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Abstract

It is now possible to synthesize highly realistic images

of people who do not exist. Such content has, for exam-

ple, been implicated in the creation of fraudulent social-

media profiles responsible for dis-information campaigns.

Significant efforts are, therefore, being deployed to detect

synthetically-generated content. One popular forensic ap-

proach trains a neural network to distinguish real from syn-

thetic content.

We show that such forensic classifiers are vulnerable to

a range of attacks that reduce the classifier to near-0%
accuracy. We develop five attack case studies on a state-

of-the-art classifier that achieves an area under the ROC

curve (AUC) of 0.95 on almost all existing image genera-

tors, when only trained on one generator. With full access

to the classifier, we can flip the lowest bit of each pixel in an

image to reduce the classifier’s AUC to 0.0005; perturb 1%
of the image area to reduce the classifier’s AUC to 0.08; or

add a single noise pattern in the synthesizer’s latent space

to reduce the classifier’s AUC to 0.17. We also develop a

black-box attack that, with no access to the target classifier,

reduces the AUC to 0.22. These attacks reveal significant

vulnerabilities of certain image-forensic classifiers.

1. Introduction

According to his Twitter account, Andrew Walz, was

a congressional candidate running for office in Rhode Is-

land. He called himself “a proven business leader” with

the tagline “Let’s make change in Washington together.”

Waltz’s Twitter account was complete with his picture, Fig-

ure 1, and a prized blue checkmark, showing that he had

been verified – part of Twitter’s efforts to verify the accounts

of congressional and gubernatorial candidates.

Andrew Walz, however, was not real. He was the

creation of a 17-year-old high-school student. During

his holiday break, this student created a website and

Twitter account for this fictional candidate [2]. The

Twitter profile picture was plucked from the website

= + 1

1000

(a) (b) (c)
Figure 1. Andrew Walz was, according to his Twitter account and

webpage, running for a congressional seat in Rhode Island. In

reality, Mr. Walz does not exist, and is the creation of a 17-year

old high-school student. The profile picture (top) of the fictional

candidate was synthesized using StyleGAN2 [28]. A state-of-the-

art [43] synthetic-media detector would have flagged Mr. Walz’s

profile picture (b) as 87% fake. We show, however, that adding a

perceptually indistinguishable perturbation (c) to this photo causes

the detector to classify the resulting picture (a) as 99% real.

thispersondoesnotexist.com. True to its name,

and powered by StyleGAN2 [28], this site generates images

of people who do not exist.

The case of Mr. Walz’s fictional congressional can-

didacy demonstrated how it might be possible to disrupt

our democratic institutions through social-media powered

dis-information campaigns. While this specific example



was a fairly innocuous prank – albeit exceedingly well

executed – recent reports have revealed how fake social-

media accounts, with synthesized profile photographs, are

being used by purported Russian hackers, trolls, and fraud-

sters [1, 3]. As dis-information campaigns continue to

threaten our democratic institutions, civil society, and eco-

nomic security, it has never been more important to be able

to verify the contents of what we read, hear, and see on-line.

There are, therefore, significant efforts underway to de-

velop forensic techniques to detect synthesized or manipu-

lated audio, image, and video recordings. These techniques

can be partitioned into two broad categories: high-level and

low-level. High-level forensic techniques focus on semanti-

cally meaningful features including, inconsistencies in eye

blinks [31], head-pose [46], physiological signals [15], and

distinct mannerisms [4]. Low-level forensic techniques de-

tect pixel-level artifacts introduced by the synthesis pro-

cess [47, 34, 39, 48]. The benefit of low-level approaches is

that they can detect artifacts that may not be visibly appar-

ent. The drawback is that they, unlike high-level techniques,

struggle to generalize to novel datasets [17], and can be sen-

sitive to laundering (e.g., transcoding or resizing).

