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Abstract

Recent advances in machine learning and computer

graphics have made it easier to convincingly manipulate

video and audio. These so-called deep-fake videos range

from complete full-face synthesis and replacement (face-

swap), to complete mouth and audio synthesis and replace-

ment (lip-sync), and partial word-based audio and mouth

synthesis and replacement. Detection of deep fakes with

only a small spatial and temporal manipulation is particu-

larly challenging. We describe a technique to detect such

manipulated videos by exploiting the fact that the dynamics

of the mouth shape – visemes – are occasionally inconsis-

tent with a spoken phoneme. We focus on the visemes as-

sociated with words having the sound M (mama), B (baba),

or P (papa) in which the mouth must completely close in

order to pronounce these phonemes. We observe that this

is not the case in many deep-fake videos. Such phoneme-

viseme mismatches can, therefore, be used to detect even

spatially small and temporally localized manipulations. We

demonstrate the efficacy and robustness of this approach to

detect different types of deep-fake videos, including in-the-

wild deep fakes.

1. Introduction

Rapid advances in computer graphics, computer vision,

and machine learning have led to the ability to synthesize

highly realistic audio, image, and video in which anybody

can be made to say and do just about anything. With enough

sample recordings, for example, it is possible to synthesize

realistic audio in anyone’s voice [22]. With enough sam-

ple images, it is possible to synthesize images of people

who don’t exist [15, 16]. And, realistic videos can be cre-

ated of anybody saying and doing anything that its creator

wants [27, 9].

There are, of course, many entertaining and useful ap-

plications for such synthesized content – so-called deep

fakes. This content, however, can also be weaponized; it can

be used to create non-consensual pornography, to instigate
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Figure 1. Six example visemes and their corresponding phonemes.

The phonemes in the top-right (M, B, P), for example, corre-

spond to the sound you make when you say “mother”, “brother”,

or “parent”. To make this sound, you must tightly press your lips

together, leading to the shown viseme.

small- and large-scale fraud, and to produce dis-information

designed to disrupt democratic elections and sow civil un-

rest.

We describe a forensic technique for detecting a specific

class of deep-fake videos. We begin by briefly reviewing

previous work on the creation and detection of deep-fake

videos before describing our technique in more detail.

Creation: Face-swap deep fakes are the most popular form

of deep-fake videos, in which one person’s face in a video

is replaced with another person’s face. Most of these face-

swap deep fakes are created using a generative adverse-

rial network (GAN), including DeepFake FaceSwap [2],

Faceswap-GAN [4], and FS-GAN [21]. Other methods rely

on more traditional computer-graphics approaches to create

deep fakes. Face2Face [26] and FaceSwap [3], for exam-

ple, allow for the creation of puppet-master deep fakes in

which one person’s facial expressions and head movements

are mapped onto another person. Neural Textures [25] is an



video video MBP

(count) (seconds) (count)

original 79 2, 226 1, 582
A2V [24] 111 3, 552 2, 323

T2V-L [13] 59 308 166
T2V-S [13] 24 156 57
in-the-wild 4 87 66

Table 1. The number of videos, duration of videos, and total num-

ber of visemes MBP for each dataset.

image synthesis framework that combines traditional graph-

ics rendering with learnable components to create, among

other things, lip-sync deep fakes in which a person’s mouth

is modified to be consistent with another person’s speech.

This work generalizes earlier work that was designed to cre-

ate lip-sync deep fakes on a per-individual basis [24].

Unlike each of these previous techniques that require ei-

ther a visual or auditory imposter, text-based synthesis tech-

niques can modify a video on a per-word basis [13]. This

type of deep fake poses even more significant challenges for

detection, as only a small change need be made to dramati-

cally alter the meaning of a video.

Detection: There is a significant literature in the general

area of digital forensics [12]. Here we focus only on tech-

niques for detecting the types of deep-fake videos, broadly

categorized as low-level or high-level approaches.

Low-level forensic techniques detect pixel-level artifacts

introduced by the synthesis process. Some of these tech-

niques detect generic artifacts [32, 30, 31, 28], while others

detect explicit artifacts that result from, for example, image

warping [20], image blending [18] and inconsistencies be-

tween the image and metadata [14]. The benefit of low-level

approaches is that they can detect artifacts that may not be

visibly apparent. The drawback is that they can be sensi-

tive to unintentional laundering (e.g., transcoding or resiz-

ing) or intentional adversarial attacks (e.g., [8]). In addition,

these approaches are generally more effective in detecting

face-swap and puppet-master deep fakes in which the entire

face is synthesized or rendered, as opposed to lip-sync deep

fakes in which only the mouth region is synthesized.

