
RAPiD: Rotation-Aware People Detection in Overhead Fisheye Images

Zhihao Duan, M. Ozan Tezcan, Hayato Nakamura, Prakash Ishwar, Janusz Konrad ∗

Boston University

{duanzh, mtezcan, nhayato, pi, jkonrad}@bu.edu

Abstract

Recent methods for people detection in overhead, fish-

eye images either use radially-aligned bounding boxes to

represent people, assuming people always appear along

image radius or require significant pre-/post-processing

which radically increases computational complexity. In

this work, we develop an end-to-end rotation-aware peo-

ple detection method, named RAPiD, that detects peo-

ple using arbitrarily-oriented bounding boxes. Our fully-

convolutional neural network directly regresses the angle

of each bounding box using a periodic loss function, which

accounts for angle periodicities. We have also created a

new dataset1 with spatio-temporal annotations of rotated

bounding boxes, for people detection as well as other vision

tasks in overhead fisheye videos. We show that our simple,

yet effective method outperforms state-of-the-art results on

three fisheye-image datasets. The source code for RAPiD is

publicly available2.

1. Introduction

Occupancy sensing is an enabling technology for smart

buildings of the future; knowing where and how many

people are in a building is key for saving energy, space

management and security (e.g., fire, active shooter). Var-

ious approaches to counting people have been developed to

date, from virtual door tripwires to WiFi signal monitoring.

Among those, video cameras combined with computer vi-

sion algorithms have proven most successful [6, 18, 1]. Typ-

ically, a wide-angle, standard-lens camera is side-mounted

above the scene; multiple such cameras are used for large

spaces. An alternative is to use a single overhead, fisheye

camera with a 360◦ field of view (FOV). However, people

detection algorithms developed for side-view, standard-lens

images do not perform well on overhead, fisheye images

due to their unique radial geometry and barrel distortions.
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Figure 1: Illustration of typical people-detection results

on overhead, fisheye images (one quarter shown) for algo-

rithms using various bounding-box orientation constraints;

the human-aligned bounding boxes fit bodies most accu-

rately. These are not outputs from any algorithms. See the

text for discussion.

In standard images, standing people usually appear in an

upright position and algorithms that detect bounding boxes

aligned with image axes, such as YOLO [21], SSD [15] and

R-CNN [24], work well. However, these algorithms per-

form poorly on overhead, fisheye images [12], usually miss-

ing non-upright bodies (Fig. 1a). In such images, stand-

ing people appear along image radius, due to the over-

head placement of the camera, and rotated bounding boxes

are needed. To accommodate this rotation, several people-

detection algorithms, mostly YOLO-based, have been re-

cently proposed [2, 30, 11, 12, 27, 34], each dealing dif-

ferently with the radial geometry. For example, in one of

the top-performing algorithms [12], the image is rotated in

15◦ steps and YOLO is applied to the top–center part of

the image (where people usually appear upright) followed

by post-processing. However, this requires 24-fold applica-

tion of YOLO. Another recent algorithm [27] requires that

bounding boxes be aligned with image radius, but often fails

to detect non-standing poses (Fig. 1b).

In this paper, we introduce Rotation-Aware People De-

tection (RAPiD), a novel end-to-end people-detection al-

gorithm for overhead, fisheye images. RAPiD is a single-

stage convolutional neural network that predicts arbitrarily-

rotated bounding boxes (Fig. 1c) of people in a fisheye im-

age. It extends the model proposed in YOLO [21, 22, 23],

one of the most successful object detection algorithms for

standard images. In addition to predicting the center and
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size of a bounding box, RAPiD also predicts its angle. This

is accomplished by a periodic loss function based on an

extension of a common regression loss. This allows us to

predict the exact rotation of each bounding box in an im-

age without any assumptions and additional computational

complexity. Since RAPiD is an end-to-end algorithm, we

can train or fine-tune its weights on annotated fisheye im-

ages. Indeed, we show that such fine-tuning of a model

trained on standard images significantly increases the per-

formance. An additional aspect of this work, motivated by

its focus on people detection, is the replacement of the com-

mon regression-based loss function used in multi-class ob-

ject detection algorithms [21, 15, 8, 24] with single-class

object detection. The inference speed of RAPiD is nearly

identical to that of YOLO since it is applied to each image

only once without the need for pre-/post-processing.