Recent work seemed to buck this trend of sensitivity and

lack of generalizability [43, 20]. These techniques discrim-

inate between real and synthetically-generated images that

generalize across datasets and generators. In [43], for ex-

ample, the authors trained a standard image classifier on

images synthesized by one technique (ProGAN [26]) and

showed that this classifier detects synthesized images gen-

erated from nearly a dozen previously unseen architectures,

datasets, and training methods. In addition, this classifier

is robust to laundering through JPEG compression, spatial

blurring, and resizing.

Contributions. We find that neural networks designed to

classify synthesized images [43, 20] are not adversarially

robust. Given an arbitrary image classified as fake, we can

modify it imperceptibly to be classified as real. Building

on work from the adversarial machine learning commu-

nity [41, 12, 33], we investigate the robustness of forensic

classifiers through a series of attacks in which it is assumed

that we have (white-box) or do not have (black-box) full ac-

cess to the classifier’s parameters.

In line with prior work, we find that forensic classifiers

are highly susceptible to such attacks. Our white-box at-

tacks reduce the area under the ROC curve (AUC) from 0.95
to below 0.1 as compared to an AUC of 0.5 for a classifier

that randomly guesses “real” or “fake”. Even when we are

not able to directly access the classifier’s parameters, our

black-box attacks still reduce the ROC to below 0.22.

2. Background & Related Work

We begin by briefly reviewing techniques for creating

and detecting synthetically-generated images as in Figure 1.

Synthetically-Generated Images. A common approach to

creating images of people (or cats, or objects) that do not

exist leverages the power of generative adversarial networks

(GAN) [23]. A GAN is composed of two main components,

a generator and a discriminator. The generator’s goal is to

synthesize an image to be consistent with the distribution

of a training dataset (e.g., images of people, cats, cars, or

buildings, etc.). The discriminator’s goal is to determine

if the synthesized image can be detected as belonging to

the training dataset or not. The generator and discrimi-

nator work iteratively, eventually leading the generator to

learn to synthesize an image that fools the discriminator,

yielding, for example, an image of a person who doesn’t

exist, Figure 1. Following this general framework, dozens

of techniques have emerged in recent years for synthesiz-

ing highly realistic content, including BigGAN [8], Cycle-

GAN [49], GauGAN [38], ProGAN [26], StarGAN [14],

StyleGAN [27], and StyleGAN2 [28].

Detecting Synthetically-Generated Images. Denote an

image generator as g : Z → X . The input to the generator

is a vector in a latent space Z , and the output is a color im-

age of a pre-specified resolution. Denote an image-forensic

classifier as f : X → R. The input to the classifier is a color

image, x ∈ X , and the output is a real-valued scalar, where

larger values correspond to a higher likelihood that the input

image is fake or synthetically-generated.

We study the robustness of two classifiers: Wang et

al. [43] and Frank et al. [20]. The majority of our effort

is focused on Wang et al., appearing jointly at CVPR’20

with this workshop, but consider Frank et al. to show that

our results are not limited to only one forensic classifier.

The forensic classifier of Wang et al. [43] is based on

ResNet-50 [24] pre-trained on ImageNet [18], and then

trained to classify an image as real or fake. The training

dataset consists of a total of 720, 000 training and 4, 000
validation images, half of which are real images, and half of

which are synthesized images created using ProGAN [26].

The images in this dataset are augmented by spatial blurring

and JPEG compression. The accuracy of this classifier is

evaluated against synthetically-generated images produced

from ten different generators, similar in spirit, but distinct

in implementation to the training images created by Pro-

GAN. The trained classifier is not only able to accurately

classify images synthesized by ProGAN, but also from ten

other previously unseen generators. The classifier is also

robust to simple laundering, consisting of spatial blurring

and JPEG compression.

The forensic classifier of Frank et al. [20] takes a

similar learning-based approach. The authors find that

their classifier can accurately detect synthesized images

from different generators. The authors argue that GAN

synthesized-images have a common spatial frequency arti-

fact that emerges from image upsampling that is part of the



image-synthesis pipeline.

