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Abstract

Estimating a scene’s lighting is a very important

task when compositing synthetic content within real en-

vironments, with applications in mixed reality and post-

production. In this work we present a data-driven model

that estimates an HDR lighting environment map from a

single LDR monocular spherical panorama. In addition to

being a challenging and ill-posed problem, the lighting es-

timation task also suffers from a lack of facile illumination

ground truth data, a fact that hinders the applicability of

data-driven methods. We approach this problem differently,

exploiting the availability of surface geometry to employ

image-based relighting as a data generator and supervision

mechanism. This relies on a global Lambertian assumption

that helps us overcome issues related to pre-baked lighting.

We relight our training data and complement the model’s

supervision with a photometric loss, enabled by a differen-

tiable image-based relighting technique. Finally, since we

predict spherical spectral coefficients, we show that by im-

posing a distribution prior on the predicted coefficients, we

can greatly boost performance. Code and models available

at vcl3d.github.io/DeepPanoramaLighting

1. Introduction

Compositing content from different domains (i.e. real

and synthetic) has been an important part of post-production

and visual effects. It has now also become very relevant

due to the maturation of mixed reality technologies. These

emerging technologies operate in between the real and vir-

tual domains by embedding digitized or digital content in

other media.

The realism of this composition depends on the position-

ing and lighting of the emplaced content, which is very de-

manding to accomplish, especially for monocular content

as their estimation depends on solving ill-posed problems.

Data-driven methods have advanced the state-of-the-art in
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Figure 1: We use uncoupled datasets of HDR illumination maps

[11] and photorealistic spherical panoramas [17] to train a spheri-

cal lighting environment map estimation model. While the former

offer small content variance, they provide ground truth lighting ℓ.

While the latter offer multimodal data, they come with color con-

tent I that has pre-baked lightin ℓo. We combine these uncoupled

datasets seamlessly using image-based relighting, producing relit

images IRL and condition our supervision solely on the imposed

lighting ℓ.

challenging tasks such as geometry estimation from single

monocular images [8], and have even overcome the short-

age of high quality data through self-supervision [37].

Nonetheless, this is far more challenging for illumina-

tion estimation, due to the very complex process associated

with the coloring of each pixel in an image. Rarely – if not

ever – do we see in the real world a scene to be exclusively

lit from a single light source. In most cases illumination

is composed of multiple sources including reflections, lo-

calized light sources (e.g. spot-lights) and/or broader area

distributions (e.g. sunlight).

For the realistic relighting of embedded content, a high

dynamic range (HDR) illumination needs to be estimated.

This makes data collection problematic and impractical as

predictions will typically be done on a low dynamic range

(LDR) image. The Laval Indoor HDR Dataset [11] only

contains a very limited – in terms of modern data-driven



methods’ requirements – amount of coupled LDR and HDR

spherical panoramas, capturing a scene’s global lighting

conditions, with some being duplicate captures [36]. The

Matterport3D dataset [4], used in [33] to generate illumina-

tion environment maps, contains saturated HDR images and

misses ceilings, where most of the indoor lighting comes

from. Further, the geometric warping used to register the

LDR and HDR images resulted in high resolution artifacts.

Another direction [12, 29, 22] would be to use synthetic

scenes, but given the lack of realistic materials and tex-

tures, the model’s transferability to real world data would

be limited. Other approaches rely on specialized capturing

with expensive hardware [26, 35] or customized spherical

objects [20].

Currently, the biggest challenge that data-driven illumi-

nation estimation methods need to overcome is the avail-

ability of data. Both [26] and [35] only captured 18 sub-

jects, while [11] contains less than 2000 high quality LDR-

HDR pairs. At the same time, Matterport3D offers a large

amount of data but does not offer high quality HDR envi-

ronment maps, with the derivative dataset of [33] coupling

its generated HDR data with severely limited LDR samples.