High-level approaches, in contrast, tend to generalize

and be more resilient to laundering and adversarial at-

tacks. These techniques focus on semantically meaning-

ful features including, for example, inconsistencies in eye

blinks [19], head-pose [29], physiological signals [11], and

distinct mannerisms [6]. As with low-level techniques,

these approaches are generally most effective when con-

fronted with face-swap and puppet-master deep fakes in

which the entire face is manipulated, but are less effective

when confronted with complete mouth and audio synthe-

sis and replacement (lip-sync) [24] and partial word-based

audio and mouth synthesis and replacement [13].

Overview: We describe a forensic technique for detecting

lip-sync deep fakes, focusing on high-level techniques in or-

der to be robust to a range of different synthesis techniques

and to be more robust to intentional or unintentional laun-

dering. Our technique exploits the fact that, although lip-

sync deep fakes are often highly compelling, the dynamics

of the mouth shape – so-called visemes – are occasionally

inconsistent with a spoken phoneme. Try, for example, to

say a word that begins with M, B, or P – mother, brother,

parent – and you will notice that your lips have to com-

pletely close. If you are not a ventriloquist, you will have

trouble properly enunciating “mother” without closing your

lips. We observe that this type of phoneme to viseme map-

ping is occasionally violated, even if it is not immediately

apparent upon casual inspection. We describe how these

inconsistencies can be leveraged to detect audio-based and

text-based lip-sync deep fakes and evaluate this technique

on videos of our creation as well as in-the-wild deep fakes.

2. Methods

Datasets: We analyse lip-sync deep fakes created using

three synthesis techniques, Audio-to-Video [24] (A2V) and

Text-to-Video [13] in which only short utterances are ma-

nipulated (T2V-S), and Text-to-Video in which longer ut-

terances are manipulated (T2V-L). The A2V synthesis tech-

nique takes as input a video of a person speaking and a new

audio recording, and synthesizes a new video in which the

person’s mouth is synchronized with the new audio. The

T2V synthesis techniques take as input a video of a person

speaking and the desired text to be spoken, and synthesize a

new video in which the person’s mouth is synchronized with

the new words. The videos in the T2V-S dataset are taken

directly from the original publication [13]. The videos in

the T2V-L dataset are generated using the implementation

of [13] generalized from short to longer utterances. We also

apply our analysis to four in-the-wild lip-sync deep fakes

downloaded from Instagram and YouTube1.

For each lip-sync video, we also collected, when avail-

able, the original video that was used to create the fake. For

each video, the face in each frame was localized, aligned,

and cropped (to 256× 256 pixels) using OpenFace [7], and

resaved at a frame-rate of 30 fps. Shown in Table 1 are the

count and duration (in seconds) of the lip-sync and original

videos in our testing dataset.

Phonemes and Visemes: In spoken language, phonemes

are perceptually distinct units of sound. A viseme, the vi-

sual counterpart of a phoneme, corresponds to the mouth

shape needed to enunciate a phoneme. Shown in Fig-

ure 1 are a subset of six visemes with their corresponding

1www.instagram.com/bill_posters_uk and youtu.be/

VWMEDacz3L4



Figure 2. Overview of the profile feature extraction used to mea-

sure the mouth-closed viseme. The input image is first converted

to grayscale and a vertical intensity profile is extracted from the

center of the mouth. Shown on the right is the intensity pro-

file with the location of local minima and maxima (black dots)

and their corresponding prominences measured as the height, de-

noted by the dashed horizontal lines, relative to a neighboring min-

ima/maxima.

phonemes (a single viseme may correspond to more than

one phoneme) [1].

In order to pronounce chair (CH), jar (JH), or shelf (SH),

for example, you need to bring your teeth close together

and move your lips forward and round them, causing the

teeth to be visible through the open mouth. Whereas, in

order to pronounce toy (OY), open (UH), or row (UW), the

lips again need to be rounded but the teeth are not brought

together and therefore not visible through the open mouth.

The phoneme group of M (mother), B (brother), and P (par-

ent), on the other hand, requires the mouth to be completely

closed for the pronunciation.

The specific shape of various visemes may depend on

other speech characteristics like emphasis or volume. The

M, B, P phoneme group (MBP), however, always re-

quires the mouth to be completely closed regardless of

other speech characteristics (with the exception of ventrilo-

quists). We focus, therefore, our analysis on this consistent

phoneme/viseme mapping.

