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Abstract

We present a new deep learning approach for short-term

solar irradiance forecasting based on fisheye images. Our

architecture, based on recent works on video prediction

with partial differential equations, extracts spatio-temporal

features modelling cloud motion to accurately anticipate

future solar irradiance. Our method obtains state-of-the-

art results on video prediction and 5min-ahead irradiance

forecasting against strong recent baselines, highlighting the

benefits of incorporating physical knowledge in deep mod-

els for real-world physical process forecasting.

1. Introduction

Solar energy is one of the most promising source of

renewable energy. Photovoltaic (PV) power generation is

steadily increasing worldwide. However, its integration at

large scale in the electricity grid is still challenging due to

the variable nature of the solar resource, which can lead to

stability problems in the connected electricity networks in

case of sharp production variations. To overcome the lim-

ited spatial and temporal resolution of satellite imaging and

numerical weather predictions, sky images from ground-

based fisheye cameras have been widely used in recent years

[1, 8]. In this paper, we focus on forecasting Global Hori-

zontal Irradiance (GHI), the standard measure of total solar

radiation closely related to the output PV power.

Seminal methods for PV forecasting with fisheye images

rely on traditional image processing and machine learning

techniques. The typical pipeline [4, 2] involves fisheye

camera calibration, handcrafted feature extraction, and re-

gression algorithms (nearest neighbors, gradient boosting,

multi-layer perceptrons,...) . Cloud motion is often deter-

mined with optical flow and extrapolated into the future.

Although simple and interpretable, these methods require

extensive manual tuning, and poorly adapt to different cam-

eras or site locations. Recently, deep learning models pro-

posed to replace this pipeline with end-to-end data-driven

training [16, 11].

Another related line of work is video prediction, for

Figure 1. 5min ahead solar irradiance forecasts from fisheye im-

ages. Our proposed deep model leveraging physical prior knowl-

edge accurately predicts the sharp intra-day solar irradiance fluc-

tuations.

which deep models based on convolutional and/or recurrent

architectures [15] have become state-of-the-art. However,

natural video forecasting is still a hard high-dimensional

extrapolation problem for data-driven algorithms. Gener-

ative Adversarial Networks (GANs) [9] were investigated

for sharper predictions, and disentangling approaches were

proposed (e.g. content/motion) [12] to reduce the forecast-

ing dimensionality. Another appealing solution is to in-

ject prior physical knowledge, such as advection-diffusion

equation [3], or more general classes of partial differential

equations [7, 6].

Predicting future fisheye images is a very challenging

task: clouds are deformable objects with complex stochas-

tic behaviour (that can appear or evaporate), several layers

with different speeds and directions may be simultaneously

present, and the fisheye camera distortion exacerbates the

difficulty.

In this work, we introduce a deep neural network model

to forecast solar irradiance directly from fisheye images,

without any geometric rectification step. Our method, based

on PhyDNet [6], exploits physical dynamics to enhance

cloud motion modelling. This is to the best of our knowl-

edge the first time physically-constrained models are ap-

plied on fisheye images.
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Figure 2. Proposed deep architecture for solar irradiance forecasting. Input images are embedded by an encoder E in a common latent

space, followed by specific encoders Ep and Er for extracting physical and residual features. PhyDNet recurrent model is unfolded in

time and computes a context vector c = Dp(h
p

T
) +Dr(h

r

T ), which is used for predicting future irradiance r̂T+H and image ûT+H .

2. Proposed forecasting model

Given a dataset of fisheye images u1:T = (u1, ...,uT )
and associated solar irradiance measurements rt, our goal

is to forecast the future irradiance rT+H for a given horizon

H . Our architecture builds upon a modified version of the

recently proposed PhyDNet model [6] for video prediction.

