
 

 

Abstract 

 

Panoramic images captured by the fisheye lens cameras 

cover very wide field of view (FoV) ranging from 180° to 

360°, but the image quality is very low compared to that of 

high-end cameras such as DSLR or compact cameras with 

APS-C or full frame sensors. In this paper, we aim to use 

deep neural network (DNN) based methods to improve 

panoramic image quality. Specifically, we enhance low 

quality panoramic images of 5K resolution (5376×2688) to 

high-end camera quality at the same resolution, which is 

good for applications that requires limited resources, low-

cost but high image quality. We build a Panoramic-High-

end dataset which is the first real world panoramic image 

dataset as far as we know. Based on the generative 

adversarial network (GAN) architecture, we also design a 

compact network employing multi-frequency structure with 

compressed Residual-in-Residual Dense Blocks (RRDBs) 

and convolution layers from each dense block. Experiments 

show that our method surpasses several state-of-the-art 

DNN based methods in both no-reference and full-

reference evaluations as well as the processing speed. Our 

results show that it’s practical to integrate DNN based 

image enhancer into optics design to achieve a balance 

between optical cost and image quality.  

 

 

1. Introduction 

Image enhancement plays an important role in digital 

image processing because the captured images are not 

perfect in terms of sharpness, texture detail, signal-to-noise 

ratio (SNR), dynamic range and the level of chromatic 

aberration etc. Tremendous amount of work have been 

proposed in this area by using traditional image processing 

methods or recently fast-developing deep learning based 

methods [1, 2].  

Although image enhancement techniques are extensively 

studied for decades and have seen great achievement, few 

addresses the problem of improving panoramic image 

quality. Panoramic images can be obtained by a fisheye 

camera, a catadioptric system, a multi-camera system or a 

rotating camera [3, 4, 5].  The fisheye lens is a wide angle 

camera lens that can capture very large field of view (FoV), 

usually half of the full sphere. The catadioptric system uses 

reflecting mirrors and lenses for panoramic imaging. The 

multi-camera systems and the rotating cameras obtain 360° 
images by sewing images captured by multiple cameras or 

by one camera over time sequence. Among the four 

aforementioned devices, the fisheye panoramic camera is a 

low-cost consumer level camera which has poor image 

quality in terms of texture detail, image clarity, noise level 

and chromatic aberration. 

In this work, we aim to enhance panoramic images 

captured by consumer fisheye lens cameras to high-end 

camera level at the same resolution by using a deep neural 

network (DNN) based method (Figure 1). Enhancement at 

the same resolution is good for applications that requires 
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Figure 1:  Results of the proposed method. Top row: original 5K 

(5376×2688) panoramic image captured by a 360°  consumer 

fisheye camera. Bottom left: image crop showing enlarged patch 

in the original image. Bottom right: enhanced by the proposed 

method.   



 

limited resources, low-cost but high image quality. As far 

as we know, none has achieved this target by either 

traditional or DNN based methods. One reason lies in the 

dataset used for training. Most of the available datasets are 

designed for perspective image enhancement. Perspective 

images refer to distortion-free images usually captured by 

non-fisheye cameras [3], which do not produce large 

geometrical distortion. However, these images have low 

data similarity to panoramic ones captured by the fisheye 

lens cameras (panoramic image in short). Firstly, a 

panoramic image has severe geometrical distortions around 

poles. In the image matching phase, linear transformations 

such as homography for perspective low and high quality 

patch (LQ-HQ in short) pairs is straightforward and good 

matching result can be obtained [1]. However, panoramic 

image matching involves non-linear transformation which 

leads to mis-matched pairs (see Section 2.1 of the 

supplementary material). Secondly, the fisheye lens has 

large FoV, but the captured image is a circle which is 

smaller than the sensor size, so the effective resolution is 

less than that of perspective cameras. Thirdly, panoramic 

images taken at different angle of incidence may have 

different image quality too. For example, those taken 

around 170° may have much lower clarity and higher level 

chromatic aberration than those taken around 0°. Fourthly, 

commercial fisheye camera usually stitches two fisheye 

images to a single equirectangular image. This process 

leads to warping and stitching errors, results in poorer 

image quality than perspective camera images. Therefore, 

naively applying deep learning models trained by only 

datasets of perspective images leads to poor results (see 

Figure 6). It is necessary to train a network tailored to real 

world panoramic LQ-HQ pairs.  