We evaluate the performance of RAPiD on two publicly-

available, people-detection datasets captured by overhead

fisheye cameras, Mirror Worlds (MW)3 and HABBOF [12].

Although these datasets cover a range of scenarios, they

lack challenging cases such as unusual body poses, wear-

ing a hoodie or hat, holding an object, carrying a backpack,

strong occlusions, or low light. Therefore, we introduce

a new dataset named Challenging Events for Person De-

tection from Overhead Fisheye images (CEPDOF) that in-

cludes such scenarios. In our evaluations, RAPiD outper-

forms state-of-the-art algorithms on all three datasets.

The main contributions of this work can be summarized

as follows:

• We propose an end-to-end neural network, which ex-

tends YOLO v3, for rotation-aware people detection

in overhead fisheye images and demonstrate that our

simple, yet effective approach, outperforms the state-

of-the-art methods.

• We propose a continuous, periodic loss function for

bounding-box angle that, unlike in previous methods,

facilitates arbitrarily-oriented bounding boxes capable

of handling a wide range of human-body poses.

• We introduce a new dataset for people detection from

overhead, fisheye cameras that includes a range of

challenges; it can be also useful for other tasks, such

as people tracking and re-identification.

2. Related work

People detection using side-view standard-lens cameras:

Among traditional people-detection algorithms for standard

cameras, the most popular ones are based on the histogram

of oriented gradients (HOG) [3] and aggregate channel fea-

tures (ACF) [5]. Recently, deep learning algorithms have

3www2.icat.vt.edu/mirrorworlds/challenge/index.html

demonstrated outstanding performance in object and peo-

ple detection [21, 15, 7, 8, 24, 10]. These algorithms can

be divided into two categories: two-stage methods and one-

stage methods. Two-stage methods, such as R-CNN and its

variants [8, 24, 10], consist of a Region Proposal Network

(RPN) which predicts the Region of Interest (ROI) and a

network head refines the bounding boxes. One-stage meth-

ods, such as variants of SSD [15, 7] and YOLO [21, 22, 23],

could be viewed as independent RPNs. Given an input

image, one-stage methods directly regress bounding boxes

through CNNs. Recently, attention has focused on fast one-

stage detectors [33, 28] and anchor-free detectors [29, 32].

Object detection using rotated bounding boxes: Detec-

tion of rotated bounding boxes has been widely studied

in text detection and aerial image analysis [16, 4, 31, 20].

RRPN [16] is a two-stage object detection algorithm which

uses rotated anchor boxes and a rotated region-of-interest

(RRoI) layer. RoI-Transformer [4] extended this idea by

first computing a horizontal region of interest (HRoI) and

then learning the warping from HRoI to RRoI. R3Det [31]

proposed a single-stage rotated bounding box detector by

using a feature refinement layer to solve feature misalign-

ment occurring between the region of interest and the fea-

ture, a common problem of single-stage methods. In an

alternative approach, Nosaka et al. [19] used orientation-

aware convolutional layers [34] to handle the bounding box

orientation and a smooth L1 loss for angle regression. All of

these methods use a 5-component vector for rotated bound-

ing boxes (coordinates of the center, width, height and ro-

tation angle) with the angle defined in [−π
2
, 0] range and a

traditional regression loss. Due to symmetry, a rectangu-

lar bounding box having width bw, height bh and angle θ
is indistinguishable from one having width bh, height bw
and angle (θ − π/2). Hence a standard regression loss,

which does not account for this, may incur a large cost

even when the prediction is close to the ground truth, e.g.,

if the ground-truth annotation is (bx, by, bh, bw,−4π/10), a

prediction (bx, by, bw, bh, 0) may seem far from the ground

truth, but is not so since the ground truth is equivalent to

(bx, by, bw, bh, π/10). RSDet [20] addresses this by intro-

ducing a modulated rotation loss.