Extracting Phonemes: In order to analyse a viseme dur-

ing a spoken MBP phoneme, we first extract the location of

all phonemes as follows. Google’s Speech-to-Text API [5]

is used to automatically transcribe the audio track associ-

ated with a video. The transcription is manually checked

to remove any errors and then aligned to the audio us-

ing P2FA [23]. This alignment generates a sequence of

phonemes along with their start and end time in the input

audio/video. Here, only the MBP phonemes will be consid-

ered. Shown in the last column of Table 1 are the number

of MBP phoneme occurrences extracted for each dataset.

Measuring Visemes (manual): For a given MBP occur-

rence, the associated viseme is searched in six video frames

around the start of the occurrence. We consider multiple

frames to adjust for small phoneme to audio alignment er-

rors. Only the frames around the start of the occurrence

are analysed because the mouth should be closed before the

MBP phoneme sound is made.

Given six frames for an MBP occurrence, we take

three approaches to determine if the expected mouth-close

viseme is present in any of the frames. The first approach is

purely manual where an analyst is presented with six video

frames and a reference frame from the same video where the

mouth is clearly closed. The analyst is then asked to label

each presented sequence as “open” or “closed.” A closed se-

quence is one in which the mouth is completely closed for at

least one video frame. This approach provides the ground-

truth for an automatic computational approach to determin-

ing if the mouth shape associated with a MBP phoneme is

open or closed. This type of manual analysis might also be

applicable in one-off, high-stakes analyses.

Measuring Visemes (profile): In the second approach,

a mouth-close viseme is automatically detected in any of

the six frames centered around an MBP occurrence. For

each frame, the lip region is extracted from 68 facial land-

marks [17]. The extracted lip region is rescaled to 50 × 50
pixels and converted from RGB to grayscale. A vertical

intensity profile is then extracted from the middle of the

mouth (Figure 2). We expect this intensity profile to be

qualitatively different when the mouth is open or closed.

Shown in the top middle panel of Figure 1, for example,

is a mouth open in which the vertical intensity profile will

change from skin tone to bright (teeth), to dark (the back of

the mouth), to bright (teeth), and then back to skin tone. In

contrast shown in the top right panel of Figure 1, is a mouth

closed in which the vertical intensity will be largely uniform

skin tone.

The overall profile shape is quantified by computing the

sum of the prominences of the local minima, l, and maxima,

h, in the intensity profile (as determined using MATLAB’s

findpeaks function, with the default parameters), Fig-

ure 2. The measurements l and h capture how much the

intensity along the profile decreases (e.g., when the back

of the mouth is visible) and increases (e.g., when the teeth

are visible). These measuremtns are made for each of the

six frames, li and hi, i ∈ [1, 6], and compared to the

reference measurements lr and hr in which the mouth is

closed, Figure 3. The measure of similarity to a refer-

ence frame in the six-frame sequence is the minimum of

(|li − lr|+ |hi − hr|), i ∈ [1, 6].

Measuring Visemes (CNN): In a third approach, we ex-

plored if a more modern learning-based approach can out-

perform the hand-crafted profile feature. Specifically, we

trained a convolutional neural network (CNN) to classify if

a mouth is open or closed in a single video frame. The input

to the network is a color image cropped around the mouth

and rescaled to a 128×128 pixels (Figure 1). The output, c,
of the network is real-valued number in [0, 1] corresponding

to an “open” (0) or “closed” (1) mouth. The open/closed

classification in a six-frame sequence is the maximum of

ci, i ∈ [1, 6].
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Figure 3. Six sequential frames extracted from a single MBP occurrence in different deep-fake videos. Shown on the right is a reference

frame where the mouth is clearly closed. Shown below each frame is a 1-D intensity profile used to automatically classify the mouth

as open or close. The bounding box corresponds to a frame that matched the reference frame shown to the right (only the closed-mouth

sequences match).
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Figure 4. The number of correct MBP phoneme to viseme pairings

before (blue) and after (orange) audio to video alignment. The

T2V-L lip-sync deep fakes are the least well matched, while the

(aligned) in-the-wild deep fakes are correctly matched more than

90% of the time.

The network is trained using videos of Barack Obama

for whom the lip-sync deep fakes were created in the A2V

dataset. This training dataset consists of original videos dis-

joint from the testing videos reported in Table 1. In total, we

manually labelled 15, 600 video frames where the mouth is

open (8258 instances) or closed (7342 instances). In each

frame, OpenFace [7] is used to automatically detect, scale,

and rotate (in-plane) the face to a normalized pose and res-

olution.

The Xception architecture [10] is used to train a clas-

sifier using 90%/10% images for training/validation. The

network is trained for 50,000 iterations with a mini-batch of

size 64. In each mini-batch, equal number of images were

randomly sampled from each label. The initial learning rate

of 0.01 was reduced twice at iterations 20,000 and 40,000.