Existing datasets for enhancement purpose are either 

synthetic or real-world. The former creates low quality (LQ) 

image by degrading (e.g. downsample, Gaussian blur) the 

high quality (HQ) one [6, 11]. The latter collects LQ and 

HQ by using real world cameras [1, 2]. Recent works tend 

to use real world data rather than synthetic one because the 

former adapts well to real world complexity [30]. If we train 

a network with synthetic data, the network only learns the 

degradation that is artificially introduced but not from the 

real world. The real world degradation includes not only 

downsamping, Gaussian blur etc. but also optical defects 

such as lens distortion, chromatic aberration, and other 

noise components which cannot be modeled directly. For 

this reason, we decide to use real world data captured by a 

real panoramic camera and a high-end camera. We build a 

Panoramic-High-end (Pano-Hi) dataset consisting of 

panoramic equirectangular images and aligned APS-C 

camera image counterparts. A two-step patch matching 

algorithm is used to obtain small LQ-HQ image patches for 

training. 

Among DNN based methods, perceptual-driven methods 

have proved superiority over PSNR/SSIM driven methods 

in terms of perceptual quality because the latter produces 

blurry images while the former produces photorealistic 

images with rich texture details, closer to human visual 

perception [8, 9]. Blau et al. [8] and [10] suggest that there 

is a trade-off between perceptual quality and reconstruction 

accuracy by full-reference metrics such as PSNR/SSIM. 

Since perceptual quality is more important in our case for 

panoramic image enhancement, we adopt perceptual-driven 

methods throughout the paper.  

In this paper, we also propose a deep learning based 

method that enhances panoramic image quality at a high 

speed. Among the DNN based methods, ESRGAN [11] 

trained with our real world data meets the requirements of 

improved texture detail, image clarity, reduced noise and 

chromatic aberration. However, ESRGAN uses Residual-

in-Residual Dense Blocks (RRDBs) which is not 

computationally efficient and takes too much time for a 5K 

image inference. Therefore, we design an efficient GAN 

architecture, which employs multi-frequency structure with 

compressed RRDBs and convolutional layers to reduce 

processing time while enhancing the image quality to the 

state-of-the-art level. Our method not only improves texture 

details and sharpness, but also removes color aberration and 

noise (due to optical defects) simultaneously (Figure 4).  

The proposed network architecture is fast for 5K 

panoramic image enhancement without the need of high-

spec hardwares (e.g. multi-camera system), and has 

impressive visual quality.  

Our contributions are as follows: 
(1)  As far as we know, we are the first to enhance 

panoramic image captured by the fisheye lens cameras 
to high-end camera quality at the same resolution, 
which is good for applications that requires limited 
resources, low-cost but high image quality.  

(2)  We build the Pano-Hi dataset including panoramic 
equirectangular images and high quality counterparts. 
To the best of our knowledge, this is the first real world 
panoramic dataset for enhancement purpose. A two-
step patch matching algorithm is proposed to obtain 
aligned small LQ-HQ image patches for training.  

(3)  We propose an efficient GAN architecture employing 
multi-frequency structure, which consists of high and 
low frequency representations process with 
compressed RRDBs and convolutional layers from 
each dense block.   

2. Related work  

2.1.  Image enhancement  

Image enhancement has many sub-tasks such as image 

deblurring [12], denoising [13, 14, 15], dehazing [16], 

super-resolution (SR) [17, 18, 19, 20], HDR imaging, color 

restoration and contrast enhancement etc.  

Recent works have demonstrated advantages of using 



 

DNN image enhancement over traditional methods.  

