
Unsupervised Learning of Metric Representations with Slow Features from

Omnidirectional Views

Mathias Franzius

Honda Research Institute Europe GmbH

63073 Offenbach, Germany

Mathias.Franzius@honda-ri.de

Benjamin Metka

Frankfurt University of Applied Sciences

60318 Frankfurt, Germany

benjamin.metka@gmobis.com

Muhammad Haris

Frankfurt University of Applied Sciences

60318 Frankfurt, Germany

muhammad.haris@fb2.fra-uas.de

Ute Bauer-Wersing

Frankfurt University of Applied Sciences

60318 Frankfurt, Germany

ubauer@fb2.fra-uas.de

Abstract

Unsupervised learning of Self-Localization with Slow

Feature Analysis (SFA) using omnidirectional camera in-

put has been shown to be a viable alternative to estab-

lished SLAM approaches. Previous models for SFA self-

localization purely relied on omnidirectional visual input.

The model led to globally consistent localization in SFA

space but the lack of odometry integration reduced the local

accuracy. However, odometry integration and other down-

stream usage of localization require a common coordinate

system, which previously was based on an external metric

ground truth measurement system. Here, we show an au-

tonomous unsupervised approach to generate accurate met-

ric representations from SFA outputs without external sen-

sors. We assume locally linear trajectories of a robot, which

is consistent with, for example, driving patterns of robotic

lawn mowers. This geometric constraint allows a formu-

lation of an optimization problem for the regression from

slow feature values to the robot’s position. We show that

the resulting accuracy on test data is comparable to super-

vised regression based on external sensors. Based on this

result, using a Kalman filter for fusion of SFA localization

and odometry is shown to further increase localization ac-

curacy over the supervised regression model.

1. Introduction

A model of hierarchical Slow Feature Analysis (SFA)

enables a mobile robot to learn a spatial representation of its

environment directly from omnidirectional images taken by

the robot (for details see [1]). In previous work it has been

shown that bio-inspired SFA-based localization can be suc-

cessfully and robustly applied to real world scenarios in in-

door and outdoor environments showing comparable accu-

racy to state-of-the-art monocular visual SLAM approaches

[1]. Moreover, extension of the basic model [2] led to im-

proved robustness of localization in respect to medium- and

long-term changes in outdoor scenes [3, 4]. Gradient-based

navigation in slow feature space has proven feasible even

under the constraint of obstacle avoidance [5, 6].

After an unsupervised learning phase using simulated ro-

tation based on omnidirectional views the resulting SFA

representations are orientation invariant and code for the

position of the robot. The slowest features are spatially

smooth (and in the theoretical optimum monotonous [7])

even though the variation of the sensory signals received

from the environment might change drastically e.g., during

rotation on the spot. Our model of spatial localization learn-

ing, like other models for localization based on slowness

learning (e.g., [5, 8, 9]), does not integrate self-motion cues

over time. It instantaneously estimates the absolute posi-

tion in slow feature space from a single image. Hence, our

model is complementary to path integration, which is lo-

cally consistent but drifts over time.

An appropriate combination of relative internal and abso-

lute external measurements can improve localization ac-

curacy compared to estimations based on the individual

ones alone. This is a common approach in SLAM meth-

ods where the trajectory is estimated incrementally based

on ego-motion estimates and accumulated errors are cor-

rected using information from loop closure detections, i.e.,

the robot identifies a place it has seen before [10].

The combination of slow features with self-motion cues re-

quires a common coordinate system. Earlier publications

(e.g., [3, 5]) used supervised regression to map from slow

features to metric coordinates. The necessary ground truth

position information was obtained from visual pose estima-

tions of fiducial markers attached to the robot with exter-

nal static cameras. However, the use of additional external

infrastructure is costly, complex, and often causes synchro-

nization issues. Furthermore in many robotic application

scenarios e.g. household or mower robots it is impractical

to obtain external ground truth. Therefore, we introduce

a method to learn the mapping function from slow feature

space to metric space in an unsupervised fashion.

Section 2 briefly summarizes Slow Feature Analysis (SFA)

and shows how hierarchical spatial representation is learned

from omnidirectional image data. In Section 3 we introduce

unsupervised metric learning and then show experimental

results on images from a simulator and from a mobile robot

in Section 4. Section 5 extends the model by fusing the met-

ric localization data with odometry by Kalman filtering and

shows experimental data on improved localization accuracy.