We will also consider a forensic classifier of our creation.

This classifier is trained on 1, 000, 000 ProGAN [26] im-

ages, half of which are real and half of which are fake. Our

training pipeline is substantially simpler than [43], and thus

has an error rate that is roughly three times higher than [43].

The purpose of this classifier, however, is only to act as

a mechanism for creating adversarial examples which can

then be used to attack other classifiers.

Adversarial Machine Learning. It is well established that

machine learning classifiers are vulnerable to adversarial

examples: for a classifier f(·) and input x, it is possible to

construct an additive perturbation δ so that x + δ is mis-

classified by f(·) [41]. Most strategies construct the per-

turbation δ with respect to the input x through a gradient-

descent optimization [12, 33]. While most adversarial ma-

chine learning work is on images, such attacks have also

proven to be effective at attacking audio- [13], video- [36],

and text- [19] classifiers. Orthogonal to defenses that detect

synthesized content, related work has developed techniques

to apply adversarial perturbations to unmodified images so

that when a neural network attempts to modify it, the result-

ing image is meaningless [40].

Attacking forensic classifiers should not simply be con-

sidered a sport. 1 Attacks and counter-measures are an im-

portant part of understanding the reliability of forensic tech-

niques, and pushing these techniques to be more resilient to

intentional and unintentional counter-measures [7]. Indeed,

concurrent work has addressed the strengthening of forensic

classifiers [21, 36].

3. White-Box Attack

To begin, we evaluate the robustness of forensic classi-

fiers to an attacker who has complete access to the classi-

fier. This attacker is therefore able to compute the gradient

of the input with respect to the classifier output, a so-called

white-box threat model. We apply three attacks that have

previously been studied in the adversarial example litera-

ture, and then develop our own attack that subverts forensic

classifiers by modifying the generator’s latent space.

These attacks take the form of modifying synthesized

images so that they are misclassified as real (with one ex-

ception where we devise an attack to misclassify a real im-

age as fake). All images were obtained from the dataset of

94, 036 images released by [43]. On this dataset, their de-

tector achieves an AUC 2 of 0.97. Even after performing

typical laundering strategies in an attempt to conceal traces

1For this reason, we do not release our source code to (however

marginally) increase the difficulty of re-purposing our attacks.
2AUC is defined as the area under the ROC curve that compares the

false positive rate to the true positive rate. An AUC of 1.0 corresponds to a

perfect classifier, while an AUC of 0.5 corresponds to a chance classifier.

of synthesis (JPEG compression and spatial blurring), the

classifier AUC remains above 0.94 .

In each attack described below, we operate on a ran-

domly sampled subset of 10, 000 fake images. Each three-

channel (RGB) image is of size 224× 224 pixels with pixel

intensities in the range [0, 1]. The difference between two

pixels will be measured in terms of a 0-norm (ℓ0) or a 2-

norm (ℓ2). Flipping one pixel’s RGB value, for example,

from black (0, 0, 0) to white (1, 1, 1) yields an ℓ0 difference

for this pixel of 3 and an ℓ2 difference of
√
3.

3.1. Distortion­minimizing Attack

Given a synthetically-generated image x that is classified

by f(·) as fake, we begin by constructing a small additive

perturbation δ so that x+ δ is instead incorrectly classified

as real. A standard approach for computing an “optimal”

perturbation δ relies on minimizing the p-norm ‖δ‖p for

p = {0, 1, 2,∞} [12]. Although the p-norm does not neces-

sarily capture perceptual differences, for sufficiently small

norms, such optimizations suffice to create impercetible im-

age perturbations while revealing a classifier’s fragility. Ad-

ditionally, if attacks are possible under these p-norms, then

attacks under less constrained norms are likely to be even

more effective [12, 22].