Instead, we design a strategy that will exploit the

strengths of all available datasets in order to train a model

with the highest possible data variability – in terms of pho-

tometric content and illuminations. Our concept, as pre-

sented in Fig. 1, is based on image re-lighting (RL). We

relight a single image I with the lighting parameters ℓ

through a rendering operation R:

IRL = R(I ,N , ℓ), (1)

where N represent dense per pixel metadata. Given esti-

mated lighting parameters ℓ̂ = f(θ, IRL) predicted by a

model f with parameters θ using IRL as input, we can train

a model with uncoupled color and ground truth illumination

information as long as we condition our supervision on ℓ

alone. This is necessary as the image I is a real world ac-

quired image and has baked lighting into it. It is therefore

the result of another physically based rendering operation

that involved the original scene’s lighting parameters ℓo.

This concept crucially relies on a global Lambertian as-

sumption [2]. This widely used assumption [5, 29] is a prac-

tical approach to alleviate the complexity of natural illumi-

nation. Under this assumption, we ensure that the origi-

nal image I – with pre-baked lighting – is a purely diffuse

surface, effectively ignoring ℓo. In addition, under distant

illumination, the relighting operation only depends on the

surface’s global direction. As a result, our concept allows

us to use high quality illumination maps (i.e. from [11]) and

exploit the content plurality and multimodality of modern

datasets (i.e. [4]) to train a global lighting map estimation

model. Summarizing, in this work we train a model to esti-

mate a lighting environment map from a single monocular

spherical panorama. Specifically, our contributions are:

• We use an efficient lighting representation and an im-

age relighting rendering operation to synthesize ran-

domized relit samples and thus, merge uncoupled

datasets. We complement this with environment map

blending to increasing the variability of our training

data.

• As our image relighting operation is fully differen-

tiable, we also leverage it on the supervision end to

photometrically supervise our relit samples, enforcing

a loss only on the imposed lighting.

• We further constrain our efficient spectral representa-

tion with a distribution prior that aids training offering

a large performance gain.

2. Related Work

Traditionally, lighting estimation is a long-standing

problem which is very challenging as it requires geomet-

rical (i.e. 3D) data, camera (i.e. projection) characteristics,

as well as material (i.e. attributes) metadata. Early progress

relied on the acquisition of 3D shapes [25] and camera in-

trinsics information in order to estimate a scene’s lighting.

Nonetheless, even modern methods [23] rely on accurate

geometry information or on assumptions about it [24]. This

line of work eventually matured into a single hypothesis es-

timation that explains the entirety of the scene (geometry

and illumination) relying on natural scene statistics [1].

The seminal work of [6] first showed that it is possible

to capture a scene’s HDR lighting by capturing differently

exposed images of a mirrored metallic sphere that reflects

light. Using such light probes has even enabled real-time

video capture of HDR illumination at each position it is

placed at within a scene. Multiple spherical light probes

have also been used to estimate a scene’s global illumina-

tion [7]. More recently, a specialized shading probe was

designed for capturing directly the scene’s shading for the

purposes of mobile Augmented Reality (AR) [3]. Neverthe-

less, the physical placement of known 3D objects into the

scenes is not always practical as the images whose lighting

needs to be estimated might have been priory captured.

Even before the advent of deep models, the intractabil-

ity of the problem of lighting estimation lend itself to data-

driven priors [19] learned from millions of images. Yet,

modern data-driven methods are much more suited to over-

coming the challenges of ill-posed tasks. The main chal-

lenge that supervised data-driven methods need to over-

come is the acquisition and/or estimation of supervisory

data. Aiming to estimate outdoor illumination in [15], a

synthetic sky model was fit to the captured panoramas in

order to acquire the illumination parameters to regress. To

address the shortage of data, [36] harvested a set of light

sources from the Laval Indoor HDR dataset and used them

to augment the dataset’s panoramas themselves, with the



goal of learning to predict the illumination from monocular

images of known 3D objects. This was achieved by aligning

the latent space of HDR panoramas using an autoencoder,

and then predicting the illumination map from a perspective

render of it, using lighting from the dataset’s panoramas in

a supervised manner.

