
ArUcOmni: detection of highly reliable fiducial markers in panoramic images

Jaouad Hajjami

Forssea Robotics, Paris, France

L@bISEN, Vision-AD team, Brest, France

jaouad.hajjami@isen-ouest.yncrea.fr

Jordan Caracotte

UPJV, MIS lab,

Amiens, France

jordan.caracotte@u-picardie.fr

Guillaume Caron

CNRS-AIST JRL, UMI3218/IRL, Tsukuba, Japan

UPJV, MIS lab, Amiens, France

guillaume.caron@u-picardie.fr

Thibault Napoléon
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Abstract

In this paper, we propose an adaptation of marker detec-

tion algorithm for panoramic cameras such as catadioptric

and fisheye sensors. Due to distortions and non-uniform

resolution of such sensors, the methods that are commonly

used in perspective images cannot be applied directly. This

work is in contrast with the existing marker detection frame-

work: Automatic reliable fiducial markers Under occlusion

(ArUco) for a conventional camera. To keep the same per-

formance for panoramic cameras, our method is based on a

spherical representation of the image that allows the marker

to be detected and to estimate its 3D pose. We evaluate our

approach on a new shared dataset that consists of a 3D rig

of markers taken with two different sensors: a catadioptric

camera and a fisheye camera. The evaluation has been per-

formed against ArUco algorithm without rectification and

with one of the rectified approaches based on the fisheye

model.

1. Introduction

Panoramic cameras provide a 360◦ × 180◦ field of view,

much larger than the usual 60◦ of conventional cameras. A

very wide field of view leads to more robust and reliable

vision-based estimation such as visual odometry [23], robot

navigation [14, 6] or visual tracking and servoing [20, 13].

In fact, panoramic sensors are already widely used in

various fields, such as video surveillance [19, 12] or 3D

reconstruction [18]. However, very few works tackled

marker detection in panoramic images, despite basic mark-

ers [17] that are not reliable as markers for conventional

vision [7, 11, 5, 21] commonly used for augmented reality.

The latter mostly fails with panoramic images, as our results

show, and one way to solve the issue would be to rectify the

panoramic images. Berveglieri et al. [4] rectified the fish-

eye image into four horizontal lateral views, then they were

used for camera calibration using ArUco [7] fiducial mark-

ers. The main drawback of the rectified approach most often

yields to lose some field of view by cropping the boundaries

of the image.

In this paper, we start in Sec. 2 with a review of the

pipeline of marker detection algorithm integrated in ArUco.

We then briefly present an approach for image rectifica-

tion that we call ArUco-rectified, followed by a detailed

presentation of our approach called ArUcOmni for marker

detection using a spherical model and pose estimation.

In Sec. 3, we evaluate our approach (ArUcOmni) against

ArUco-rectified and to the conventional method (ArUco).

Finally, in Sec. 4, we conclude this paper with perspectives

for future work.

2. ArUco pipeline

In this section, we will start with a brief recall of the

main steps of the marker detection algorithm for ArUco. An

ArUco fiducial marker can be detected with the following

steps:

• Image binarization with adaptive thresholding.

• Contours extraction in the binary image.

• Contours approximation to polygons and selection of

those with four vertices only.

• Homography estimation to get the canonical form of

the potential marker (a square).

• Homography application to remove the perspective

(warping).

• Binary code extraction from the canonical image of the

marker.

• Subpixel Corners refinement.
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• Pose estimation.

All these steps should be adapted to the spherical form of

the image due to very strong distortions [15, 16]. In this arti-

cle, we will demonstrate how we adapt the key steps only of

the algorithm to improve the performance in terms of rate of

marker detection and also for pose estimation. Therefore, in

the next section we will be focusing on the following three

steps:

• Homography estimation to get the canonical form of

the potential marker.

• Homography application to remove the perspective

transformation (warping).

• Pose estimation.