People detection in overhead, fisheye images: People

detection using overhead, fisheye cameras is an emerging

area with sparse literature. In some approaches, traditional

people-detection algorithms such as HOG and LBP have

been applied to fisheye images with slight modifications to

account for fisheye geometry [30, 2, 25, 11]. For example,

Chiang and Wang [2] rotated each fisheye image in small

angular steps and extracted HOG features from the top-

center part of the image. Subsequently, they applied SVM

classifier to detect people. In another algorithm, Krams and

Kiryati [11] trained an ACF classifer on side-view images

and dewarped the ACF features extracted from the fisheye
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Figure 2: RAPiD architecture. Following the paradigm of one-stage detectors, our model contains a backbone, FPN, and

detection head (bounding-box regression network). In the diagram, each arrow represents multiple convolutional layers and

the colored rectangles represent multi-dimensional matrices, i.e., feature maps, whose dimensions correspond to input image

of size h× w = 1, 024× 1, 024.

image for person detection.

Recently, CNN-based algorithms have been applied to

this problem as well. Tamura et al. introduced a rotation-

invariant version of YOLO [21] by training the network on

a rotated version of the COCO dataset [14]. The inference

stage in their method relies on the assumption that bounding

boxes in a fisheye image are aligned with the image radius.

Another YOLO-based algorithm [26] applies YOLO to de-

warped versions of overlapping windows extracted from a

fisheye image. Li et al. [12] rotate each fisheye image in

15◦ steps and apply YOLO only to the upper-center part

of the image where people usually appear upright. Subse-

quently, they apply post-processing to remove multiple de-

tections of the same person. Although their algorithm is

very accurate, it is computationally complex as it applies

YOLO 24 times to each image.

In this work, we introduce an angle-aware loss function

to predict the exact angle of bounding boxes without any ad-

ditional assumptions. We also change the commonly-used

representation of rotated bounding boxes to overcome the

symmetry problem (Section 3.2.2).

3. Rotation-Aware People Detection (RAPiD)

We propose RAPiD, a new CNN that, in addition to the

location and size, also estimates the angle of each bound-

ing box in an overhead, fisheye image. During training,

RAPiD includes a rotation-aware regression loss to account

for these angles. RAPiD’s design has been largely moti-

vated by YOLO. Below, we explain this design in detail and

we highlight the concepts we borrowed from YOLO as well

as novel ideas that we proposed.

Notation: We use b = (bx, by, bw, bh, bθ) ∈ R
5 to de-

note a ground-truth bounding box, where bx, by are the co-

ordinates of the bounding box center; bw, bh are the width

and height and bθ is the angle by which the bounding box is

rotated clockwise. Similarly b̂ = (̂bx, b̂y, b̂w, b̂h, b̂θ, b̂conf) ∈

R
6 denotes a predicted bounding box, where the additional

element b̂conf denotes the confidence score of the prediction.

All the angles used in the paper are in radians.

3.1. Network Architecture

Our object-detection network can be divided into three

stages: backbone network, feature pyramid network (FPN)

[13], and bounding box regression network, also known as

the detection head:

P1, P2, P3 = Backbone(I)

P fpn
1

, P fpn
2

, P fpn
3

= FPN(P1, P2, P3)

T̂k = Headk(P
fpn

k ) ∀k = 1, 2, 3

(1)

where I ∈ [0, 1]3×h×w is the input image, {Pk}
3

k=1
denotes

a multi-dimensional feature matrix and {T̂k}
3

k=1
denotes

a list of predicted bounding boxes in transformed notation

(the relationship between T̂ and b̂ will be defined soon – see

equation (2)) at three levels of resolution. Fig. 2 shows the

overall RAPiD architecture, while below we describe each

stage in some depth. For more details, interested readers are

referred to [23].

Backbone: The backbone network, also known as the fea-

ture extractor, takes an input image I and outputs a list of

features (P1, P2, P3) from different parts of the network.

The main goal is to extract features at different spatial res-

olutions (P1 being the highest and P3 being the lowest).

By using this multi-resolution pyramid, we expect to lever-

age both the low-level and high-level information extracted

from the image.

Feature Pyramid Network (FPN): The multi-resolution

features computed by the backbone are fed into FPN in

order to extract features related to object detection, denoted

(P fpn
1

, P fpn
2

, P fpn
3

). We expect P fpn
1

to contain information

about small objects and P fpn
3

– about large objects.