A custom data collection rig with three reflective spheres

and a mobile phone was designed in [20] to acquire a very

large dataset of paired images with reflective spheres im-

aged with the corresponding illumination. Then, an image-

relighting supervision scheme was employed that relied on

the photometric consistency between the sphere images col-

lected by the capturing rig and the corresponding renders

with the predicted illumination. Generalization to indoor

and outdoor scenes equally, enabled mobile mixed reality.

Synthetic content can be used to bypass cumbersome

and custom data collection like in [12], where the SunCG

dataset [34] was used, which contains light positions. After

generating scenes with randomized lighting parameters, a

set of random light probes were positioned into these scenes

and subsequently rendered into RGB-D cubemaps. A pre-

trained network was used along with a discriminator to al-

low for better inter-domain generalization. It was trained to

predict spatially varying light, conditioned by a specific lo-

cation in each image. This was achieved by the addition of

an extra modality (i.e. depth) offered by the synthetic data

and a dual path (i.e. global and local) network architecture.

Taking one step beyond, a parametric lighting representa-

tion was estimated in [10], with the goal being to more ac-

curately model the localized nature of lighting. Per light

information (i.e. position, direction, color and size) was ex-

tracted from the Laval Indoor HDR dataset which was also

used for providing the color data as near field of view crops

of the panoramas. Similar to [12], a pre-trained encoder was

used to alleviate the lack of data and fine-tuned to the light-

ing estimation task. When used with geometry information,

this parametric estimation allows for finer grained lighting

results that respect visibility.

All the aforementioned methods estimate a scene’s

global (i.e.omnidirectional) illumination from a single per-

spective image. The recent work of [33] addressed this

through an image warping step, followed by an omnidi-

rectional completion one, and then by a LDR to HDR es-

timation, finally encoding the HDR representation into an

irradiance environment map. It was demonstrated that an

end-to-end pipeline for these three tasks offered better il-

lumination estimates. The aforementioned work also con-

tributed a novel dataset by sampling from perspective HDR

images into omnidirectional HDR maps at specific locales.

In this way, their location conditioned predictions estimated

localised spherical illumination from perspective images.

However, the Matterport3D HDR captures are satured and

do not always include ceilings, meaning that important

lighting information may be missed. In addition, the geo-

metric warping produces LDR and HDR images with severe

high frequency artifacts which are not realistic. Nonethe-

less, training on a higher variety of data and relying on om-

nidirectional supervision for the completion task helped in

producing high quality omnidirectional lighting estimates,

albeit object localised.

In our work, we estimate the illumination directly from

a spherical panorama which captures global scene informa-

tion more accurately. We also use the original indoor scene

images from Matterport3D instead of the distorted object

localised ones. This means that we need to overcome the

lack of paired lighting information.

3. Lighting Estimation via Relighting

Our concept is based on the works for precomputed ra-

diance transfer [32] and irradiance maps [28]. These works

use spherical harmonics (SH) representations to precom-

pute intermediate function evaluations and use them dur-

ing rendering. SH are a frequency space representation1 of

a function over the sphere, analogous to the Fourier trans-

form. More details about SH in general and SH lighting can

be found in [14], however, we will followingly present the

necessary preliminaries.

Spherical Harmonics Diffuse Lighting: Given that SH

form an orthonormal basis over the sphere, each spherical

function can be represented as a linear combination of a set

of basis function:

L̂(ρ) =
Ω
∑

ρ

Ll
mY l

m(ρ), (2)

where ρ = (φ, θ) are the spherical angular coordinates de-

fined in the spherical image domain Ω, Ll
m is the coefficient

of the Y l
m SH basis function of degree (i.e. band) l and order

m, spanning −l ≤ m ≤ l. The function L̂ is an approxima-

tion that depends on the depth of the order l, with smaller

orders corresponding to lower frequencies. In our context,

the approximated function L̂ represents the distant illumi-

nation. The SH coefficients Ll
m are calculated by

Ll
m =

4π

N

Ω
∑

ρ

L(ρ)Y l
m(ρ) (3)

with N = w× h being the total discrete elements sampled,

corresponding to the area of the spherical image domain of

width w and height h.