The weights were optimized using Adam optimizer and a

cross-entropy loss function.

Global Audio-to-Video Alignment: We previously used

P2FA to ensure that the phonemes were correctly synchro-

nized with the underlying audio. Here we also ensure

that the audio is correctly synchronized with the underly-

ing video. This audio-to-video alignment is done through

a brute-force search of the global shift in the audio (in the

range [−1, 1] seconds, in steps of 1/10 seconds) that creates

the best agreement between all MBP phonemes and the cor-

rect mouth-closed viseme. This alignment contends with

slight audio to video desynchronization that might occur

from transcoding or innocuous video editing.

3. Results

Detecting Deep Fakes (manually): We evaluate the effi-

cacy of detecting deep fakes first by using the manual anno-

dataset correct incorrect total

original 0.709 0.001 0.710
A2V 0.49 0.15 0.64

T2V-L 0.09 0.43 0.52
T2V-S 0.26 0.11 0.37

in-the-wild 0.64 0.05 0.69

Table 2. The average number of correct, incorrect, and total viseme

occurrences/second of video.

tation for determining if the phoneme and viseme pairing is

correct. Shown in Figure 4 are the percent of MBP phoneme

occurrences where the correct viseme is observed. For each

dataset, the percent is reported before (blue) and after (or-

ange) the global audio to video alignment. The problem of

misalignment is most salient for in-the-wild videos where

before alignment only 45.5% of the visemes were correct,

as compared to 90.9% after alignment. For each of the other

datasets, misalignment was not an issue.

For the four deep-fake data sets (A2V, T2V-S, T2V-L,

in-the-wild), the percentage of correct phoneme to viseme

pairing (after alignment) ranges from a high of 90.9% of 66
occurrences (in-the-wild), to 76.8% of 2,323 occurrences

(A2V), and 70.2% of 57 occurrences (T2V-S), and 18.7%
of 166 occurrences (T2V-L). The phoneme to viseme pair-

ing in original videos is correct for 99.7% of 1,582 occur-

rences (the small number of errors are due either to manual

annotation or transcription error).

Shown in Table 2 is the rate (per second) at which

MBP phonemes occur (total column) and the rate at which

phoneme-viseme mismatches occur (incorrect column).

The rate of spoken MBP phonemes varies from 0.71 (origi-

nal) to 0.37 (T2V-S), and so it is important to compare to the

appropriate base rate when considering overall accuracy.

Even a relatively low number of say 10% incorrect

phoneme to viseme pairings can, over time, lead to an effec-

tive detection strategy. In particular, shown in the left-most

panel of Figure 5 is the percent of videos that are correctly

identified as fake as a function of video duration, from 1 to

30 seconds. A video is detected as fake if the number of

incorrect phoneme to viseme mismatches exceeds the ex-

dataset profile CNN

original 99.4% 99.6%
A2V 96.6% 96.9%

T2V-L 83.7% 71.1%
T2V-S 89.5% 80.7%

in-the-wild 93.9% 97.0%

Table 3. The accuracy of the two automatic techniques (profile and

CNN) to detect if a mouth is open or closed. The accuracies are

computed at a fixed threshold corresponding to average false alarm

rate of 0.5% (i.e., misclassifying a closed mouth as open).
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Figure 5. Shown in each panel is the accuracy with which lip-sync deep fakes are detected using mismatched MBP phoneme to viseme

pairings. Each solid curve (orange, green, red, and purple) corresponds to a different deep-fake dataset and the dashed curve (blue)

corresponds to the original dataset. Each panel corresponds to a different technique for determining if a mouth is open or closed. Detection

accuracy improves steadily as the length of the video increases from 1 to 30 seconds.

pected mismatch of 0.3% found in original video (Figure 4.

As expected, the detection accuracy increases as the video

length increases. At a length of 30 seconds, for example,

nearly all of the A2V, T2V-L, and T2V-S videos are classi-

fied correctly, while only 4% of original videos are misclas-

sified.

Detecting Deep Fakes (automatically): We next evalu-

ate the accuracy of automatically determining if a mouth

is open or closed and how these automatic classifications

impact the accuracy of detecting a video as real or fake.

Throughout, the manual annotation described above are

used as ground truth.

Shown in Table 3 is the accuracy of the two automatic

techniques (profile and CNN) to detect if a mouth is open

or closed. Each classifier was configured to have an average

false alarm rate of 0.5% (i.e., misclassifying a closed mouth

as open). The performance of both the profile and CNN

techniques are high on the A2V dataset with an average ac-

curacy above 96%. On the T2V-L and T2V-S datasets, how-

ever, the profile technique performs better than the CNN

which was only trained on videos of Barack Obama (some-

what surprisingly, however, the CNN generalizes to the in-

the-wild videos).