Detection Head: After FPN, a separate CNN is applied to

each feature vector P FPN
k , k ∈ {1, 2, 3} to produce a trans-

formed version of bounding-box predictions, denoted T̂k

– a 4-dimensional matrix with 〈3, h/sk, w/sk, 6〉 dimen-

sions. The first dimension indicates that there are three

anchor boxes being used in T̂k, the second and third di-

mensions denote the prediction grid, where h × w is the

resolution of the input image and sk is the stride at resolu-

tion level k as shown in Fig. 2, and the last dimension de-

notes a transformed version of the predicted bounding box

for each grid cell. We denote the nth transformed bounding

box prediction of Headk in grid cell (i, j) as T̂ k[n, i, j] =
(t̂x, t̂y, t̂w, t̂h, t̂θ, t̂conf) from which a bounding-box predic-

tion can be computed as follows:

b̂x = sk
(
j + Sig(t̂x)

)
, b̂w = wanchor

k,n et̂w

b̂y = sk
(
i+ Sig(t̂y)

)
, b̂h = hanchor

k,n et̂h

b̂θ = α Sig(t̂θ)− β, b̂conf = Sig(t̂conf)

(2)

where Sig(·) is the logistic (sigmoid) activation function

and wanchor
k,n and hanchor

k,n are the width and height of the nth

anchor box for Headk. Note, that angle prediction b̂θ is

limited to range [−β, α−β] (2). In Section 3.2.2 below, we

discuss the selection of α and β values.

3.2. AngleAware Loss Function

Our loss function is inspired by that used in YOLOv3

[23], with an additional bounding-box rotation-angle loss:

L =
∑

t̂∈T̂ pos

BCE(Sig(t̂x), tx) + BCE(Sig(t̂y), ty)

+
∑

t̂∈T̂ pos

(Sig(t̂w)− tw)
2 + (Sig(t̂h)− th)

2

+
∑

t̂∈T̂ pos

ℓangle(̂bθ, bθ)

+
∑

t̂∈T̂ pos

BCE(Sig(t̂conf), 1) +
∑

t̂∈T̂ neg

BCE(Sig(t̂conf), 0)

(3)

where BCE denotes binary cross-entropy, ℓangle is a new

angle loss function that we propose in the next section, T̂ pos

and T̂ neg are positive and negative samples from the pre-

dictions, respectively, as described in YOLOv3, b̂θ is cal-

culated in equation (2) and tx, ty, tw, th are calculated from

the ground truth as follows:

tx =
bx
sk

−

⌊
bx
sk

⌋
, tw = ln

(
bw

wanchor
k,n

)

ty =
by
sk

−

⌊
by
sk

⌋
, th = ln

(
bh

hanchor
k,n

) (4)

Figure 3: Periodic loss function with L2 norm as regressor

and its derivative

Note, that we do not use the category-classification loss

since we use only one class (person) in our problem.

Traditionally, regression functions based on L1 or L2
distance are used for angle prediction [16, 4, 31]. However,

these metrics do not consider the periodicity of the angle

and might result in misleading cost values due to symmetry

in the parameterization of rotated bounding boxes. We solve

these issues by using a periodic loss function and changing

the parameterization, respectively.

3.2.1 Periodic Loss for Angle Prediction

Since a bounding box remains identical after rotation by π,

the angle loss function must satisfy ℓangle(θ̂, θ) = ℓangle(θ̂ +

π, θ), i.e., must be a π-periodic function with respect to θ̂.

We propose a new, periodic angle loss function:

ℓangle(θ̂, θ) = f(mod(θ̂ − θ −
π

2
, π)−

π

2
) (5)

where mod(·) denotes the modulo operation and f is any

symmetric regression function such as L1 or L2 norm.

Since ∂
∂x

mod(x, ·) = 1, the derivative of this loss function

with respect to θ̂ can be calculated as follows,

ℓ′angle(θ̂, θ) = f ′(mod(θ̂ − θ −
π

2
, π)−

π

2
) (6)

except for angles such that θ̂−θ = (kπ+π/2) for integer k,

where ℓangle is non-differentiable. However, we can ignore

these angles during backpropagation as is commonly done

for other non-smooth functions, such as L1 distance. Fig. 3

shows an example plot of ℓangle(θ̂, θ) with L2 distance as

well as its derivative with respect to ∆θ = θ̂ − θ.