2. Learning Spatial Representations with SFA

2.1. Slow Feature Analysis

Slow feature analysis (SFA) [11] transforms a multidi-

mensional time series x(t), in our case images along a tra-

jectory, to slowly varying output signals. The objective is to

find instantaneous scalar input-output functions gj(x) such

that the output signals

sj(t) : = gj(x(t))

minimize

∆(sj) : = 〈ṡ2j 〉t

under the constraints

〈sj〉t = 0 (zero mean),

〈s2j 〉t = 1 (unit variance),

∀i < j : 〈sisj〉t = 0 (decorrelation and order)

with 〈·〉t and ṡ indicating temporal averaging and the

derivative of s, respectively. The ∆-value is a measure of

the temporal slowness of the signal sj(t). It is given by the

mean square of the signal’s temporal derivative, so small

∆-values indicate slowly varying signals. The constraints

avoid the trivial constant solution and ensure that different

functions gj code for different aspects of the input. We use

the MDP [12] implementation of SFA, which is based on

solving a generalized eigenvalue problem.

2.2. Learning Orientation Invariant Spatial Repre
sentations

For representations that are suitable for self-localization

we want to learn functions that encode the robot‘s posi-

tion as slowly varying features and are invariant w.r.t. its

orientation. Since the information encoded in the learned

slow features depends on the temporal statistics of the train-

ing data, the orientation of the robot has to change on a

faster timescale than its position during training in order

to achieve orientation invariance [7]. To avoid a trajec-

tory with excessive robot rotation, we simulate additional

robot rotation by virtually rotating the omnidirectional im-

ages from the robot’s camera [2].

The high dimensional visual input is processed by a hier-

archical converging network. In our standard approach [2],

layers are trained subsequently with all training images and

their variants from the simulated rotation, in temporal or-

der of their recording. The layers converge onto a single

node whose slowest outputs s1...K form the representation

of the environment that we use for localization (see Fig. 1).

Please note that during the training phase simulated rotation

is essential for learning orientation invariant position. After

training, localization itself is instantaneous i.e. position is

predicted based on a single omnidirectional view.

This first phase of the algorithm for learning the mapping of

omnidirectional views to slow feature space is also depicted

as the left part of the overall processing pipeline shown in

Fig. 2.

3. Unsupervised Metric Learning

Given the slow feature vector s ∈ R
K computed for the

image from a given position p := (x, y)⊤ we want to find

the weight matrix W = (wx wy) ∈ R
K×2 such that the

error ε ∈ R
2 for the estimation p = W⊤s + ε is min-

imal. Without external measurements of the robot’s posi-

tion p the only source of metric information available is

from ego-motion estimates. As already stated, pose esti-

mation solely based on odometry accumulates errors over

time and thus does not provide suitable label information

to learn the weight matrix W directly. Especially errors in

the orientation measurements cause large deviations. The

odometry distance measurements, on the other hand, are lo-

cally very precise. In order to learn the weight matrix W

using these distance measurements, we assume particular

trajectory forms driven by the robot. Here, we require the

robot trajectory to contain straight line segments, such that

the training area is evenly covered and there exists a certain

number of intersections between the lines. We consider this

a minimal constraint since such movement strategy is typi-

cal for current household robots. This second phase phase

for learning the mapping from slow feature space to 2D co-

ordinates in metric space is depicted in right part of the over-

Figure 1: Learning the spatial representation. (a) An omnidirectional view from the current position on the training

trajectory is captured and transformed to a panoramic view. (b) A full rotation of the robot is simulated for every image by

circular shifts of the panoramic view, which increases the perceived rotational movement and leads to orientation invariant

encoding of the position. (c) The views are processed by the network. Each layer consists of overlapping SFA-nodes arranged

on a regular grid. Each node performs linear SFA for dimensionality reduction followed by a quadratic SFA for slow feature

extraction. The output layer is a single SFA-node. (d) The color-coded outputs, so-called spatial firing maps, ideally show

characteristic gradients along the coordinate axes and look the same independent of the specific orientation. Thus, SFA-

outputs s1...K at position p are the orientation invariant encoding of location.