As shown in [28], only the first 3 orders (i.e. l = [0, 1, 2],
meaning 9 coefficients) are needed to accurately represent

the surface’s irradiance (up to 99.2% [2]), given that irra-

diance smoothly varies with orientation. Consequently, SH

1While generally defined on imaginary numbers, we will only be refer-

ring to real valued functions, and thus, our definition of SH corresponds to

Real Spherical Harmonic functions.



coefficients are a very effective technique to compress di-

rect illumination from distant sources. For the remainder of

this document we will consider SH coefficients only up to

the third order 0 ≤ ℓ ≤ 2. As presented in [28], the re-

sulting irradiance E map can be expressed as a function of

the surface’s orientation, represented by the normal map N ,

and the SH coefficients ℓ = {Ll
m}, after lifting them into a

symmetric 4× 4 matrix representation:

E(N , ℓ)=η(N )T






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2
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


η(N ),

(4)

with η(N ) = (Nx,Ny,Nz, 1) being a homogeneous co-

ordinates transformation operation. The symmetric matrix

and constants ci, i ∈ [1, 4] are the result of expanding the

rendering equation and associated spherical harmonic nor-

malization. Overall, we find that SH lighting – Eq. (4) – re-

lies on a matrix-vector and a vector-vector product, which is

fully differentiable, as well as parallelizable and thus, very

well suited for modern tensor-based data-driven methods.

Also, the same applies to the SH projection – Eq. (3) – and

reconstruction – Eq. (2) – functions.

Training with Uncoupled Datasets: While works like

[11] train on a limited amount of HDR panoramas, our

goal is to learn illumination information from LDR images,

similar to more recent works [20, 33, 10, 12]. Nonethe-

less, we need to regress HDR illumination in order to

be able to convincingly add synthetic objects into natural

scenes. More recent datasets either do not offer HDR en-

vironment maps [20] or their data come with deficiencies

[33]. Seeking to avoid the problems associated to syn-

thetic data [12], instead, our approach is to blend differ-

ent lighting conditions to randomly synthesize illumination

maps. Considering two HDR images representing dense

lighting conditions La and Lb we can blend them using

a ratio λblend ∈ [0, 1] to produce a blended lighting map

Lab = λblendLa + (1 − λblend)Lb. Then, using Eq. (3)

we can project Lab to a set of SH coefficients ℓab = {Ll
m}

up to a predefined order l. A set of examples of blending 2

lighting maps and their combined relighting effect in con-

trast to the original relights are presented in Fig. 2.

Considering a spherical image I and its corresponding,

aligned normal map N we can relight the image I to pro-

duce a new relit one IRL with a set of low dimensional

SH lighting parameters ℓ using Eq. (4). Accordingly, the

rendering operation R defined in Eq. (1) for each pixel be-

comes:

R(I ,N , ℓ) := E(N , ℓ) I . (5)

Therefore, we can render new images IRL = R(I ,N , ℓ)
coupled with the newly imposed lighting conditions ℓ that

will serve as our training data. Even though the original im-

age contains pre-baked lighting, as presented in Fig. 3, the

Figure 2: The combined effect of blending 2 lighting maps with an

even ratio. On the left is the original color image and associated

normal map. Then, on the right, 2 different lighting probes follow

with their rendered lighting on the original image on top. Finally

on the rightmost, we show the blended lighting probe as well as

the rendered original image with the combined lighting on top.

Lighting blending increases the variety of the dataset and can also

help in overcoming non realistic relights.

new lighting can greatly influence the resulting image and

change its overall appearance (through the ambient term), as

well as relative scene luminance and shading. As long as we

properly regularize our supervision on this newly imposed

lighting alone, a lighting estimation model can be trained

under this scheme.