Homographies are projective transformations and there-

fore remain valid for fisheye and catadioptric sensors of sin-

gle viewpoint. In the first step, we will consider the homog-

raphy as an inhomogeneous set of linear equations and solve

them with a linear solver. After that, we apply the solution

to warp the image into a canonical form. The last step of the

algorithm is the pose estimation using 2D/3D combination

of the corners of the marker. For that, we first estimate the

pose linearly and then we use that as initialization to a non-

linear optimization which consists of minimizing the global

reprojection error using Levenberg-Marquardt algorithm.

2.1. ArUco­rectified

One of the ways to indirectly process an image taken

with a wide angle camera is by rectification. In this article

and for a comparison purpose, we will use a method from

Kannala et al. [10] for central wide-angle cameras like the

ones we’re using, catadioptric and fisheye sensors. The full

model to get the distorted coordinates xd = (xd, yd) is as

follows:

xd = r(θ)i(φ) + ∆r(θ, φ)i(φ) + ∆t(θ, φ)j(φ) (1)

Where, i(φ) and j(φ) are the unit vectors in the radial and

tangential directions respectively, ∆r(θ, φ) and ∆t(θ, φ)
are the two distorsion terms that acts in the radial and tan-

gential direction.

This approach rectifies the image in such a way to get

the same properties as the pinhole model like straight lines

to remain straight under perspective projection, which is a

very useful property in the case of marker detection when

they feature straight lines ArUco ones.

2.2. ArUcOmni

In this section, we start with a brief description of the

spherical perspective projection that will be used in this ar-

ticle. Geyer [8] and Barreto [3] had been working on the

unified spherical model for central catadioptric including

some fisheye cameras. From a theoretical point of view,

fisheye lenses do not respect the single point of view be-

cause they consist of a set of lenses that do not respect a

single projection center but it was proven by various works,

Ying et al. [22] for example, that the unified spherical pro-

jection model is a very good approximation. This is the ba-

sic step to estimating the homography through the sphere of

that model. We will also see how to apply the homography

to warp the image.

2.2.1 The unified spherical model

A projection of a 3D point into a pixel through a sphere can

be done using the following projections:

Perspective projection: The perspective projection maps

3D points onto a normalised plane followed by a mapping

to the image plane. The complete projection is obtained by:

• Projection onto the normalised plane:

x = (x, y, 1) = pr(X) = (
X

Z
,
Y

Z
, 1) (2)

• Projection onto the image plane:

u = (u, v, 1) = Kx
t (3)

Where, X = (X,Y, Z) is a 3D point in the camera frame, x
is a point in the normalised plane, K is the camera projec-

tion matrix:

K =





fx 0 u0

0 fy v0
0 0 1



 (4)

Where, fx and fy are the horizontal and the vertical focal

lengths respectively.

We summarize the complete perspective projection with:

prγ(X) = Kpr(X) (5)

Where, γ = {fx, fy, u0, v0} represents the intrinsic

camera parameters estimated by the calibration of the cam-

era.

Stereographic projection: The spherical model that will

be using in this paper has been proposed by Barreto [2].

Barreto’s model is based on a double projection via a unit

sphere S
2 = {Xs = (Xs, Ys, Zs) ∈ R

3/‖Xs‖ = 1} cen-

tered on the mirror focal point and without considering the

optical distortion. The convention adopted in this paper is

slightly different in terms of the axis-convention in which

we consider the z-axis of the camera pointing backwards.

The following steps describe the different projections in-

volved:

• Projection onto a unit sphere:

Xs = (
X

ρ
,
Y

ρ
,
Z

ρ
) (6)

Where, ρ =
√
X2 + Y 2 + Z2.
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• Projection onto the normalised image plane with a dif-

ferent projection center in which the unit sphere has a

coordinate (0 0 ξ)t:

x = (x, y, 1) = (
Xs

Zs+ ξ
,

Y s

Zs+ ξ
, 1) (7)

Where, ξ depends on the geometry of the mirror.

• Projection onto the image plane using formula-3.