Figure 2: SFA and Unsupervised Metric Learning. The input to the processing pipeline are omnidirectional views of

the environment and the first phase starts with an initial step that projects all the images to panoramic views and simulates

additional rotation to ensure orientation invariant slow features. The hierarchical SFA network then uses these images to

learn spatial representations of the environment in SFA space/coordinates. While traversing the training trajectory the m

SFA outputs change over time hence encode the robot’s changing position in SFA space, indicated as interface. In the second

phase the unsupervised metric learning (UML) module uses these outputs of the trained SFA network together with odometry

information as inputs to learn the metric coordinates. The UML module determines a mapping from SFA to metric space

by minimizing the point-wise estimation based on the line parameters and SFA outputs. The overall output of the system is

2D-position (x,y) for each omnidirectional image.

all processing pipeline shown in Fig.2.

3.1. Definition of the Cost Function

A line l consists of M collinear points P =
(p1, . . . ,pM). At every point pm we record the slow fea-

ture vector sm computed for the corresponding image and

the current distance measurement dm to the origin o of line l

where dm = ||pm − o||2 and o := (x0, y0)
⊤. Based on the

orientation α, the origin o and the distance measurement

dm the reconstruction of a point is given by the equation

pm = o + dm(cos(α) sin(α))⊤. For the correct weight

matrix W the reconstruction of the same point using slow

feature vector sm is defined by pm = W⊤sm. However,

the line parameters o and α as well as the weight matrix W

are unknown and need to be estimated. Given optimal pa-

rameters the difference between the point-wise estimations

based on the line parameters and the weight matrix are min-

imal. Thus, the parameters can be learned simultaneously

by minimizing the difference in the point-wise reconstruc-

tion (see Fig. 3).

The distance measurements from odometry induce the

correct metric scale while the intersections of the line seg-

ments and the weights ensure a globally consistent map-

ping. For N line segments the cost function for parameters

θ = (α1, ..., αN ,o1, ...,oN ,W) is the following:

C(θ) =
1

2

N
∑

n=1

Mn
∑

m=1

||on + dn,m

(

cos(αn) sin(αn)

)

⊤

− W
⊤
sn,m||

2
2

(1)

Where Mn is the number of points on line ln. The corre-

sponding partial derivatives w.r.t. parameters θ are given

Figure 3: Optimization problem. Find the optimal values

for weight matrix W by minimizing the difference between

estimations based on the line parameters and SFA.

by:

∂C

∂αn

=
M
∑

m=1

dn,m

(

sin(αn) −cos(αn)

)

(W
⊤
sn,m − on) (2)

∂C

∂on

=

M
∑

m=1

on + dn,m

(

cos(αn) sin(αn)

)

⊤

− W
⊤
sn,m (3)

∂C

∂W
=

N
∑

n=1

M
∑

m=1

−sn,m(on + dn,m

(

cos(αn) sin(αn)

)

⊤

− W
⊤
sn,m)

⊤

(4)

3.2. Extension of the Cost Function

For some trajectories, e.g., a grid-like trajectory, the

learned mapping can be sheared relative to the ground truth.

In the most extreme case, the learned solution maps all

points onto a single line. To avoid this problem, the ori-

entations αn and αn+1 of two consecutive line segments

ln, ln+1 can be constrained such that the relative angle be-

tween them corresponds to the measured change in orienta-

tion from odometry. Therefore, we add a term to the cost

function C that punishes the deviation of the relative an-

gle defined by the current estimate of αn and αn+1 from

the measured change in orientation obtained from odometry

∡lnln+1. We express αn and αn+1 as unit vectors to obtain

the cosine of the relative angle given by their dot product.