2.1. Review of PhyDNet model

PhyDNet [6] is a deep architecture that leverages partial

differential equations (PDEs) for video prediction. Since

physics alone is not sufficient for accurate predictions at the

pixel level, PhyDNet aims at learning a latent space H that

linearly disentangles physical dynamics from residual fac-

tors (such as texture, details,...). The latent state h is decom-

posed into physical and residual components h = h
p +h

r,

and follows the dynamics:

∂h(t,x)

∂t
=

∂hp

∂t
+
∂hr

∂t
:=Mp(h

p,E(u)) +Mr(h
r,E(u))

(1)

The physical model Mp is composed of a PDE in latent

space Φp(h
p) and a correction term Cp(h

p,E(u)) with in-

put data (embedded by encoder E): Mp(h
p,E(u)) =

Φp(h
p)+Cp(h

p,E(u)). The physical predictor Φp encodes

a general class of linear PDEs up to a differential order q:

Φp(h
p(t,x)) =

∑

i,j:i+j≤q

ci,j
∂i+j

h
p

∂xi∂yj
(t,x) (2)

Partial derivatives are computed by constrained convo-

lutions as in PDE-Net [7] and combined by learned

coefficients cij . Discretizing the PDE ∂hp

∂t
(t,x) =

Mp(h
p,E(u)) with the Euler numerical scheme leads to a

recurrent neural network cell (PhyCell). PhyCell performs

a physical prediction step in latent space (Eq 3) followed by

a correction with embedded input data E(ut) (Eq 4), with a

tradeoff controlled by the learned Kalman gain Kt.

h̃
p
t+1= h

p
t +Φp(h

p
t ) Prediction

h
p
t+1= h̃

p
t+1 +Kt ⊙

(

E(ut)− h̃
p
t+1

)

Correction

(3)

(4)

The residual model Mr(h
p,E(u)) captures the unknown

factors related to unmodelled physics, appearance, tex-

ture, and is fully learned from data (implemented by a

general ConvLSTM [15]). As shown in [6], any general

RNN can also be decomposed as Mr(h
r,u) = Φr(h

r) +
Cr(h

r,E(u)), albeit naively (Φr(h
r) = −h

r(t)).

2.2. Extension with dual encoders-decoders

One limitation of PhyDNet model is that images ut are

embedded by an encoder E in a common latent space for

correcting the dynamics of both physical Cp(h
p,E(u)) and

residual models Cr(h
r,E(u)). This limits the disentangling

ability of PhyDNet since E(ut) contains physical and resid-

ual features. We thus propose to learn separate latent spaces

for both branches, via additional specific encoders (Ep,Er)
and decoders (Dp,Dr), leading to the following model:

∂h(t,x)

∂t
=Mp(h

p,Ep ◦E(u))+Mr(h
r,Er ◦E(u))(5)

Ep aims at learning a specific image embedding for control-

ling the physical dynamics in latent space with correction

features uniquely related to physics (and similarly for Er).

In the following, we denote this model as PhyDNet-dual.

2.3. Architecture for irradiance forecasting

Our proposed architecture, depicted in Figure 2, uses

PhyDNet as a physically-constrained RNN for extracting



Figure 3. Qualitative fisheye video forecasting results up to 5min horizon. The proposed model successfully predicts the motion of the blue

and green clouds that move nearer and finally merge into the yellow cloud.

features from a sequence of past images u1:T . Final phys-

ical and residual latent states are first decoded by their re-

spective specific decoders Dp and Dr and then summed

to get a context vector c = Dp(h
p
T ) + Dr(h

r
T ). Then a

multi-layer perceptron (MLP) uses the input context c to

forecast the future irradiance r̂T+H . We also add a CNN to

simultaneously forecast the future image ûT+H . We empir-

ically verified that this multi-task objective improves per-

formances compared to forecasting irradiance only, due to

the richer supervision signal and cooperation between tasks

(see the first line Table 1).