We can also get the spherical coordinates from the image

plane through the inverse of the projection presented above,

formulas-6-7:

Xs = pr−1
ξ (x) =











ξ+
√

1+(1−ξ2)(x2+y2)

x2+y2+1 x
ξ+

√
1+(1−ξ2)(x2+y2)

x2+y2+1 y
ξ+

√
1+(1−ξ2)(x2+y2)

x2+y2+1 − ξ











(8)

The formula below is the complete projection to project

a 3D point onto the image plane via the sphere:

prγ2
(X) = Kprξ(X) (9)

Where, γ2 = {fx, fy, u0, v0, ξ} are the intrin-

sic camera parameters in the case of spherical model

estimated by the calibration of the camera and we set

γ2 = {fx, fy, u0, v0, 0} in the case of the virtual camera.

2.2.2 Homography on the sphere

In this section, we will develop the linear system of equa-

tions to estimate the homography which is a 3×3 projective

transformation matrix defined up to scale factor to map one

image to another.

Given a set of four 3D points on the sphere Xi
s ∈ S

2

and their corresponding set Xi′

s ∈ S
2, we will estimate the

homography that maps X′

s to Xs:

Xi′

s ∝ HXi
s (10)

Where, Xi′

s = (x′

i y
′

i z
′

i)
t and Xi

s = (xi yi zi)
t.

We can then write this equation as the cross product of

both terms:

X
′i
s ×H.Xi

s =





x′

i

y′i
z′i



×





ht
1 Xi

s

ht
2 Xi

s

ht
3 Xi

s



 = 0 (11)

Where hj is the j-th row of H .

Developing X
′i
s with its coordinates, we get:

X
′i
s ×H.Xi

s =





0 −z′jXi
s y′jXi

s

z′jXi
s 0 −x′

jXi
s

−y′jXi
s x′

jXi
s 0









h1

h2

h3



 (12)

If we omit the third equation in H and imposing the con-

dition h33 = 1, where h = [h1 h2 h3]
t is a vector made

up of the entries of H , which can be justified by the fact

that the solution is determined up to scale, the form of this

equation system can be written as:

Ai h = b (13)

Where,

Ai =

[

0 0 0 −xiz
′

i −yiz
′

i −ziz
′

i xiy
′

i xiy
′

i

xiz
′

i yiz
′

i ziz
′

i 0 0 0 xix
′

i yix
′

i

]

and

b =

[

−ziy
′

i

zix
′

i

]

Solving for h: Let H be the homography for points be-

longing to the sphere, Kr and Kv are the intrinsic parame-

ters of the real and the virtual cameras respectively. For the

virtual camera Kv , we choose u0 and v0 in such a way to

get the desired dimension of the source image which is the

canonical form of the marker.

The following steps summarize the procedure of homog-

raphy estimation:

• Using the projection formula-8, we project the four

corners of the marker into the sphere:

X’s = pr−1
ξ (K−1

r ut) (14)

• The same projection, using the virtual camera

(Kv, ξ = 0) this time, for the four corners of the

canonical form (the source image):

Xs = pr−1
ξ=0(K

−1
v ut) (15)

• Homography estimation by solving the system-13 us-

ing X’s and Xs.

This system of equations can be solved for h linearly

using, for example, Gaussian elimination with optimal pivot

element chosen.

2.2.3 Warping

In this section, we will apply the homography to the canon-

ical form that is remapped to the destination image and ex-

tract the intensities (warping). Figure-1 shows an exam-

ple of the source image of three different markers in their

canonical form on the right and on the left the correspond-

ing polygons on the real image (the destination image).

As explained previously, the homography is applied to

the spherical coordinates. In our practical situation, those

coordinates are the points inside the polygon formed by the

corners of the marker.

The following steps summarize the procedure of warp-

ing:

• We project every point u of the source image into the

sphere using the virtual camera, formula-15.
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Figure 1. Warping markers taken with a catadioptric camera (on

the left) and their canonical version on the right. The markers in

the middle were warped by ArUco and the ones on the right were

warped by our method. The grid is then applied to extract the

binary code.

• Apply the homography, estimated previously by solv-

ing the system-13, to Xs:

X ′

s = H.Xs (16)

• Using the formula-9, we project X′

s into the image

plane to get the intensity of the point u′ in the source

image which corresponds to u.