The deviation of the relative angle from the measured angle

is then defined as the difference between the angles’ cosine

values. The cost function C from Eq. 1 is thus extended:

C
′
(θ) =

1

2

N
∑

n=1

M
∑

m=1

||on + dn,m

(

cos(αn) sin(αn)

)

⊤

− W
⊤
sn,m||

2
2

+
1

2

N−1
∑

n=1

(cos(αn) cos(αn+1) + sin(αn) sin(αn+1) − cos(∡lnln+1))
2

(5)

Thus, while C only uses translation measurements, C ′ addi-

tionally uses yaw rotation information from odometry. The

partial derivatives of cost function C ′ are equal to those of

the cost function C except for the partial derivative of αn:

∂C′

∂αn

=
M
∑

m=1

dn,m

(

sin(αn) −cos(αn)

)

(W
⊤
sn,m − on)

+

sin(αn − αn+1)(cos(∡lnln+1) − cos(αn − αn+1), if n = 1

sin(αn − αn+1)(cos(∡lnln+1) − cos(αn − αn+1)

+ sin(αn−1 − αn)(cos(αn−1 − αn) − cos(∡ln−1ln), otherwise

(6)

A solution for the parameters θ can be obtained performing

gradient descent on the cost function C. The update in an

iteration step t is given by:

vt = γvt−1 + β
∂C

∂θ
(7)

θt = θt−1 − vt (8)

Where β is the learning rate and γ ∈ (0, 1] is a momen-

tum term to increase speed of convergence and regulate the

amount of information from previous gradients which is in-

corporated into the current update. The right part of Fig. 2

shows the pipeline of unsupervised metric learning.

Note that the found solutions may be translated and ro-

tated against the odometry’s coordinate systems and for cost

function C it may also be mirrored. If required, some pa-

rameters o and α can be fixed during the optimization to be

compatible with the desired coordinate system or by rotat-

ing, shifting, and mirroring the solution as a postprocessing

step.

4. Experiments

The overall processing pipeline is summarized in Fig. 2.

We assume that the slow feature representation is learned

in advance from omnidirectional views of the environment.

Subsequently slow feature outputs and odometry recordings

are used to estimate the mapping into metric space. The op-

timal parameters for unsupervised metric learning are ob-

tained by minimizing the cost functions given in equations 1

and 5 using the distances d and slow feature vectors s sam-

pled along the line segments. Optimization terminates if

either the number of maximum iterations is reached or the

change in the value of the cost function falls below a thresh-

old. To assess the quality of the learned metric mapping

the localization accuracy was measured on a separate test

set as the mean Euclidean deviation from the ground truth

coordinates. As a reference, the results of training a regres-

sion model directly on the ground truth coordinates have

been computed as well. Since there is no point of reference

between both coordinate systems the estimated coordinates

might be rotated and translated. Therefore, the ground truth

and estimated metric coordinates have to be aligned before

calculating the accuracy. We used the method from [13] to

obtain the rigid transformation which rotates and translates

the estimated coordinates to align them with the ground

truth coordinates. The obtained transformation was then

again applied to the estimations from our separate test set.

We used the eight slowest features for regression. A non-

linear expansion of the slow features to all monomials

of degree 2 yields a 45-dimensional representation, which

slightly increases localization accuracy. The number of un-

known parameters per line is 1 + 2 (scalar α, 2D line offset

o). Additional, the regression weights W for two dimen-

sions x, y with 2 ∗ 45 dimensions are unknown parameters.

Simulator Experiment The approach was first vali-

dated in a simulated garden-like environment created with

Blender as in [5]. The spatial representation was learned by

training the SFA model with 1773 panoramic RGB-images

with a resolution of 600 × 60 pixels from a trajectory that

covers an area of 16× 18 meters. Training data for the un-

supervised metric learning was gathered by driving along

10 straight line segments with a random orientation and

sampling the slow feature vector sn,m, the distance mea-

surement dn,m and the corresponding ground truth coor-

dinates (xn,m, yn,m)⊤ in 0.2m steps. In total 862 points

were collected. Start and end points of the line segment

were restricted to be within the training area and to have

a minimum distance of 8m. The parameters for the opti-

mization were initialized with values from a random uni-

form distribution such that αn ∈ [0, 2π), ox
n ∈ [−8, 8],

oy
n ∈ [−9, 9] and wx

j , w
y
j ∈ [−1, 1]. The learning rate was

set to β = 1 × 10−5 and the momentum term to γ = 0.95.

The partial derivatives of the cost function are computed ac-

cording to equations (2)-(4).

Results The optimization terminated at about 1000 itera-

tions where the change in the value of the cost function fell

below the predefined threshold. The process starting from

random parameters over intermediate results to convergence

is illustrated in Fig. 4.