This allows us to exploit larger photorealistic datasets

with higher content variance, that additionally offer sur-

face orientation information, and simultaneously exploit the

higher quality, but limited in terms of scale, HDR illumi-

nation datasets. The scale limitation is bypassed through

the aforementioned blending process that enables the on-

the-fly generation of a larger HDR illumination dataset with

higher variability compared to approaches such as [10] that

only use the dataset’s original lighting. More specifically,

we blend HDR illumination maps from the Laval Indoor

HDR dataset [11] and relight the realistic panoramas [17]

that contains raytraced normal maps as well.

Deep Spherical Lighting Estimation Model: Our CNN

model is trained to regress a compressed representation of

a lighting environment map that can be used to evaluate the

irradiance of elements rendered within a scene. The input

to our model is a LDR panorama in equirectangular for-

mat representing a scene for which we want to estimate

the lighting. Two sub-networks are combined in an end-

to-end manner to achieve this as depicted in Fig. 4. Since

we need to regress to HDR illumination, a LDR-to-HDR

autoencoder (AE) CNN is first used to translate the LDR

image to the HDR domain. We then use an encoder (E) to

regress to the SH coefficients ℓ̂ ∈ R
9×3 that represent a low

frequency distant illumination (9 SH coefficients) for each

of the 3 color channels (i.e. red, green, blue).

Each training sample comprises a color image ILDR ∈
R

W×H×3, a normal map N ∈ R
W×H×3, and the lighting

coefficients ℓ calculated after randomly sampling two HDR

illumination maps and blending them, to eventually produce



Original Image Normal Map Relit #1 Relit #2

Figure 3: Exemplary relights of sample images, presented with

their corresponding normal maps. The relit images’ lighting is

highly modified and draws away from the original lighting. This

allows us to largely overcome the pre-baked lighting while train-

ing, by considering the original image as a diffuse surface. Thus,

we complement our supervision with a photometric supervision

relighting loss that is only conditioned on the newly imposed light.

the network’s input which is a relit image ILDR
RL , using Eq.

(5). In this way, we re-use and couple distinct, uncoupled

data of color images supported by surface information, with

other data of illumination maps. The relit LDR images gets

translated by the LDR-to-HDR sub-network to an HDR im-

age IHDR
RL ∈ R

W×H×3 which then gets encoded to the

predicted SH coefficients ℓ̂.

The SH representation and the availability of surface in-

formation allows our supervision to be multi-faceted. First,

we employ an L2 regression objective to the predicted co-

efficients, the coefficients loss:

LSH =
1

9× 3

3
∑

c=1

2
∑

l=0

2
∑

m=−2

(

Ll
m,c − L̂l

m,c

)2
(6)

In addition, through Eq. (2) we can reconstruct the light-

ing maps L and L̂ represented by the ground truth and es-

timated SH coefficients respectively. As a result, we further

regularize our supervision with a denser L2 objective, the

reconstruction loss:

LRC =
1

w × h

Ω
∑

ρ

A(ρ)
∥

∥L(ρ)− ˆL(ρ)
∥

∥

2

2
, (7)

where A ∈ R
W×H×3 is the spherical attention mask used

in [38]. In this way, pixels towards the equator are weighted

more appropriately with respect to those near the poles that

are sampled multiple times due to the equirectangular dis-

tortion and whose spherical area is smaller.

Finally, we can also compute a dense photometric con-

sistency loss [13] between an image relit with the original

lighting and that when relit using the model’s regressed out-

put. As depicted in Fig 4, we convert the original (non-relit)

LDR image to HDR, producing ÎHDR. Using Eq. (5) and

the normal map N , we render this HDR image with the

ground truth SH coefficients ℓ, producing ÎHDR
GT , and with

the estimated SH coefficients ℓ̂, creating ÎHDR
RL . Our re-

lighting loss is then formulated as:

LRL=
1

N

Ω
∑

ρ

A
(

α|ĜGT−ĜRL|+(1−α)SD(ĜGT , ĜRL)
)

,

(8)
where SD is the structural dissimilarity function, α a blend-

ing factor between SD and the L1 loss, while G is the log
transformed HDR image (superscripts and ρ indexing omit-

ted for clarity). The L1 term in the log domain allows us to

penalize big relighting errors, while the structural dissimi-

larity term penalizes shading discrepancies within regions

of the image.