Generally, DNN based image enhancement can be seen as 

an image to image translation problem, which translates one 

representation of a scene into another [21]. In [21], Isola et 

al. demonstrated a general purpose framework that uses a 

GAN architecture to solve image translation problems such 

as image colorization, day to night, edge and label to photo. 

Similarly, Chen et al. [22] proposed a generalized image 

processing operator that can do ten different image 

processing tasks: denoising, dehazing, multiscale tone 

enhancement, style transfer etc. by using deep neural 

networks. Image translation is to learn an end to end 

mapping from an input to an output image. For example, in 

the area of image enhancement, a low quality (ܳܮ) image 

is the input which is mapped to an enhanced (ܳܪா) one by 

some mapping function ܳܪா = (ܳܮ)ܨ  , given a high 

quality (ܳܪ) counterpart as the ground truth to compute 

the loss between ܳܪா and ܳܪ images. We find this rule 

is also effective to improve panoramic image quality: given 

a low quality panoramic image, which is mapped to a high-

end quality image, despite the difference in the cameras’ 

optical designs. As a result, it is straightforward for us to 

use DNN based enhancement techniques to improve 

panoramic image quality. 

Many works obtain simulated low quality image by 

downsampling the ground truth [11, 17, 18, 23, 24, 25]. To 

improve adaptability to real world complexity, many 

propose to use real world images rather than simulated ones  

[1, 2, 26, 27, 28, 29]. Ignatov et al [2] used three phones and 

one high-end DSLR camera to capture low-high-quality 

pairs for image enhancement training. Zhang et al. [26] 

used optical zoom to obtain low resolution images and high 

resolution ground truths and propose a contextual bilateral 

loss for image alignment issue. Chen et al. [27] performed 

a low-light image enhancement which enhances short-

exposure image captured at extremely dark environment. 

They employed short-exposure low-light images as their 

input and long-exposure counterparts as the ground truths. 

Cai et al. [30] also adopted real world low-high-resolution 

(LR-HR) data captured by a DSLR, the LR and HR were 

captured at a short and a long focal length, respectively. 

Ignatov et al. [57] used iPhone 3GS and Canon 70D DSLR 

to capture low and high quality images, respectively.  

Although these works use real cameras to capture the real 

world low-high-quality image pairs for training, ours is the 

first to use a real panoramic camera to capture low quality 

panoramic image and a high-end camera to capture the high 

quality counterpart for training as far as we know. Our task 

of panoramic image enhancement is quite similar to Ignatov 

et al. [31], but our input is not phone images but panoramic 

images captured by a fisheye lens camera.  

2.2. Perceptual-driven methods 

As mentioned in Section 1, perceptual-driven image 

enhancement methods generate visually more pleasing 

results than PSNR/SSIM [58] driven methods. The former 

adopts perceptual loss with adversarial training by using 

Generative adversarial network (GAN)[32]. Blau et al. [8] 

provided a benchmark for perceptual driven SR. It ranked 

state-of-the-art algorithms which focus on perceptual 

quality of images and evaluated quantitatively by using no-

reference metric such as Perceptual Index (PI) [8]. For 

example, ESRGAN [11] aimed to improve SRGAN [18] by 

introducing a deeper network with Residual-in-Residual 

Dense Blocks (RRDB) and removing batch normalization 

(BN) layer from the original SRGAN architecture. It 

redefined perceptual loss before the activation layer instead 

of after the activation layer adopted by SRGAN, and used a 

relativistic GAN loss instead of vanilla GAN loss. 

Michelini et al. [33] combined multi-scale loss and 

perceptual loss for adversarial training. Other perceptual-

driven examples are [9, 34, 35, 36, 37, 38, 39]. All of them 

used adversarial loss and perceptual loss and demonstrated 

superior performance over PSNR/SSIM driven methods.  