While there are plethora of attacks, most follow a simple

two-step process [33]: (1) choose a loss function L(x + δ)
so that L(·) is minimized when f(x + δ) is misclassified;

and (2) minimize the loss function L(·) to obtain a pertur-

bation δ that succeeds in decreasing classification accuracy.

For the simple two-class problems (e.g., real or fake), where

f(x) is a scalar and our objective is to misclassify the image

x as real, it suffices to choose L(x) = f(x).
In this setting we first describe an attack that directly

minimizes the magnitude of the perturbation δ such that the

resulting adversarial examples are classified as real. Let τ
be a threshold such that when f(x) < τ , an image is classi-

fied as real.3 The adversary then solves the following opti-

mization problem:

arg min
δ

(

‖δ‖p
)

, such that f(x+ δ) < τ. (1)

This optimization formulation, however, is computationally

intractable with standard gradient descent due to the non-

linear inequality constraint [41]. We, therefore, reformulate

this optimization with a Lagrangian relaxation, which lends

itself to a tractable gradient-descent optimization:

arg min
δ

(

‖δ‖2 + cf(x+ δ)

)

, (2)

3A drawback of this style of attack is that it requires a hard decision

threshold τ . In practice the value of this threshold depends on the accept-

able false positive rate. We set τ = 5%, a high value considering the low

base rate of synthetic images in the wild.



where c is a hyper-parameter that controls the trade-off be-

tween minimizing the norm of the perturbation δ with mini-

mizing the loss f(·). A larger value of c results in adversar-

ial examples that are over-optimized (and more adversarial

than they need to be), whereas a smaller value of c results in

a perturbation that is small – as desired – but not adversarial.

The optimization of Equation (2) proceeds as follows.

For a given hyper-parameter c, the optimal δ is determined

using gradient-descent minimization with the Adam opti-

mizer [29] for 1, 000 iterations. An approximately optimal

hyper-parameter c is found through a binary search as fol-

lows. We initially consider values of c0 = 0 and c1 = 100
(or some sufficiently large value so that the attack is suc-

cessful). The attack is then run with c = 1

2
(c0 + c1). If the

attack is successful, then c1 = c, otherwise c0 = c. This

process is repeated until c0 = c1.

This attack is effective but leads to such small distor-

tions as to be impractical. In particular, saving the resulting

adversarial image as an uncompressed PNG obliterates the

attack because the image is quantized to 8-bits per channel.

We consider, therefore, a refinement to the ℓ0-distortion

attack from [12] in which instead of minimizing the ℓ2 dis-

tortion, we minimize the fraction of pixels whose lowest-

order bit needs to be flipped so that the image is misclassi-

fied. To do this, the above ℓ2 attack is applied with an addi-

tional constraint that the maximum perturbation to any pixel

is 1/255. After an adversarial image is generated, all pix-

els with the smallest perturbation are reset to their original

value and these pixels are disallowed from future change.

The attack then repeats, shrinking the set of perturbed pixels

until convergence. With a maximum perturbation of 1/255,

this attack modifies a subset of pixels by, at most, flipping

a pixel’s lowest-order bit. In such an attack, the resulting

adversarial image can be saved as an uncompressed PNG or

even compressed JPEG image and still be misclassified.

Attacking Wang et al. [43]. Directly applying this ℓ2-

distortion minimizing attack is highly effective at attack-

ing this forensic classifier. At a fixed false positive rate of

5%, an ℓ2-distortion of 0.02 reduces the true positive rate to

chance performance of 50%, while an ℓ2-distortion of 0.1
reduces the true positive rate to just 0.1%.

Compared to the ℓ2-distortion of 0.02 that reduces this

forensic classifier to chance performance, reducing an Ima-

geNet classifier (using the same model architecture on im-

ages of the same size) to chance performance requires a dis-

tortion over 16 times larger [12]. These extremely small

distortions suggest that the forensic classifier is highly sen-

sitive and vulnerable to attack.