Shown in the central and right-most panel of Figure 5 is

the video detection accuracy when the manual annotation of

mouth open or closed is replaced with the automatic detec-

tion based on intensity profiles (center) and CNN classifica-

tion (right). Using the profile technique, the video detection

accuracy is only slightly degraded as compared to the man-

ual annotation (left-most panel): at 30 seconds, for exam-

ple, the manual annotation has an accuracy on the original,

A2V, and T2V-S datasets of 96.0%, 97.8%, and 97.4%, as

compared to the automatic profile technique with an accu-

racy of 93.4%, 97.0%, and 92.8%.

For the CNN technique, the video detection accuracy for

the original and A2V datasets remains comparable to the

manual and profile annotations: at 30 seconds, the accuracy

on the original and A2V datasets is 93.4% and 97.8%. For

the T2V-S dataset, however, the accuracy drops from 97.4%
to 81.0%. This is because the CNN was trained only on

videos of Barack Obama exclusively in the A2V dataset,

and thus does not generalize well to different people in the

T2V-S dataset. We hypothesize that this accuracy can be

improved by training a CNN with different people.

Failures: Shown in Figure 7 are two six-frame sequences

where the profile technique misclassified a closed mouth as

open (top) and an open mouth as closed (bottom). The first

failure is because the shape of the lips is different from the

reference frame. The second failure is because the mouth is

asymmetrically open. While these failure cases are some-

what inevitable when using automatic techniques, they are

easily flagged by a manual annotator.

Robustness: We next examine the robustness of the two

automatic detection techniques against two simple launder-

ing operations, recompression and resizing. Each video was

laundered using ffmpeg by: (1) reencoding at a lower

quality of qp=40 (typical videos are encoded at higher qual-

ity of qp ∈ [10, 20]); or (2) resizing to half-resolution and

scaling back to the original resolution (effectively, blurring

each video frame). The average accuracy of the profile and

CNN technique in detecting open or closed mouth after re-

compression is 90.46% and 88.32%. The average accuracy

of the profile and CNN technique after resizing is 83.80%
and 89.92%.

Resizing has a significant impact on accuracy for the pro-

file technique. This is because resizing reduces the promi-

nence of the local minima and maxima. As a result, the

open mouth are more likely to be mis-classified as closed.
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Figure 6. Shown is a closed (top) and open (bottom) mouth be-

fore (first column) and after recompression (second column) and

after resizing (third column). Although our automatic techniques

correctly classified the closed-mouth, they misclassified as closed

the recompressed and resized open mouth. A human analyst can,

however, still identify the small opening between the lips even af-

ter recompression or resizing.

For such low quality videos, therefore, manual annotation

can be more robust than the automatic detection (Figure 6).

4. Discussion

We described a forensic technique that uses phoneme-

viseme mismatches to detect deep-fake videos. Our main

insight is that while many visemes can vary, the sounds as-

sociated with the M, B, and P phonemes require complete

mouth closure, which is often not synthesized correctly in

deep-fake videos. For high-stakes cases, we show that an

analyst can manually verify video authenticity. For large-

scale applications, we show the efficacy of two automatic

approaches: one using hand-crafted features that requires

no large training data, and one using a CNN.

While we had good reason to look only at MBP

phonemes, we believe that including all visemes in the anal-

ysis will improve results even further. This extension, how-

ever, is not trivial and will require modeling the possible

variance of each viseme and co-articulation. It will, how-

ever, allow us to use a larger portion of a video for analysis,

ultimately leading to better detection.

Our CNN results, trained only on videos of Barack

Obama, are person specific and perform much better on

videos of Obama. We expect better results using a network

that is trained on a large corpus of people. Obtaining such a

large labelled dataset is challenging — especially since we

care mostly about the hard cases in which a mouth is almost

closed or open, with just a few pixel difference. Such labels

currently cannot be accurately extracted from face landmark

detectors. Thus, it would be beneficial to develop unsuper-

vised methods to automatically differentiate between com-

plete and almost complete mouth closure.

Even with these limitations, our method can already de-

tect state-of-the-art, lip-sync deep fakes. We expect future

synthesis techniques to continue the cat-and-mouse game,

taking into more careful account the phoneme to viseme

matching. We view deep-fake detection using phoneme-

viseme mismatches as one more tool in the forensic expert

toolkit, to be developed and used together with other com-

plementary techniques.
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