As a baseline for the training line segments, the mean

Euclidean deviation from ground truth to the estimated co-

ordinates from the supervised regression model amounts to

0.13m. The unsupervised metric learning on the training

data results in an error of 0.17m. Both estimations for the

line segments from the training set are illustrated in Fig. 5.

Using the weights learned with the supervised regression

model to predict coordinates on the separate test trajectory

results in a mean Euclidean deviation of 0.39m from ground

truth. The unsupervised model prediction error is slightly

lower with a mean deviation of 0.36m. Predicted trajec-

tories from both models closely follow the ground truth

coordinates with noticeable deviations in the south-eastern

and north-western part. Considering the line segments from

the training data it is apparent that those regions are only

sparsely sampled while the density is much higher in the

middle-eastern part. The lower accuracy of the supervised

regression model might be due to slightly overfitting to the

training data. The estimated trajectories of the supervised

and unsupervised regression models are shown in Fig. 6.

Robot We recorded omnidirectional image data with

camera mounted on an autonomous lawn mower together

with the wheel odometry measurements from the robot and

the yaw angle estimated by a gyroscope. To obtain the

training data for the unsupervised metric learning we used

the same model architecture as in the previous section and

trained it while driving along straight lines, turning on the

spot and driving along the next straight line. Thus, the

points on the trajectory could easily be split into line seg-

ments based on the translational and angular velocity mea-

surements from odometry. There were 18 line segments

consisting of a total of 1346 points. In order to speed up

the process and support convergence to an optimal solution,

the line parameters αn and on have been initialized with

the corresponding odometry measurements. The weight

vectors wx and wy were initialized with the weights of

regression models fitted to the raw odometry estimations.

As in the simulator experiment the learning rate is set to

β = 1 × 10−5 and the momentum term to γ = 0.95. Due

to the grid-like trajectory with intersection angles all close

to 90◦ the cost function C ′ from equation (5) was used for

the optimization.

Results The optimization ran for about 900 iterations un-

til it converged to a stable solution. The localization accu-

racy of the unsupervised model on the training data amounts

to 0.17m after estimations have been aligned to the ground

truth coordinates. The supervised model which was trained

directly with the ground truth coordinates achieved an ac-

curacy of 0.12m. An illustration of the estimations for the

training data from both models is shown in Fig. 7. Estima-

tions from both models for the test data have the same mean

Euclidean deviation of 0.14m. The resulting predicted tra-

jectories along with the ground truth trajectories are shown

in Fig. 8.

5. Fusion of SFA Estimates and Odometry in a

Probabilistic Filter

In our scenario the robot has access to relative motion

measurements from odometry and absolute measurements

from the SFA-model in order to localize itself. Even though

the odometry measurements are locally very precise small

errors accumulate over time and the belief of the own posi-

tion starts to diverge from the true position. The estimations

from the SFA-model on the other hand have a higher vari-

ability but are absolute measurements and thus allow to cor-

rect for occurring drift. The mapping from slow feature to

metric space from the previous section enables the combi-

−10 0 10

−10

0

10

X[m]

Y
[m

]

(a)

−10 0 10

X[m]

Odometry SFA

(b)

−10 0 10

X[m]

(c)

Figure 4: Optimization process on simulator training data (a) Metric position estimates with randomly initialized param-

eters αn, on, W. Each color visualizes a line segment (dashed: ground truth position, solid: metric estimate). (b) Estimates

after 500 iterations. (c) At iteration 1000 the estimates converged.

−5 0 5

−5

0

5

X[m]

Y
[m

]

(a)

−10 −5 0 5

X[m]

Ground truth Estimation

(b)

−5 0 5

X[m]

(c)

Figure 5: Comparison of supervised and unsupervised position estimation on simulator training data. (a) Estimated

positions from supervised regression are close to the ground truth with a mean Euclidean distance of 0.13m. (b) Estimations

resulting from the unsupervised learned regression weights are consistent but rotated and translated with respect to the ground

truth coordinates. (c) After aligning the estimated coordinates to the ground truth the mean Euclidean distance amounts to

0.17m.