The ℓ0-distortion minimizing attack is equally effective.

Shown in Figure 2(a) is the percent of fake images misclas-

sified as real as a function of the percent of modified pixels:

with only 2% pixel changes, 71.3% of images are misclas-
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Figure 2. The required ℓ0-distortion to fool the classifier into iden-

tifying (a) fake images as real or (b) real images as fake. Half of all

fake images are misclassified as real by flipping the lowest-order

bit of just 1% of pixels. Half of all real images are misclassified

as fake by flipping the lowest-order bit of less than 7% of pixels.

sified; with only 4% pixel changes, 89.7% of images are

misclassified; and with less than 11% pixel changes, nearly

all images are misclassified.

Attacking Frank et al. [20]. After we developed the

above attack, Frank et al. [20] released their study and cor-

responding pre-trained classifiers. A similar attack was ap-

plied to this classifier. This classifier not only detects if an

image is synthetically-generated, but also predicts the iden-

tity of the generator. We therefore slightly modified our

attack: instead of reporting success on any misclassification

(e.g., reporting that a ProGAN image was generated by Big-

GAN), we only report success if the image is classified as

real. Despite this increased discriminative performance, we

find that we can reduce the true positive rate of the classi-

fier on images generated by ProGAN from 99% to 0% by

flipping the lowest-order bit of 50% of the pixels.



Reverse attack. Each of the previous attacks were de-

signed to misclassify fake images as real. We find that it

is also possible to generate adversarial perturbations that

cause real images to be misclassified as fake. Somewhat

surprisingly, this attack is harder, requiring a larger distor-

tion: just under 7% of the pixels must be flipped in a real

image to lead to 50% misclassification, as compared to 1%
of pixels required to lead to the same level of misclassifica-

tion of a fake image (see Figure 2(b)).

3.2. Loss­Maximizing Attack

In this second attack, we define a simpler objective func-

tion that maximizes the likelihood that a fake image x per-

turbed by δ is misclassified as real, but this time the p-norm

of the distortion is fixed to be less than a specified threshold

ǫ. This optimization is formulated as:

arg min
δ s.t. ‖δ‖p<ǫ

f(x+ δ). (3)

Unlike the previous Equation (2), this optimization is sim-

pler because it does not require a search over the additional

hyper-parameter. A standard gradient-descent optimization

is used to solve for the optimal perturbation δ [33].

This attack is also highly effective. Shown in Figure 3(a)

is the trade-off between the false positive rate (incorrectly

classifying a fake image as real) and the true positive rate

(correctly classifying a fake image as fake) for a range of the

fraction of modified pixels, between 0.0 (non-adversarial)

and 1.0 (maximally adversarial). The solid curves corre-

spond to the adversarial images saved in the JPEG format

and the dashed curves correspond to the PNG format. Even

with flipping the lowest-order bit of 40% of pixels for un-

compressed images, the AUC reduces from 0.966 to 0.27.

3.3. Universal Adversarial­Patch Attack

There is one significant limitation with the prior ap-

proaches in that the adversary is required to construct a tai-

lored attack for each image – at under 0.1 seconds per im-

age attack, our attacks are not especially costly, but the extra

work may not be desirable.

To remedy this limitation, we create a single visible noise

pattern that when overlaid on any fake image will result in

the image being classified as real [9]. Unlike the previous

image-specific attacks, we generate a single universal patch

that can be overlaid onto any fake image that then leads

to misclassification. Similar to Equation (3), the universal

patch δ is generated by maximizing the expected loss of the

classifier on a set of training examples X:

arg min
δ

∑

x∈X

[

f(xδ))
]

, (4)

where xδ denotes the input image x overlaid with the patch

δ, fixed to be 1% (24× 24 pixel) of the input image size.
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Figure 3. Shown in each panel is the ROC curves for a forensic-

classifier [43] before and after four distinct attacks: (a) classifica-

tion accuracy for the originally synthesized images saved as JPEG

(solid blue) and PNG (dashed blue) images and white-box adver-

sarial images with varying fractions of flipped pixels; (b-c) classi-

fication accuracy for the originally synthesized images (solid blue)

and white-box adversarial images (dashed orange); and (d) classi-

fication accuracy for StyleGAN synthesized images for the foren-

sic classifier of [43] (solid blue), our forensic classifier (dashed

blue), and our black-box adversarial images (dashed orange).