Although perceptual quality is of utmost importance in 

our case, we also refer to the state-of-the-art methods which 

are PSNR/SSIM driven. RCAN [41] proposed a residual 

channel attention network with many residual in residual 

(RIR) blocks, and evaluated the results using PSNR and 

SSIM. However, RCAN is not GAN based, which does not 

define perceptual loss and adversarial loss. It only uses 1ܮ 

loss. Other works that favor high PSNR/SSIM scores are [6, 

23, 30, 40, 42, 43, 44, 45, 46, 57]. 

Some works also tried to improve reconstruction 

accuracy like PSNR and SSIM scores and perceptual 

quality at the same time [47, 48, 49]. 

In this paper, we adopt perceptual-driven methods to 

enhance panoramic image quality, and we use no-reference 

and full-reference perceptual quality metrics to evaluate our 

results quantitatively.  

2.3.  Panoramic image enhancement 

Deep learning based approaches for panoramic image 

enhancement are rare. Existing methods either enhance 

fisheye images or equirectangular ones using synthetic data, 

in which the LR images are created by downsampling the 

ground truth. Chang et al. [51] super-resolved fisheye 

images using a CNN based method. They applied different 

distortion coefficients to the original distortion-free images 

to produce distorted ones with barrel or pincushion 

distortion, then downsampled them with scaling factors 2×, 

3× and 4× for training. Fakour-Sevom [52] used SRCNN 

for panoramic equirectangular image SR. They built their 

own panoramic equirectangular image dataset consisting of 

34 images of different scenes. Instead of using real world 



 

data, the LR samples were created by downscaling sub-

images cropped from the original with a scaling factor 3×.  

3. Method 

3.1. Data collection 

To the best of our knowledge, there is no public dataset 

for panoramic image enhancement with aligned image pairs 

prepared. To obtain best enhanced image, we collect low 

quality panoramic images and high quality perspective 

counterparts using different cameras instead of using 

synthetic data (by downsampling or Gaussian blur), then 

build a real world Pano-Hi dataset.  

We use a consumer fisheye camera and a high-end APS-

C camera. To obtain low quality panoramic image and high 

quality counterpart, we first set both cameras with reduced 

parallax according to [53] and [54]. Then, we take one 

photo using the fisheye camera and four or five photos 

using the APS-C camera by rotating 360 degrees along a 

tripod.  

3.2. Patch matching for LQ-HQ pairs 

The matching phase requires the same resolution and 

content for LQ and HQ patches. The content is confined by 

the field of view (FoV). In order to obtain the same FoV for 

LQ-HQ pairs, we have to downsample the APS-C camera 

image because panoramic cameras and APS-C cameras 

have different effective pixels per solid angle. The former’s 

effective pixel is several times lower than that of the latter, 

resulting in poor image quality. For example, the effective 

pixel of a high-end APS-C camera: GR2 is 18 times that of 

a consumer panoramic fisheye Theta V camera.  A visual 

comparison of images captured by these two cameras is 

shown in Figure 2.  

 The training requires precisely matched LQ-HQ pairs. 

In our work, we adopt a two-step strategy for matching. In 

the first step, we use feature matching and similarity 

transformation to match LQ and HQ images of a large size. 

In the second step, we extract small LQ and HQ patches 

from the matched LQ and HQ images, and use pixel 

mapping or pattern matching to align LQ and HQ patches 

precisely. The final matched patches are used for training. 

More details can be found in Section 2.2 of the 

supplementary material.  

3.3. Network architecture 

ESRGAN [11] improved SRGAN [18] by introducing 

the Residual-in-Residual Dense Blocks (RRDBs) with 

dense connections inside each block, which is more 

complex than SRGAN. Additionally, ESRGAN used 

perspective image datasets DIV2K [6] and Flickr2K [7] to 

train models, which are not suitable for real world 

panoramic image enhancement due to low data similarity as 

mentioned in Section 1.  

We propose a compact network architecture which is 

based on ESRGAN but with several modifications. Figure 

3 shows the network architecture of the generator.  

Our main modification is motivated by [50], in which 

they decomposed feature maps into low and high frequency 

groups. We design a multi-frequency architecture 

employing RRDBs, which combines high and low 

frequency representation processes as depicted in Figure 3. 