nation of both measurements in a common coordinate sys-

tem. For linear systems with uncorrelated white noise the

Kalman Filter [14] is the optimal estimator, using a state

transition model to predict the value for the next time step

and a measurement model to correct the value based on ob-

servations. The state of the system is represented as a Gaus-

sian distribution. However, for our scenario of mobile robot

localization the state transition model involves trigonomet-

ric functions which lead to a nonlinear system. The Ex-

tended Kalman Filter (EKF) linearizes the state transition

and measurement model around the current estimate to en-

sure the distributions remain Gaussian. Then, the equations

of the linear Kalman Filter can be applied. This is the stan-

dard method for the problem of vehicle state estimation [15]

and is also applied in Visual SLAM [16]. Here, we use the

Constant Turn Rate Velocity (CTRV) model [17] as the state

transition model for the mobile robot. The measurement

model incorporates the absolute estimations resulting from

the mapping of the current slow feature outputs to metric

coordinates.

5.1. Robot Experiment

To test the localization performance with the EKF we

used the test data from the robot experiment in the previous

section. The absolute coordinate predictions from slow fea-

ture outputs were computed using the unsupervised learned

regression weights from the corresponding training data.

They are used as input for the measurement model while

the odometry readings are used as input for the state tran-

sition model of the EKF. The values for the process and

measurement noise covariance matrices were chosen based

on a grid search. For the experiment we assumed that the

−5 0 5

−5

0

5

X[m]

Y
[m

]

(a)

−10 −5 0 5

X[m]

Ground truth Estimation

(b)

−5 0 5

X[m]

(c)

Figure 6: Comparison of supervised and unsupervised regression for simulator test data. (a) Estimated trajectory for

test data using supervised regression results in an average error of 0.39m. (b) The estimations of the unsupervised regression

model are not aligned with the coordinate system of the ground truth coordinates. (c) Applying the aligning transformation

obtained for the training data to the test set results in an error of 0.36m. Both estimates closely follow the true trajectory

while the supervised model may have slightly overfitted on the training data.

−2 −1 0 1 2
−2

−1

0

1

2

X[m]

Y
[m

]

(a)

−2 −1 0 1 2

X[m]

Ground truth Estimation

(b)

−2 −1 0 1 2

X[m]

(c)

Figure 7: Comparison of supervised and unsupervised regression for robot training data. Each straight line segment is

illustrated in a separate color where the solid lines represent the ground truth and dotted lines indicate the estimations of the

respective models. (a) The predictions of the supervised model have an error of 0.12m closely following the ground truth.

(b) The raw predictions of the unsupervised model are slightly rotated and shifted w.r.t. the ground truth coordinates. (c)

Aligning the estimations from the unsupervised model to the ground truth coordinates results in a mean Euclidean deviation

of 0.17m.

robot starts from a known location and with known heading

which is a valid assumption considering that many service

robots begin operating from a base station.

Results As expected, the estimated trajectory of the EKF

shows an improvement over the individual estimations since

it combines their advantages of global consistency and lo-

cal smoothness. The accuracy of the predicted trajectory

from the SFA-model is 0.14m with noticeable jitter. The

trajectory resulting from odometry measurements is locally

smooth but especially the errors in the orientation estima-

tion lead to a large divergence over time resulting in a mean

Euclidean deviation of 0.31m from the ground truth coor-

dinates. The accuracy of the trajectory estimated from the

EKF amounts to 0.11m which is an improvement of 21% on

average compared to the accuracy obtained from the SFA-

model and an improvement of 65% compared to odome-

try. Resulting trajectories from all methods are illustrated

in Fig. 9.

6. Discussion

The presented method for unsupervised learning of a

mapping from slow feature outputs to metric coordinates

was successfully applied in simulator and real world robot

experiments and achieved accuracies similar to supervised

regression trained directly on ground truth coordinates.

Since it only requires omnidirectional images and odom-

etry measurements and imposes reasonable constraints on

the trajectory, it can be applied in real application scenar-

ios where no external ground truth information is available.

−2 −1 0 1 2
−2

−1

0

1

2

X[m]

Y
[m

]

(a)

−2 −1 0 1 2

X[m]

Ground truth Estimation

(b)

−2 −1 0 1 2

X[m]

(c)

Figure 8: Comparison of supervised and unsupervised regression for robot test data. (a) The trajectory predicted from

the supervised model deviates by 0.14m on average from the ground truth trajectory. (b) The raw estimations from the

unsupervised model are rotated and translated w.r.t. the ground truth trajectory. (c) Transforming the estimations from the

supervised model by the rotation and translation estimated for the training data results in a mean Euclidean deviation of

0.14m from the ground truth.