3.2.2 Parameterization of Rotated Bounding Boxes

In most of the previous work on rotated bounding-box

(RBB) detection, [−π
2
, 0] range is used for angle representa-

tion. This ensures that all RBBs can be uniquely expressed



�

−�

�

2

−

�

2

0

�

̂ 

�

� + �

Figure 4: Illustration of the necessity to expand the

predicted-angle value range. Gradient descent applied to the

predicted angle θ̂ (red arrow) may rotate it clockwise and

away from the ground truth angle θ (green arrow). Since a

bounding box at angle θ + π is the same as the one at θ,

we need to extend the angle range to include θ + π (dashed

green arrow) otherwise θ̂, pushed by the gradient, will stop

at π/2.

as (bx, by, bw, bh, bθ) where bθ ∈ [−π
2
, 0]. However, as dis-

cussed in Section 2 and also in [20], this approach might

lead to a large cost even when the prediction is close to the

ground truth due to the symmetry of the representation, i.e.,

(bx, by, bw, bh, bθ) = (bx, by, bh, bw, bθ −π/2). We address

this by enforcing the following rule in our ground-truth an-

notations: bw < bh and extending the ground-truth angle

range to [−π
2
, π
2
) to be able represent all possible RBBs.

For bounding boxes that are exact squares, a rare situation,

we simply decrease a random side by 1 pixel. Under this

rule, each bounding box will correspond to a unique 5-D

vector representation.

Given the fact that the ground-truth angle θ is defined in

[−π
2
, π
2
) range, it seems logical to force the predicted angle

θ̂ to be in the same range by assigning (α, β) = (π, π/2) in

equation (2). However, this creates a problem for gradient

descent when π/2 < θ̂ − θ < π since the derivative of

angle loss (6) will be negative (Fig. 3). In this case, gradient

descent will tend to increase θ̂ which will move it further

away from the actual angle θ. Clearly, the network should

learn to estimate the angle as θ+ π instead of θ (Fig. 4). To

allow this kind of behavior, we extend the range of allowed

angle predictions to [−π, π) by assigning (α, β) = (2π, π).

Note that our new RBB parameterization will not have

the symmetry problem explained above if the network even-

tually learns to predict the parametrization rule, b̂w ≤ b̂h,

which is very likely considering the fact that all ground-

truth RBBs satisfy bw ≤ bh. Indeed, based on our exper-

iments in Section 4.4.3 we show that nearly all RBBs pre-

dicted by RAPiD satisfy b̂w ≤ b̂h.

In summary, by 1) defining [−π
2
, π
2
) as the ground truth

angle range and forcing ground truth bw < bh, 2) using our

proposed periodic angle loss function, and 3) setting pre-

dicted angle range to be (−π, π), our network can learn to

predict arbitrarily-oriented RBBs without problems experi-

enced by previous RBB methods. Based on the experimen-

tal results in Section 4.4.2, we choose periodic L1 to be our

angle loss function ℓangle.

3.3. Inference

During inference, an image I ∈ R
3×h×w is fed into the

network, and three groups of bounding boxes (from three

feature resolutions) are obtained. A confidence threshold

is applied to select the best bounding box predictions. Af-

ter that, non-maximum suppression (NMS) is applied to re-

move redundant detections of the same person.

4. Experimental Results

4.1. Dataset

Although there are several existing datasets for people

detection from overhead, fisheye images, either they are not

annotated with rotated bounding boxes [17], or the num-

ber of frames and people are limited [12]. Therefore, we

collected and labeled a new dataset named Challenging

Events for Person Detection from Overhead Fisheye images

(CEPDOF), and made it publicly available4. We also man-

ually annotated a subset of the MW dataset with rotated

bounding-box labels, that we refer to as MW-R. We use

MW-R, HABBOF, and CEPDOF to evaluate our method

and compare it to previous state-of-the-art methods. Table 1

shows various statistics of these three datasets. Clearly, the

new CEPDOF dataset contains many more frames and hu-

man objects, and also includes challenging scenarios such

as crowded room, various body poses, and low-light sce-

narios, which do not exist in the other two datasets. Further-

more, CEPDOF is annotated spatio-temporally, i.e., bound-

ing boxes of the same person carry the same ID in consecu-

tive frames, and thus can be also used for additional vision

tasks using overhead, fisheye images, such as video-object

tracking and human re-identification.