Therefore, our final weighted objective is:

L = λSHLSH + λRCLRC + λRLLRL (9)

It should be noted that relighting the LDR image requires a

scaling of the SH coefficients to produce realistic and prop-

erly saturated relights. However, this is only needed for the

input LDR alone, in order to modify its lighting. Supervi-

sion, regression and photometric alike, is facilitated by the

unscaled – HDR – SH coefficients, allowing the network to

learn HDR lighting from a single LDR image.

All prior works that regress SH coefficients directly op-

erate on the model regressed values. In this way, the pre-

dicted values are in an unstructured form driven purely by

the supervision. However, SH coefficients are spectral do-

main values and follow a structured distribution. The DC

term (i.e. ambient or L0
0) is the strongest coefficient, with

the magnitude of the other frequencies dropping according

to their order (i.e. L1

{−1,0,1} >> L2

{−2,−1,0,1,2}). We use

this spectral distribution prior to enforce a structured SH

prediction on each channel’s predicted coefficient vector ℓ̂

by applying a function τ(ℓ̂), where:

τ(ℓ) = ‖ℓ‖σ(ℓ). (10)

The normalized exponential function σ (i.e. softmax)

pushes lower values lower, and higher values higher, there-

fore easing the structuring of our predictions and aiding the

supervision. Since it also normalizes to unity, we first ex-

tract the magnitude of the predicted coefficient vector, and

reapply it after enforcing the distribution prior.

Finally, both the scaled coefficients used to relight the

LDR input image, as well as the predicted coefficients are

deringed. Ringing, also called Gibbs Phenomenon, was an-

alyzed in [30] and relates to negative values during raster-

ization with the SH coefficients. Thus, we reduce ringing

artifacts by multiplying the SH coefficients with a low pass

filter [31], enforcing the coefficients per band to decrease

smoothly to zero at some cut-off frequency. Our model is

end-to-end trainable as all operations are differentiable.

4. Results

Implementation Details: Our experiments were run on

a single machine with an i7 processor and a NVidia Titan X



Figure 4: Our end-to-end relighting based supervision. An input LDR spherical panorama image ILDR is along with its corresponding

normal map N and randomly blended lighting parameters ℓ, in the form of SH coefficients, is relit using the rendering operation R
of Eq. (5). The relit LDR image ILDR

RL is translated to the HDR image IHDR

RL through the pre-trained (frozen weights) LDR-to-HDR

autoencoder (AE). The result gets encoded by a lighting encoder E to the estimated lighting ℓ̂ which is passed through the spectral prior

function τ (Eq. 10). The original LDR image also gets translated to the HDR domain, producing ÎHDR. This gets rendered using using

the aligned normal map N two times, once with the original light ℓ and once with the predicted light ℓ̂. This way we synthesize ÎHDR

GT and

ÎHDR

RL respectively which are used to photometrically supervise our lighting estimator (LRL). In addition, the ground truth and predicted

SH coefficients are used to reconstruct lighting environments maps L and L̂ respectively through Eq. (2). Additional losses are defined for

the sparse SH coefficients (LSH ) and the dense lighting map reconstructions (LRC ). LDR images are with cyan border, HDR images and

lighting parameters are with lime borders, while their low frequency reconstructions are with red, and normal maps are with violet borders.