The multi-frequency feature representation method stores 

the smooth-varying low-frequency feature maps in low-

resolution tensors to reduce spatial redundancy. The multi-

frequency structure consumes substantially less memory 

and computational resources than ESRGAN. We perform 

stride 2 convolutions to produce low frequency features. As 

a result, the receptive field is correspondingly enlarged by 

2 times compared to RRDB.  

The multi-frequency structure has two downsampling 

and two upsampling layers, as illustrated in Figure 3. The 

downsampling layer before the high-frequency 

representation process aims to reduce the amount of 

computation as well as the model inference time. In our 

case, we enhance 5K images, which is very computationally 

demanding. This layer helps us avoid the out of memory 

issue. The other downsampling layer aims to generate low-

frequency feature maps. All two downsampling layers 

employ convolution with a stride of 2. The upsamping layer 

after the low-frequency representation process aims to 

restore the resolution of high-frequency feature maps. 

Similarly, the other upsamping layer aims to restore the 

resolution of the input image.  

Another modification is the compression of RRDBs. We 

remove redundant RRDBs and some convolution layers 

from each dense block. Based on our observation, we find 

that simply stacking more RRDBs does not improve image 

quality significantly, while consumes much more memory 

and slows down the inference process (See results in 

Section 4). We also find experimentally that removing 
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Figure 2: Visual comparison between a panoramic image 

(cropped, captured by a fisheye camera) and its high quality 

(cropped, captured by an APS-C camera) counterpart. 



 

some layers and blocks obtains similar performance at a 

very short time compared with the original ESRGAN. We 

reduce the number of RRDBs from 23 to 6, and the number 

of convolution layers with LeakeyReLU in each dense 

block from 5 to 3. The reduced blocks and layers result in 

reduced parameters and complexity in the network, thus 

require less processing time than ESRGAN. Finally, since 

the purpose of this work is to enhance panoramic image 

without changing the image resolution, we remove the last 

two upsampling layers from the original ESRGAN 

generator.  

As to the discriminator, we only make a small 

modification. The original ESRGAN discriminator is 

composed of 9 basic blocks for input image size 128×128. 

In our discriminator, we delete two basic blocks to adapt to 

our input image size, which is 32×32.   

3.4. Loss function 

   Similar to the original ESRGAN, we use content loss L1, 

perceptual loss defined by VGG features and adversarial 

loss defined by RaGAN [11].  

4. Experiments 

4.1. Dataset 

As mentioned in Section 1, datasets of perspective 

images do not work well for panoramic image enhancement 

due to low data similarity. Therefore we build a Pano-Hi 

dataset consisting of real world data instead. This dataset 

improves panoramic image quality effectively and solves 

the problems caused by low-cost optics: texture details, 

image clarity, noise and chromatic aberration (see Figure 4). 

There is a color balance issue when using real world data 

taken by two different cameras. If one uses such images 

without any augmentation, stain artifacts may appear in the 

enhanced results (see supplementary material Section 3). 

Therefore, it’s necessary to augment the real world data 

with synthetically created patches to overcome this issue. 

We use perspective image datasets to create synthetic data, 

which do not have color balance issue. Besides data 

augmentation, we can also solve this issue by conditioning 

our network (see Section 3 of the supplementary material 

for details). The final training data are a combination of 

patches from Pano-Hi and the perspective image datasets. 

The patch size is 32×32 and the numbers of low-high-

quality pairs from these two datasets are 1,134k and 919k, 

respectively. We will use Pano-Hi to represent the 

combination of the aforementioned two datasets in the 

following paragraph for simplicity purpose. 

The testing set is selected from Pano-Hi dataset. To test 

our model, we select 39 panoramic images of different 

categories including indoor and outdoor, day and night, and 

different scenes including galleries, houses, museums, 

shopping malls, offices, gyms, exhibition centers, historical 

sites, bicycle parking lots and restaurants. Qualitative and 

quantitative results on the testing set are given in Section 

4.3.  