4.2. Performance Metrics

Following the MS COCO challenge [14], we adopt Av-

erage Precision (AP), i.e., the area under the Precision-

Recall curve, as one of our evaluation metrics. However, we

only consider AP at IoU = 0.5 (AP50) since even a perfect

people-detection algorithm could have a relatively low IoU

due to the non-uniqeness of ground truth: for the same per-

son there could be multiple equally good bounding boxes at

different angles, but only one of them will be selected by a

human annotator to be labeled as the ground truth. In ad-

dition to AP, we also adopt F-measure at a fixed confidence

4vip.bu.edu/cepdof



Table 1: Statistics of our new CEPDOF dataset in comparison with existing overhead fisheye image datasets. Since all fisheye

images have a field of view with 1:1 aspect ratio, we only list one dimension (i.e., “1, 056 to 1, 488” means frame resolution

for different videos is between 1, 056 × 1, 056 and 1, 488 × 1, 488). Note that the MW-R dataset in this table is a subset of

the original MW dataset that we annotated with bounding-box rotation angles.

Dataset # of videos Avg. # of people Max # of people # of frames Resolution FPS

MW-R 19 2.6 6 8,752 1,056 to 1,488 15

HABBOF 4 3.5 5 5,837 2,048 30

CEPDOF 8 6.8 13 25,504 1,080 to 2,048 1-10

Scenarios CEPDOF details

Common activities 2 6.0 11 2,101 2,048 1

Walking activities 1 6.0 9 7,202 1,080 10

Crowded scene 1 10.8 13 3,000 2,048 10

Edge cases 1 5.5 8 4,201 2,048 10

Low-light scenarios 3 6.8 8 9,000 1,080 10

Table 2: Performance comparison of RAPiD and previous state-of-the-art methods. P, R, and F denote Precision, Recall, and

F-measure, respectively. All metrics are averaged over all the videos in each dataset. Therefore, the F-measure in the table is

not equal to the harmonic mean of Precision and Recall results in the table. The inference speed (FPS) is estimated from a

single run on the Edge cases video in CEPDOF at confidence threshold b̂conf = 0.3, using Nvidia GTX 1650 GPU.

MW-R HABBOF CEPDOF

FPS AP50 P R F AP50 P R F AP50 P R F

Tamura et al. [27] (608) 6.8 78.2 0.863 0.759 0.807 87.3 0.970 0.827 0.892 61.0 0.884 0.526 0.634

Li et al. AA [12] (1,024) 0.3 88.4 0.939 0.819 0.874 87.7 0.922 0.867 0.892 73.9 0.896 0.638 0.683

Li et al. AB [12] (1,024) 0.2 95.6 0.895 0.902 0.898 93.7 0.881 0.935 0.907 76.9 0.884 0.694 0.743

RAPiD (608) 7.0 96.6 0.951 0.931 0.941 97.3 0.984 0.935 0.958 82.4 0.921 0.719 0.793

RAPiD (1,024) 3.7 96.7 0.919 0.951 0.935 98.1 0.975 0.963 0.969 85.8 0.902 0.795 0.836

threshold b̂conf = 0.3 as another performance metric. Note

that the F-measure for a given value of b̂conf corresponds to

a particular point on the Precision-Recall curve.

4.3. Main Results

Implementation details: Unless otherwise specified,

we first train our network on the MS COCO 2017 [14] train-

ing images for 100,000 iterations and fine-tune the network

on single or multiple datasets from Table 1 for 6,000 iter-

ations (one iteration contains 128 images). On COCO im-

ages, the network weights are updated by Stochastic Gra-

dient Descent (SGD) with the following parameters: step

size 0.001, momentum 0.9, and weight decay 0.0005. For

datasets in Table 1, we use standard SGD with a step size

of 0.0001. Rotation, flipping, resizing, and color augmenta-

tion are used in both training stages. All results have been

computed based on a single run of training and inference.