GPU, using PyTorch [27]. All the models were trained for

10 epochs using the Adam optimizer [18] with its default

parameters and an initial learning rate of 1×10−4. The res-

olution W ×H of the color images and their corresponding

normal map is is 512×256. We generate randomized light-

ing coefficients from the Laval HDR Indoor Dataset [11],

after blending the dataset’s HDR images in their original

resolution and projecting them to SH using Eq. (3). How-

ever, when reconstructing them for the evaluation of LRC

using Eq. (2) we reconstruct them in the training images’

resolution. Out of the 2235 images of the Laval dataset, we

used 1682 for training and out of the remaining images, we

kept 443 for evaluation purposes, while skipping 110 im-

ages due to very low brightness that led to very dark relit

images. When relighting the LDR images, we scale the SH

coefficients by 100 to align the dynamic ranges appropri-

ately for LDR inputs.

The LDR-to-HDR autoencoder’s architecture was in-

spired by [9]. We use the dataset of [33] to train this sub-

network, after resizing its coupled LDR and HDR images to

512×256, and directly supervise it with a L2 reconstruction

loss on the predicted HDR, and a L2 reconstruction loss on

the reconstructed low frequency lighting environment map,

which is the result of projecting the predicted HDR image

to the SH basis and then reconstructing it from these SH

coefficients. We use a learning rate of 1 × 10−3 and the

Adam optimizer with its default parameters. We train this

network for 30 epochs without any weighting between the

2 losses. After convergence, we freeze the weights of the

LDR-to-HDR model and use it to translate the input images

to the HDR domain when training our lighting estimation

encoder.

For the HDR lighting encoder, we base our model on the

corresponding architecture of [15], using 7 convolutional

and 2 fully connected layers with ELU activation functions

except for the head of the encoder that regresses the out-

put coefficients. When blending pairs of HDR environment

maps from the Laval dataset, we randomly (uniform) sam-

ple two lighting maps and blend them using λblend = 0.5.

This allows us to greatly increase the diversity of the esti-

mated lightings. Our loss weights are λSH =0.01, λRC =
0.3 and λRL=0.7.

Quantitative Comparisons: Up to now, the state-of-

the-art has focused on researching illumination estimation

methods for traditional perspective images. On the other

hand, our method estimates global lighting from omnidi-

rectional images. Consequently, direct comparison is feasi-

ble with methods that do not rely on similar assumptions or

learned perspective priors. We offer comparison results to

SIRFS [1] which represents the state-of-the-art in learning

free illumination estimation. We report the median scaled

RMSE (m-RMSE) for the predicted lighting environment

maps and the ground truth ones. Median scaling uses the

median of the evaluated and ground truth signals to scale



the former to the value range of the latter. In this way

we offer more meaningful comparisons between different

methods by removing any scale ambiguity between their

predictions which is required for numerous reasons. Meth-

ods like SIRFS that analytically solve the problem using

LDR inputs, cannot easily regress to the correct HDR scale.

Also, different datasets might offer HDR images at differ-

ent scales, a prominent example being the saturated HDRs

of Matterport3D. Finally, tone mapping, gamma correction,

exposure times and color calibration are all different issues

that influence the final compositing result. In the end, nu-

meric accuracy might not always translate to high quality

compositing, but instead, relatively correct estimates that

better capture the light’s orientation and drop-off will surely

produce more visually pleasing results. Finally, the reported

m-RMSE uses spherical distortion weighting when evaluat-

ing the MSE, similar to [38], in order to reduce the metric

skewing effect that equirectangular distortion introduces.

Table 1 presents the median scaled RMSE for our model

and SIRFS on the test set of the Laval Indoor HDR dataset.

The ground truth is generated by projecting the HDR im-

ages into the spherical harmonics basis using Eq. (3) and

then reconstruct the ground truth lighting environment maps

using Eq. (2). As both SIRFS and our models estimate

SH coefficients, we reconstruct the corresponding dense

environment maps and calculate m-RSME on these. Evi-

dently, our model outperforms SIRFS, but more importantly

it should be noted that the Laval images are unseen for our

model, and that the estimated lighting maps never partici-

pated entirely during training due to blending.