Figure-1 illustrates a comparison between our method

and ArUco. Solving the homography based on the sphere

model allows to remove the distortions of the catadioptric

camera, hence detect all the markers that ArUco based on

conventional homography, failed to detect.

In the process of warping, many of the pixels are not in-

tegers, so we have to estimate those pixels in the destination

image based on their neighborhood pixels. In this paper, we

used the bilinear interpolation on the image plane.

2.2.4 Pose estimation

In this article, we use the pose estimation method from

Ameller [1] which gives a direct solution by linearizing a

system of six polynomial equations for four points (24 poly-

nomials in 24 monomials):

ρiPjk(ρj , ρk) = 0 / i, j < k = [1, 2, 3, 4] (17)

Where,

• Pjk(ρj , ρk) = ρ2j + ρ2k − 2cos(θjk)ρjρk − d2jk
• ρi: is the distance between the 3D points and the cam-

era.

• djk: is the inter-point distance between the j-th and

k-th object points.

• θjk: is the 3D angle formed by the j-th and k-th object

points.

We then form a matrix of 24 × 24 from the system-17

which is then decomposed by SVD to get the null space

monomial vector Nv . The vector Nv allows to get the

depth ρi, the rotation R and then the translation t, [9], be-

tween the camera and the object cMo = {R, t}. After that

the pose cMo is optimized using a first order optimization

such as Levenberg-Marquardt (LM) to get the smallest re-

projection error:

min
R,t

4
∑

i=1

‖prγ2
(RXi + t)− xi‖2, (18)

Where, xi and Xi are 2D-3D correspondences.

3. Experiments

3.1. Protocol

In this section, we report experiments to quantify the ef-

fectiveness of our approach of adapting ArUco marker de-

tection to panoramic sensors such as the catadioptric camera

or fisheye cameras.

In view of the lack of a database of fiducial markers taken

with those sensors, we recorded the ArUcOmni dataset of

panoramic images (Fig. 2) of a 3D markers rig, put at vari-

ous poses, with both catadioptric and fisheye sensors. The

rig is made of three orthogonal faces of a cube, inside which

ArUco markers are glued. By doing so, one can easily mea-

sure manually the transformation matrices between each

pair of markers, mainly made of rotations of 90◦ in space

and ruler-measured translations. Such transformations are

considered as ground truth in the 3D space, free of any cam-

era frame.

The ArUcOmni high-resolution dataset of 225 images

is open-source1 that was taken with a 2056 × 1542 pix-

els IDS UI-5280CP camera equipped with a VStone hyper-

catadioptric optics and a 1280 × 1024 pixels IDS UI-

124xLE-C camera equipped with a Fujinon fisheye lens.

This dataset is used in this evaluation to compare detection

rates (Sec. 3.2) and pose estimation precision (Sec. 3.3), be-

tween our ArUcOmni approach and ArUco as well as its

straightforward adaptation ArUco-Rectified.

3.2. Comparison of detection rates

The first comparison is based on the rate of detection of

the markers. Table-1 summarizes the results of the three

methods on both catadioptric images (Omni) and fisheye

images (Fisheye).

As it can be observed, our method (ArUcOmni) outper-

forms the comparison for catadioptric images with a score

of nearly 100%. However, ArUco-Rectified performs better

for fisheye images in some situations. Figure-3 shows one

of those situations where marker#5 is detected.

ArUcOmni failed to detect the marker#5 when the

marker plane is nearly 90 degrees angle with the camera

1Available for download at http://mis.u-picardie.fr/

˜g-caron/pub/data/ArUcOmni_dataset.zip.
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(a) Fisheye image (b) Catadioptric image

(c) ArUco (d) ArUco-Rectified (e) ArUcOmni

(f) ArUco (g) ArUco-Rectified (h) ArUcOmni

(i) ArUco (Zoom) (j) ArUco-Rectified

(Zoom)

(k) ArUcOmni

(Zoom)