Table 2 compares RAPiD with other competing algo-

rithms. In order to evaluate AA and AB algorithms from Li

et al. [12], we used the authors’ publicly-available imple-

mentation.5 Since the code of Tamura et al. [27] is not pub-

5vip.bu.edu/projects/vsns/cossy/fisheye

licly available, we implemented their algorithm based on

our best understanding. Since there is no predefined train-

test split in these three datasets, we cross-validate RAPiD

on these datasets, i.e., two datasets are used for training

and the remaining one for testing, and this is repeated so

that each dataset is used once as the test set. For exam-

ple, RAPiD is trained on MW-R + HABBOF, and tested

on CEPDOF, and similarly for other permutations. We use

only one Low-light video (with infra-red illumination) dur-

ing training, as other videos have extremely low contrast,

but we use all of them in testing. Since neither Li et al.

[12] nor Tamura et al. [27] are designed to be trained on

rotated bounding boxes, we just trained them on COCO as

described in their papers. Tamura et al. used a top-view

standard-lens image dataset called DPI-T [9] for training

in addition to COCO, however currently this dataset is not

accessible. In the ablation study (Section 4.4.1), we show

the effect of fine-tuning Tamura et al. with overhead, fish-

eye frames as well. We use 0.3 as the confidence thresh-

old for all the methods to calculate Precision, Recall, and

F-measure. All methods are tested without test-time aug-

mentation.

Results in Table 2 show that RAPiD at 608×608 resolu-



(a) Different poses. (b) People standing. (c) Straight under camera. (d) People walking.

(e) Various angles. (f) Crowded scene + occlusions. (g) People on the screen. (h) Low-light scenario.

Figure 5: Qualitative results of RAPiD on videos from MW-R (a–c), HABBOF (d) and CEPDOF (e–h). Green boxes are

true positives, red boxes are false positives, and yellow boxes are false negatives. Images (a–d) are for relatively easy cases,

(e–f) are for challenging cases, and (g–h) are failure examples. As shown in (a–f), RAPiD works very well in most scenarios,

including various poses, orientations, occupancy levels, and background scenes. However, it produces false positives in (g)

on a projection screen (images of people who should not be counted) and in (h). It also misses people in low-light conditions,

such as in (h).

tion achieves the best performance and the fastest execution

speed among all the methods tested. Our method is tens of

times faster than Li et al.’s method and slightly faster than

the method of Tamura et al.. We note that RAPiD’s per-

formance is slightly better, in terms of AP, than that of Li

et al.’s AB algorithm on the MW-R dataset in which most

human objects appear in an upright pose (walking). This

is encouraging since people walking or standing appear ra-

dially oriented in overhead, fisheye images, a scenario for

which Tamura et al.’s and Li et al.’s algorithms have been

designed. However, RAPiD outperforms the other algo-

rithms by a large margin on both HABBOF, which is rela-

tively easy, and CEPDOF, which includes challenging sce-

narios, such as various body poses and occlusions. We con-

clude that RAPiD works well in both simple and challeng-

ing cases while maintaining high computational efficiency.

Furthermore, it achieves even better performance when the

input image resolution is raised to 1, 024 × 1, 024 but at

the cost of a doubled inference time. Fig. 5 shows sam-

ple results of RAPiD applied to the three datasets; the de-

tections are nearly perfect in a range of scenarios, such as

various body poses, orientations, and diverse background

scenes. However, some scenarios, such as people’s images

on a projection screen (Fig. 5g), low light, and hard shad-

ows, remain challenging.

4.4. Design Evaluation

We conducted several experiments to analyze the effects

of the novel elements we introduced in RAPiD. Specifically,

we conducted an ablation study and compared different an-

gle loss functions. Due to the limited amount of GPU re-

sources we have, we did not run a full cross-validation for

these experiments. Instead, we trained all of these algo-

rithms on COCO and then fine-tuned them on MW-R using

the same optimization parameters as reported in Section 4.3.

Then, we tested each algorithm on every video in the HAB-

BOF and CEPDOF datasets at 1, 024 × 1, 024 resolution.

The resulting AP was averaged over all videos.

4.4.1 Ablation Experiments

In this section, we present various ablation experiments to

analyze how each part of RAPiD individually contributes to

the overall performance. As the baseline, we use Tamura

et al. [27] with NMS and analyze the differences between

this baseline and RAPiD one-by-one. Tamura et al. use

standard YOLO [23] trained on 80-classes of COCO with

rotation-invariant training [27] in which the object’s angle



Table 3: Ablation study of RAPiD. Fine-tuning is applied

using the MW-R dataset.