 
Figure 3: Generator of the proposed compact network. Our network is based on ESRGAN [11] with several modifications. The main 

modification is to design a multi-frequency structure, which combines high and low frequency representations. Another modification 

is the removal of redundant RRDBs and some convolution layers. These techniques reduce processing time significantly while 

maintaining similar image quality to ESRGAN. We adopt a two-step matching strategy to prepare perspective LQ-HQ patch pairs for 

training as described in section 3.2. Details about the matching algorithm can be found in Section 2.2 of the supplementary material.   

 



 

4.2. Training details     

We use a small patch size 32×32 for both low and high- 

quality patches for enhancement purpose. 2053k pairs of 

LQ-HQ patches including augmented data are used for 

training. The minibatch size is set to 32, initial learning rate 

is 1× 10ିସ and decayed by a factor of 2 at 100k, 200k, 300k, 

400k and 500k iterations. Adam [55] optimization was used 

with decay rates ߚଵ= 0.9 and ߚଶ= 0.999. The training stage 

takes 1.5 days using two Geforce GTX1080 Ti GPUs for 

the aforementioned setting. The network was trained from 

scratch without loading pre-trained models.  

4.3. Results and discussion 

In this sub section, we first show that our Pano-Hi dataset 

and the proposed compact network improves panoramic 

image quality from four aspects: (1) enhance texture details 

(2) enhance clarity (3) reduce noise and (4) remove 

chromatic aberration (color fringe). Then we visually 

compare results generated by our compact network and 

other state-of-the-art methods. It is followed by the 

comparison of results trained by Pano-Hi dataset and those 

by perspective dataset alone. Finally, we present 

quantitative evaluation results by using perceptual quality 

metrics, and the processing speed. 

Figure 4 illustrates the quality improvement about the 

aforementioned four aspects. This suggests that we can 

overcome optical defects simply by using DNN based 

methods instead of using high-spec hardwares (e.g. multi-

camera system).  

Figure 5 compares enhanced images by different 

networks with some modifications. We show 3 images in 

Figure 5: one outdoor and two indoor scenes. We select SR 

networks RCAN [41], ESRGAN [11] and DBPN [56] and 

remove their upsampling layers for enhancement purpose 

(so as to maintain the same resolution between input and 

output images). Two well-known image enhancement 

methods based on GAN: DPED [1] and WESPE [2] are also 

selected for comparison. All models in Figure 5 are trained 

by using patches extracted from the Pano-Hi dataset. To 

show that datasets of perspective images do not work well 

for panoramic image enhancement due to low data 

similarity, we present our results trained only by 

perspective images in Figure 6. We use a combination of 

DIV2K [6] and Flickr2K [7], named as DIV2K_ Flickr2K 

datasets, and our network architecture to train a model, 

which generates images shown in the third column of 

Figure 6. Original and our network trained images using 

Pano-Hi dataset are also shown for comparison purpose.  

We conduct both no-reference evaluation by perceptual 

index (PI) and full-reference evaluation by LPIPS [59]. PI 

consists of two no-reference image quality measures: Ma et 

al. [60] and NIQE et al. [61], expressed as PI =ଵଶ ൫(10 െ Ma) ൅ NIQE൯ . A lower PI means better image 

quality. The no-reference evaluation is conducted by using 

39 panoramic images at 5K resolution (5376×2688) from 

the testing set. We compute average PI score and the 

average processing time for all 39 testing images for each 

method, and illustrate them in Table 1.  

 
(a) Enhance texture details 

 

 
(b) Enhance clarity 

 

 
(c) Reduce noise 

 

(d) Remove chromatic aberration (color fringe) 

 

Figure 4: The proposed method is capable of (a) enhancing  

texture details (b)enhancing clarity (c) reducing noise and (d) 

removing chromatic aberration(color fringe).  Please see this 

figure on a computer screen because it contains the effect of 

removing color fringes on the LQ image. 
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Figure 5: Visual comparison of ours and the state-of-the-art algorithms by using the Pano-Hi dataset. 