Figure 2. Examples from the dataset: Raw images (first row),

marker detection using three different methods on both fisheye im-

ages (second row), catadioptric images (third row) and zoom into

the markers in the catadioptric images (fourth row).

line of sight. That is because polygon extraction fails in

the polygon approximation of the contours since based on

straight lines which are not straight in the case of panoramic

images. However, ArUco-Rectified rectified the marker in a

way that it becomes nearly parallel to the image plane, thus

the marker detection succeeded. The last observation con-

cerns ArUco when it outperforms ArUco-Rectified in the

ArUco ArUco-Rectified ArUcOmni

Marker Omni Fisheye Omni Fisheye Omni Fisheye

5 90.48 10.89 21.69 74.26 97.88 61.39

6 53.44 40.59 08.99 73.27 96.83 80.20

7 72.49 40.59 54.50 77.23 100.00 89.11

Table 1. The rate of detection of markers (%). We have highlighted

in bold the highest rates of detection.

(a) Fisheye image (b) ArUcOmni (c) ArUco-Rectified

(d) Fisheye image

(Zoom)

(e) ArUcOmni

(Zoom)

(f) ArUco-Rectified

(Zoom)

Figure 3. An example where ArUcOmni failed to detect the

marker#5. From left to right: the fisheye image, ArUco-Rectified

and ArUcOmni (the first row) and the zoom into the markers (the

second row).

case of catadioptric images. That could be explained by the

fact that most of the rectified markers are either very dis-

torted as in figure-2 (j) and/or broken because some points

are rectified outside the image as in figure-2 (d).

3.3. Comparison of estimated poses precision

Once a marker is detected, its 4 corners allow its full

3D pose estimation in the camera frame. In order to ease

the comparison of estimations between the two cameras,

both calibrated with both Barreto’s [3] projection model and

Kannala’s et al. [10] one, estimated 3D poses of markers

in the camera frame are composed in order to get the es-

timated 3D rigid transformation between each pair of de-

tected markers, for each image. Then, these marker-to-

marker transformations are compared to the manually mea-

sured ground truth of the 3-face rig of markers. The Matlab

script for computing the marker-to-marker estimated trans-

formations and comparing them to the ground truth is pub-

licly available, as well as the estimated poses of every de-

tected marker of the ArUcOmni dataset. In Table-2 we give

a summary of the estimation errors and the standard devi-

ations from the dataset. We denote {R, t} to be the orien-

tation and the position of the absolute errors respectively.

Table-2 shows the estimation errors of ArUcOmni are

much lower than ArUcoRectified both in terms of position

and orientation. Estimations errors of ArUco are included

in the table for illustration purposes only because they are

obviously poor since ArUco does not take into account the

geometry of panoramic images.

4325



Pose estimation error

Methods {R, t} Omni Fisheye

ArUco
R 19.2 (12.8) 27.8 (15.6)

t 353 (189) 192 (181)

ArUco-Rectified
R 3.93 (1.35) 3.27 (2.98)

t 58.6 (11.8) 29.5 (50.3)

ArUcOmni
R 1.39 (0.72) 1.48 (1.9)

t 7.57 (3.15) 9.62 (18.2)
Table 2. Estimation of the absolute errors of marker-to-marker

transformations in the 3-face rig. Units: position in mm, orien-

tation in degrees. Values in parentheses are standard deviations.

We have highlighted in bold the lowest errors.

4. Conclusion

We have proposed an adaptation of the algorithm of

marker detection from ArUco for panoramic images that

are based on the unified spherical model. First, the mark-

ers are detected by a remap to their canonical form us-

ing a spherical projection which removes distortions. Af-

ter that, the pose estimation is also adapted and refined us-

ing a Levenberg-Marquardt optimization to minimize the

reprojection error. The evaluations show that our method

(ArUcOmni) outperforms the original algorithm (ArUco)

and the fisheye rectification (ArUco-Rectified) both in terms

of the rate of detection of the markers and pose precision.

As a perspective, remains to be adapted the rest of ArUco’s

pipeline algorithm to fully benefit from the panoramic view,

like the image processing part, polygon detection and ap-

proximation.
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