Table 1 also presents results for a set of ablation exper-

iments. Overall, we observe a close to 50% performance

boost when imposing the spectral prior function τ on our

predictions as indicated by the middle entries (without the

prior), compared to the bottom entries (with the prior). In-

terestingly, relying purely on the relighting loss (the only

photo variant with λSH = 0, λRC = 0) allows for proper

model training. Further, training without the relighting loss

(the no photo variant with λRL=0) hurts performance, indi-

cating its significance. At the same time, relying purely on

the dense reconstructed signal loss (the only dense variant

with λSH = 0, λRL = 0) showcases inferior performance

even to SIRFS. More importantly, the discrepancy is a lot

larger when not using the spectral prior function τ , whilst

with it, its implicit regularisation does not allow for signifi-

cant performance reduction.

Qualitative Results: Finally, we present qualitative re-

sults in Fig. 5 of synthetic object rendering into the spherical

panoramas using our estimated lighting environment maps.

We use the Mitsuba [16] ray-tracer engine and the Bunny

and Armadillo models from the Stanford 3D dataset [21].

Each model is rendered with 512 samples and is presented

with three different materials. We observe that the 0th order

Table 1: Median scaled RMSE results for the Laval test set.

Method Prior m-RMSE

SIRFS No 0.0391

Ours (full) No 0.0229

Ours (only photo) No 0.0297

Ours (no photo) No 0.0334

Ours (only dense) No 0.0423

Ours (full) Yes 0.0101

Ours (only photo) Yes 0.0116

Ours (no photo) Yes 0.0156

Ours (only dense) Yes 0.0162

SH coefficient L0
0 – the ambient lighting – is well estimated,

as well as the 1st order {L1
−1, L

1
0, L

1
1} coefficients that en-

code directional lighting. Overall, our approach attains rea-

sonable results even un completely unseen data harvested

from the internet (first row).

5. Discussion

Lighting estimation is a very challenging and ill-posed

problem. Instead of relying on direct supervision, re-

cent data-driven works opt for photometric supervision by

adding spherical objects during data collection [20], re-

lying on synthetic data [12] or on lower quality warped

data [34]. The most widely used HDR lighting dataset

[11] used in some works [11, 10] only contains limited

samples. Nevertheless, we showed that it is possible to

learn lighting estimation in a supervised way with uncou-

pled data and thus, exploit the availability of high qual-

ity HDR lighting datasets in combination with larger and

more diverse datasets that also contain surface information.

Further, we showed that photometric supervision through

image-based relighting is sufficient to drive a lighting esti-

mator model. More importantly, we demonstrated that im-

posing the spectral distribution prior on the regressed SH

coefficients greatly boosts model performance.

Nonetheless, our work only regresses up to the third or-

der SH coefficients offering low frequency lighting envi-

ronment map estimates. While a low frequency estimation

behaves good metrically, it does not capture details, which

is an important goal towards realism and is left as future

work. Another issue is that without any geometrical knowl-

edge it is not possible to embed visibility information which

also detracts realistic relighting. Most other works also pre-

dict location-conditioned outputs while we offer global es-

timates, offering another direction for future work. Finally,

our work is one of the first works to regress lighting from

spherical panoramas, an emerging media type.
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Figure 5: Qualitative results for virtual object rendering in real scenes with the lighting estimated by our model. First seven rows are in-

the-wild samples from HDRI Haven while last two rows are from the Laval test set. First six examples show perspective renders (viewport

denoted within the panorama), while the last three rows show renders within the panoramas themselves. Three materials are used from

left to right: a conductor (reflecting mirror), rough plastic (interior and exterior index of refraction of 1.9 and 1, respectively) and another

conductor (gold).
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Sunkavalli, Christian Gagné, and Jean-François Lalonde.

Deep parametric indoor lighting estimation. In Proceedings

of the IEEE International Conference on Computer Vision,

pages 7175–7183, 2019. 3, 4, 7
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