 



 

As to full-reference evaluation, since there is no ground 

truth panoramic image, we extract more than 40k low-high-

quality pairs of patch of resolution 128 × 128 from the 

testing set, and enhance the  low quality patches. Then we 

compute LPIPS between the enhanced and high quality 

patches. A lower value indicates that a generated image is 

more similar to the ground truth. Results are shown in Table 

2.  

 

Models PI Time (sec) 

DPED 4.51 2.92 

WESPE 4.55 2.93 

RCAN  5.19 192.53 

ESRGAN 3.85 69.25 

DBPN  4.07 9.56 

ours 3.74 4.59 

Table 1: No-reference evaluation. Perceptual index (PI) is the 

average score computed from 39 panoramic images of 5K 

(5376×2688) resolution. Processing time was run on one Geforce 

GTX 1080Ti GPU and averaged for 39 images. 

 

Models LPIPS 

Original 0.782 

DPED 0.782 

WESPE 0.784 

RCAN  0.774 

ESRGAN 0.771 

DBPN  0.775 

ours 0.769 

 

Table 2: Full-reference evaluation. The LPIPS of each row is the 

average score computed from more than 40k enhanced and high-

quality pairs of patch of size 128 ×128. 

As seen from Figure 5, ESRGAN, DBPN and our 

compact network generate images with richer and sharper 

textures than DPED, WESPE and RCAN. The visual 

quality of ours is almost indistinguishable from that of the 

ESRGAN. To demonstrate that we achieve the high-end 

image quality, we visually compare the enhanced image 

patches and the ground truth high-end (HQ) image in Figure 

5. Note that we downsampled the ground truth image to 

obtain the same field of view (FoV) for LQ-HQ pairs for 

matching.  

 Table 1 indicates that our method obtains smaller PI 

score than ESRGAN (3.74 vs 3.85) while ours is 15.1 times 

faster.  Although DPED and WESPE are 1.6 times faster 

than ours, their image quality in terms of PI scores is worse. 

Visual results in Figure 5 also suggest that DPED and 

WESPE generate blurrier images than ours. Since we do not 

have the ground truth panoramic image as HQ, we cannot 

compare it in Table 1.  

Figure 6 shows that model trained with DIV2K_ 

Flickr2K dataset of perspective images possesses severe 

artifacts (third column) compared to that trained with Pano-

Hi dataset (second column). This proves that low data 

similarity between training (perspective) and testing 

(panoramic) data leads to poor performance. We present 

more examples in Section 1 of the supplementary material. 

The full-reference evaluation results in Table 2 also 

demonstrate that our method is more similar to the ground 

truth, obtains lowest score 0.769 among all 6 state-of-the-

art methods for more than 40k small patches. 

 

5. Conclusion and future work 

In this paper, we propose a method which enhances low-

quality 360° panoramic image to high-end camera (DSLR, 

compact camera with APS-C or full frame sensor) quality 

without changing image resolution. We build a Pano-Hi 

dataset consisting of panoramic equirectangular images and 

high quality counterparts and propose a two-step matching 

algorithm. We adopt an efficient GAN architecture 

modified from ESRGAN by employing multi-frequency 

structure with compressed RRDBs and convolutional layers 

within each dense block, and obtained good image quality 

visually and quantitatively at a high processing speed. 

Experiment shows that our method generates rich and sharp 

texture details, reduces noise and chromatic aberration at 

the same time. It also demonstrates superiority over several 

state-of-the-art DNN based methods in both no-reference 

and full-reference evaluations as well as the processing 

speed.  

To achieve low cost and fast processing targets, we 

enhance image at the same resolution in this work. It is also 

possible to use SR techniques to further improve image 

quality.  

 
 
Figure 6: To demonstrate that the perspective image datasets do 

not work well for panoramic image enhancement due to low 

data similarity, we show the third column which is generated 

by using model trained only by DIV2K_ Flickr2K datasets of 

perspective images. The second column is generated by using 

Pano-Hi dataset. The original images are shown too in the first 

column.  
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