore,

we additionally apply a weighted inter-class non-maximum

suppression(NMS) [6] on the detections. Object classes are

assigned different weights as

wc =

{

1, c = Car

0, c = Truck
(1)

All detections are sorted in the descending order according

to a weighted confidence score as

ŝ(Vt,i) = s(Vt,i) + wc(Vt,i) (2)

Then we select the detection one by one and skip if there

exists a detection with intersection over union (IoU) of at

least IoU nms . Samples of detected vehicles are shown in

Figure 2.

Figure 2: Sample results of vehicle detection

3.1.2 Online Multi-Vehicle Tracking

Feature Extraction To reduce computational complex-

ity, we directly use the Mask R-CNN backbone to extract

the feature representation of a detected object. The feature

maps are aligned by region of interest (RoI) pooling [11]

into size sroi according to the bounding box. Then an av-

erage pooling into size savg is applied to obtain the final

feature vector.

Online Association We adopt the association algorithm

from [33] to get the vehicle ID ID(Vt,i) for each detection.

Basically, new detections are assigned to existing tracklets

based on feature similarity and compliance with spatial con-

straints. Since we are tracking Car and Truck together, a

tracked vehicle is classified as Truck when it is detected as

Truck for at least ftruck fraction of all frames.



3.1.3 Trajectory Enhancement

Localization with Segmentation Given the bounding
box of a vehicleVt;i in the top-left bottom-right representa-
tion as

B (Vt;i ) =
�
x0 y0 x1 y1

�
t;i (3)

its location is usually de�ned at the center of the bounding
box

PA (Vt;i ) =
�

x 0 + x 1
2

y0 + y1
2

�
t;i

(4)

or at the bottom center

PB (Vt;i ) =
� x 0 + x 1

2 y1
�

t;i (5)

As shown in Figure3, these two de�nitions both have obvi-
ous shortcomings for ground tracking of vehicles.PA (Vt;i )
is typically on the vehicle body, but far from the ground.
PB (Vt;i ) is more likely on the ground, but can be off the
vehicle.

Figure 3: Comparison between localization points

Therefore, we propose a segmentation based location
point de�ned as

PC (Vt;i ) =
�

x 0 + x 1
2 max( y0 + y1

2 ; ym )
�

t;i
(6)

where
ym = arg max

y
M (Vt;i ) x 0 + x 1

2 ;y (7)

It selects the bottom of its segmentation mask at the center
column of its bounding box, with a constraint of no higher
than its center row.

As the visual size of an object changes according to its
distance to the camera, we also record the diagonal of each
bounding box as a scale factor along with its location.

S(Vt;i ) = k
�
x1 � x0 y1 � y0

�
k2 (8)

Interpolation and Smoothing For a tracked vehicle with
ID x, we now have its full available history as

H x = f Vt;i j ID (Vt;i ) = xg (9)

Due to occlusions and detection failure, a tracked vehicle
may be lost for a short period before it is re-found in later
frames. This would result in gaps inH x while viewing in
the chronological order. Therefore, we apply linear interpo-
lation to �ll in the gaps for values ofPC andS with adjacent
available frames.

Also, to deal with jittering of the detected objects, a 1D-
gaussian smoothing of standard deviation� g is applied to
the values ofPC andS after interpolation.

Movement and Region Filter Vehicles may stop some-
where for a while due to traf�c lights or jams. For route
identi�cation, we would like to �lter out the stopped period
from the trajectory. We calculate the local average speeds of
the trajectory with a sliding-window of sizewv usingPC .
Then points with a speed lower thanvmin are removed from
the track.

Additionally, a region �lter is applied to select the part of
the trajectory within the region of interest (RoI), as shown
in Figure4. The RoI is de�ned as the inside of a polygon,
which ensures the image border to be outside. The region
�lter is applied at the end to prevent loss of information for
the previous operations. At this point, trajectories with a
length of less thanlmin would be discarded. After all these
�lters, we get an enhanced trajectory asT x = ( P x ; Sx ),
whereP x = f PC g are the locations andSx = f Sg are the
scale factors.

Figure 4: Region of interest (area marked with blue line)
and pre-de�ned routes (colored lines with arrows)

3.2. Route Modeling and Identi�cation

To realize this route identi�cation task with zero training
data while also provide a straightforward generalization to
arbitrary traf�c scenes, we employ 2D-�eld modeling of the
pre-de�ned routes to identify detected vehicle tracks. This
allows our system to be applied to any new camera solely
with the route de�nition.

3.2.1 Route Modeling

Route In this task, we are dealing with videos from still
cameras with a pre-de�ned RoI. A routeR i is described as
a polyline that consists ofn points.

R i =
�
P i

1 P i
2 : : : P i

n

� T
i (10)

whereP i
1 andP i

n should be outside the RoI, as illustrated in
Figure4. This de�nition ensures that a trajectory from the
previous stage would be spatially consistent with its corre-
sponding route.