−2 −1 0 1 2
−2

−1

0

1

2

X[m]

Y
[m

]

(a)

−2 −1 0 1 2

X[m]

Ground truth Estimation

(b)

−2 −1 0 1 2

X[m]

(c)

Figure 9: Fusion of SFA estimates and odometry using an Extended Kalman Filter. (a) The accuracy of the localization

achieved with the SFA-model is 0.14m. Due to the absolute coordinate predictions the progression of the trajectory is rather

erratic. (b) Measurements from odometry are locally accurate but increasingly diverge over time. The mean Euclidean

deviation from ground truth amounts to 0.31m. (c) The EKF filter combines the strength of both estimations resulting in an

accuracy of 0.11m.

The learned metric mapping function enables the visualiza-

tion of the extracted slow feature representations, the trajec-

tories of the mobile robot and the fusion of SFA estimates

and odometry measurements using an Extended Kalman

Filter. Thereby, the already competitive localization accu-

racy of the SFA-model trained on monocular omnidirec-

tional images improved further by 21%. Please note that

the relative improvement in accuracy will be even more pro-

nounced for longer trajectories.

In contrast to geometric approaches, appearance based lo-

calization can cope with uncalibrated cameras. Other ap-

pearance based localization models like [18, 19] are usu-

ally supervised (requiring ground truth positions) or can not

cope with arbitrary camera orientations, which we solved

with the orientation invariant representations learned from

omnidirectional views by SFA.

The proposed approach may also be useful for other spa-

tial representations than those learned by SFA, as long as

they are sufficiently low-dimensional, spatially smooth, and

preferably orientation invariant. The precision of the result-

ing metric mapping, and hence also the localization accu-

racy, might be further improved using visual odometry [20–

22] instead of wheel odometry since it is not affected by

wheel slippage.

We have shown in [5] how navigation directly in slow fea-

ture space allows, for example, to navigate around known

obstacles without explicit planning. Thus, while unsuper-

vised mapping of SFA features to metric space is not strictly

necessary, it improves transparency and allows better inte-

gration with other methods and services based on metric

location.

References

[1] Benjamin Metka, Mathias Franzius, and Ute Bauer-Wersing.

Bio-inspired visual self-localization in real world scenarios

using slow feature analysis. PLOS ONE, 13(9):1–18, 09

2018. doi: 10.1371/journal.pone.0203994. URL https:

//doi.org/10.1371/journal.pone.0203994.

[2] Benjamin Metka, Mathias Franzius, and Ute Bauer-Wersing.

Outdoor self-localization of a mobile robot using slow fea-

ture analysis. In Neural Information Processing - 20th In-

ternational Conference, ICONIP 2013. Proceedings, Part I,

volume 8226, pages 249–256. Springer, 2013. doi: 10.1007/

978-3-642-42054-2\ 32. URL https://doi.org/10.

1007/978-3-642-42054-2_32.

[3] Benjamin Metka, Mathias Franzius, and Ute Bauer-Wersing.

Improving robustness of slow feature analysis based local-

ization using loop closure events. In ICANN 2016, pages

489–496. Springer International Publishing, 2016.

[4] Muhammad Haris, Mathias Franzius, and Ute Bauer-

Wersing. Robust outdoor self-localization in changing en-

vironments. In IEEE/RSJ International Conference on Intel-

ligent Robots and Systems (IROS 2019). IEEE, 2019.

[5] Benjamin Metka, Mathias Franzius, and Ute Bauer-Wersing.

Efficient navigation using slow feature gradients. In 2017

IEEE/RSJ International Conference on Intelligent Robots

and Systems, IROS 2017, pages 1311–1316, 2017.

[6] Muhammad Haris, Mathias Franzius, and Ute Bauer-

Wersing. Robot navigation on slow feature gradients. In

Neural Information Processing, pages 143–154. Springer In-

ternational Publishing, 2018. ISBN 978-3-030-04239-4.