No. of

classes
Angle prediction

Fine-

tuning
AP50 FPS

80 Rotation-invariant 81.4 3.7

1 Rotation-invariant 81.2 3.8

1 Rotation-invariant X 85.9 3.8

1 Rotation-aware X 88.9 3.7

Table 4: Comparison of RAPiD’s performance for different

angle ranges and loss functions.

Prediction range Angle loss AP50

(−∞,∞) L1 86.0

(−π, π) L1 87.0

(−π, π) Periodic L1 88.9

(−∞,∞) L2 86.1

(−π, π) L2 86.1

(−π, π) Periodic L2 88.1

is uniquely determined by its location. The first row of Ta-

ble 3 shows the result of this baseline algorithm. Note that,

the baseline algorithm is not trained or fine-tuned on over-

head, fisheye frames.

Multi-class vs. single-class: In RAPiD, we remove the

category classification part of YOLO since we are deal-

ing with a single object category, namely, person (see Sec-

tion 3.2). As can be seen from the second row of Table 3,

this results in a slight performance drop, which is to be ex-

pected since training on 80 classes of objects can benefit

from multi-task learning. However, removing the category-

classification branch reduces the number of parameters by

0.5M and slightly increases the inference speed (FPS in Ta-

ble 2 and Table 3).

Fine-tuning with overhead, fisheye images: To ana-

lyze this effect, we fine-tuned the single-class algorithm

trained on COCO with images from MW-R. As shown in

the third row of Table 3, this results in a significant perfor-

mance increase. Recall that the test set used in Table 3 does

not include any frames from the MW-R dataset.

Rotation-aware people detection: As discussed in Sec-

tion 3.2, we introduced a novel loss function to make

RAPiD rotation-aware. Instead of setting the object’s angle

to be along the FOV radius, we add a parameter, b̂θ, to each

predicted bounding box and train the network using peri-

odic L1 loss. As shown in the last row of Table 3, the angle

prediction further improves the performance of RAPiD.

4.4.2 Comparison of Different Angle Loss Functions

To analyze the impact of the loss functions on angle pre-

diction, we ablate the angle value range and angle loss in
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Figure 6: Histogram of the height-width ratio of the pre-

dicted bounding boxes.

RAPiD while keeping the other parts unchanged. We com-

pare our proposed periodic loss with two baselines: stan-

dard unbounded regression loss and bounded regression

loss. We perform the same experiment for both L1 and L2

loss. As can be seen in Table 4, the periodic L1 loss achieves

the best performance, and both the periodic L1 and periodic

L2 losses outperform their non-periodic counterparts.

4.4.3 Analysis of the Prediction Aspect Ratio

As discussed in Section 3.2.2, we relax the angle range to

be inside [−π/2, π/2) and force bw < bh in ground-truth

annotations so that every bounding box corresponds to a

unique representation. In the same section, in order to han-

dle the bounding-box symmetry problem we assumed that

the network can learn to predict bounding boxes such that

b̂w < b̂h. To demonstrate that this is indeed the case, we

analyze the output of our network on both HABBOF and

CEPDOF datasets. Fig. 6 shows the histogram of b̂h/b̂w.

We observe that nearly all predicted bounding boxes satisfy

b̂w < b̂h (i.e., b̂h/b̂w > 1), which validates our assumption.

5. Conclusions

In this paper, we proposed RAPiD, a novel people detec-

tion algorithm for overhead, fisheye images. Our algorithm

extends object-detection algorithms which use axis-aligned

bounding boxes, such as YOLO, to the case of person de-

tection using human-aligned bounding boxes. We show that

our proposed periodic loss function outperforms traditional

regression loss functions in angle prediction. With rotation-

aware bounding box prediction, RAPiD outperforms pre-

vious state-of-the-art methods by a large margin without

introducing additional computational complexity. We also

introduced a new dataset, that consists of 25K frames and

173K people annotations. We believe both our method and

dataset will be beneficial for various real-world applications

and research using overhead, fisheye images and videos.
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