3. Experimental results

3.1. Fisheye image dataset

A meteorological campaign has been conducted since

2012 at a EDF R&D test site on La Reunion Island. A

Fisheye camera (Axis PTZ212) captures whole-sky images

every 10s and a pyranometer measures the solar irradiance

components GHI and DHI1. The whole dataset is composed

of more than 6 Million images (resized at resolution 80×80)

and associated irradiance measurements. As done classi-

cally in the solar energy literature [10], irradiance is nor-

malized with a clear-sky model to remove seasonality and

intra-day variation.

3.2. Irradiance forecasting

We forecast solar irradiance at a 5min horizon, given a

5min past context. As illustrated in Figure 1, despite the fast

alternation of clouds and sun, we observe that our model

successfully anticipates the sharp irradiance fluctuations.

We evaluate quantitatively PhyDNet-dual model against re-

cent competitive baselines: ConvLSTM [15] and PredRNN

[13], by replacing the video encoder feature extractor by

the corresponding RNNs (the context vector c is then the

hidden state at the last time step). We report in Table 1

the mean square error (MSE) scores for image prediction

1Global and Diffuse Horizontal Irradiance respectively

ûT+5min and the normalized RMSE2 for predicted irradi-

ance r̂T+5min.

image MSE irradiance nRMSE

PhyDNet irradiance - 27.8

ConvLSTM [15] 82.7 26.6

PredRNN [13] 82.3 25.1

PhyDNet [6] 80.4 24.4

PhyDNet-dual 78.8 23.5

Table 1. Solar irradiance and fisheye image 5min forecasting

For both tasks, PhyDNet-dual reaches state-of-the-art

performances against all baselines. We also note an im-

proved performance compared to PhyDNet [6], showing

that the specific encoders and decoders leads to better

spatio-temporal modelling of cloud motion.

3.3. Video prediction

We then evaluate PhyDNet-dual on the video prediction

task. Given 5 input images with a 1 min interval, we fore-

cast the 5 future images up to t0 + 5min. We compare

PhyDNet-dual with ConvLSTM and Memory In Memory

(MIM) [14]. Evaluation metrics are mean squared error

(MSE), mean absolute error (MAE) and the structural sim-

ilarity index SSIM (higher is better). Results shown in Ta-

ble 2 reveal that PhyDNet-dual outperforms both baselines

for all metrics. It confirms that incorporating physical prior

information for modelling cloud motion is beneficial com-

pared to fully data-driven algorithms.

MSE MAE SSIM

ConvLSTM [15] 83.1 681 0.845

MIM [14] 68.6 635 0.840

PhyDNet-dual 68.1 629 0.862

Table 2. Quantitative video prediction results.

We show in Figure 3 a video prediction example of

2nRMSE = Root Mean Square Error normalized by the mean value of

the quantity on the train set, expressed as a percentage.



Figure 4. Qualitative forecasting comparison between PhyDNet-dual and ConvLSTM.

PhyDNet-dual model. The future of this sequence presents

2 clouds (circled in blue and green) moving closer between

t0 and t0+3min and finally merging at time t0+4min. We

observe that PhyDNet-dual predicts the same outcome with

a good accucary on cloud location, although clouds become

blurry because of uncertainty.

In Figure 4, we provide a particular comparison to Con-

vLSTM [15], which forms the residual branch of PhyDNet.

In sequence (a), we see that the shape of the small cloud

getting nearer the sun is much better predicted by PhyDNet-

dual. In sequence (b), the sun will reappear 1 min in the

future. PhyDNet-dual provides a better anticipation by pre-

diction a bright spot at the sun location and better defined

cloud shapes. It confirms that incorporating physical dy-

namics in a deep model brings great improvement for pre-

dicting natural phenomena, with a very small amount of ad-

ditional parameters with respect to ConvLSTM.

4. Conclusion

We tackle solar irradiance forecasting directly from

raw omnidirectional fisheye images with a physically-

constrained deep model. Our model outperforms recent

fully data-driven baselines on a large real-world dataset. Fu-

ture work include using more specific physical models [3],

adequate loss functions [5], and probabilistic forecasting.
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