[7] Mathias Franzius, Henning Sprekeler, and Laurenz Wiskott.

Slowness and Sparseness Lead to Place, Head-Direction, and

Spatial-View Cells. PLoS Computational Biology, 3(8):1–

18, 2007.

[8] Reto Wyss, Peter König, and Paul F M J Verschure. A Model

of the Ventral Visual System Based on Temporal Stability

and Local Memory. PLoS Biol, 4:e120, 2006.

[9] Eric Antonelo and Benjamin Schrauwen. Learning slow

features with reservoir computing for biologically-inspired

robot localization. Neural Networks, 25:178 – 190, 2012.

ISSN 0893-6080. doi: https://doi.org/10.1016/j.neunet.

2011.08.004.

[10] H. Durrant-Whyte and T. Bailey. Simultaneous localization

and mapping: part i. IEEE Robotics Automation Magazine,

13(2):99–110, June 2006. ISSN 1558-223X. doi: 10.1109/

MRA.2006.1638022.

[11] Laurenz Wiskott and Terrence Sejnowski. Slow Feature

Analysis: Unsupervised Learning of Invariances. Neural

Computation, 14(4):715–770, 2002.

[12] Tiziano Zito, Niko Wilbert, Laurenz Wiskott, and Pietro

Berkes. Modular toolkit for Data Processing (MDP): a

Python data processing framework. Front. Neuroinform., 2

(8), 2009. ISSN 1662-5196. doi: 10.3389/neuro.11.008.

2008.

[13] K S Arun, Thomas S Huang, and Steven D Blostein. Least-

Squares Fitting of Two 3-D Point Sets. IEEE Trans. Pattern

Anal. Mach. Intell., 9(5):698–700, 1987.

[14] R. E. Kalman. A New Approach to Linear Filtering and Pre-

diction Problems. Transactions of the ASME – Journal of

Basic Engineering, (82 (Series D)):35–45, 1960.

[15] Alonzo Kelly. A 3d state space formulation of a navigation

Kalman filter for autonomous vehicles. 06 2000.

[16] Andrew J Davison, Ian D Reid, Nicholas Molton, and Olivier

Stasse. MonoSLAM: Real-Time Single Camera SLAM.

IEEE Trans. Pattern Anal. Mach. Intell., 29(6):1052–1067,

2007. doi: 10.1109/TPAMI.2007.1049.

[17] X. Rong Li and V. P. Jilkov. Survey of maneuvering tar-

get tracking. part I. dynamic models. IEEE Transactions

on Aerospace and Electronic Systems, 39(4):1333–1364, Oct

2003. ISSN 0018-9251. doi: 10.1109/TAES.2003.1261132.

[18] Jihun Ham, Yuanqing Lin, and D. D. Lee. Learning non-

linear appearance manifolds for robot localization. In 2005

IEEE/RSJ International Conference on Intelligent Robots

and Systems, pages 2971–2976, Aug 2005.

[19] Alex Kendall, Matthew Grimes, and Roberto Cipolla.

Posenet: A convolutional network for real-time 6-dof cam-

era relocalization. In 2015 IEEE International Conference

on Computer Vision, ICCV 2015, Santiago, Chile, Decem-

ber 7-13, 2015, pages 2938–2946, 2015. doi: 10.1109/ICCV.

2015.336. URL https://doi.org/10.1109/ICCV.

2015.336.

[20] David Nistér, Oleg Naroditsky, and James R. Bergen. Visual

odometry. In 2004 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition (CVPR 2004), 27

June - 2 July 2004, Washington, DC, USA, pages 652–659,

2004. doi: 10.1109/CVPR.2004.265.

[21] D. Scaramuzza and F. Fraundorfer. Visual Odometry : Part

I: The First 30 Years and Fundamentals. IEEE Robotics Au-

tomation Magazine, 18(4):80–92, Dec 2011. ISSN 1070-

9932. doi: 10.1109/MRA.2011.943233.

[22] F Fraundorfer and D Scaramuzza. Visual Odometry : Part

II: Matching, Robustness, Optimization, and Applications.

Robotics Automation Magazine, IEEE, 19(2):78–90, jun

2012. ISSN 1070-9932. doi: 10.1109/MRA.2012.2182810.