A standard gradient-descent optimization is, again, used

to maximize this objective function. On each gradient-

descent iteration, a new image x ∈ X is selected from a

subset of 5, 000 images taken from the original 94, 036 im-

age dataset, and disjoint from the 10, 000 evaluation images.

Shown in Figure 4(a) are two synthesized images with

the overlaid patch (upper left corner) that are now classified

as real with likelihood 98% and 86%. Shown in Figure 3(b)

is the trade-off between the false positive rate and the true

positive rate for the classifier when presented with the orig-

inal images (solid blue curve) and the adversarial images

(dashed orange curve). The AUC is reduced from 0.966 to

0.085.

3.4. Universal Latent­Space Attack

Each of the three previous attacks modified the input im-

age x by a perturbation δ to yield an adversarial image that

is misclassified by the forensic classifier. In this fourth, and

final, white-box attack, we introduce a latent-space attack

on images in which the underlying representation used by
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Figure 4. Shown in row (a) are two adversarial examples in which

a universal image patch is overlaid on a fake image causing it to be

classified as real with high confidence. Shown in rows (b)-(d) are

fake images (left) and their adversarial counterpart (right) created

using a universal latent-space attack – each of these adversarial

images are misclassified as real with high confidence.

the generative model is modified to yield an adversarial im-

age. Here, we focus exclusively on images synthesized us-

ing StyleGAN [27].

Recall that we earlier formulated the generative model,

g : Z → X , as taking as input a vector in a latent space

z ∈ Z and outputting a color image x ∈ X . Recent gen-

erative models take two inputs, g : Z × W → X , where

z ∈ Z corresponds to high-level attributes and w ∈ W cor-

responds to low-level attributes. When synthesizing faces,

for example, high-level attributes may correspond to gen-

der, pose, skin color, and hair color or length, whereas low-

level attributes may correspond to the presence of freckles.

Our latent-space attack constructs a single (universal) at-

tribute w̃ ∈ W so that the resulting synthesized image,

g(z, w̃) is misclassified by the forensic classifier f(·) as

real.

As before, we apply a gradient-descent optimization to

determine the universal adversarial perturbation. On each

iteration, we sample a random latent vector z and then max-

imize the loss of the classifier with respect to a single w̃.

Specifically, we sample an initial random w̃0 ∼ W and then

on each iteration i, update w̃i+1 = w̃i + ∇w̃f(g(z; w̃i))
where each z ∈ Z is chosen at random.

Shown in Figure 4(b)-(d) are representative examples of

this attack. Shown in the left column are images synthe-

sized with random, non-adversarial, attributes w. Shown in

the right column are images synthesized with the universal

adversarial attribute w̃. Although these images are not iden-

tical, they are nearly indistinguishable and the adversarial

images are equally photorealistic.

Shown in Figure 3(c) is the trade-off between the false

positive rate and the true positive rate for the classifier when

presented with the original StyleGAN images (solid blue

curve) and the adversarial images (dashed orange curve).

The AUC is reduced from 0.99 to 0.17.

4. Black-Box Transfer Attack

In practice, forensic classifiers for detecting synthesized

images may not be publicly released in order to make it

difficult to launch the type of white-box attacks we de-

scribe previously. Social networks or dating sites, for ex-

ample, might analyze all portrait photos and reject or label

synthetically-generated images. In such cases, an adversary

will not be able to perform gradient-descent optimizations

on the model weights described in the previous section.

A black-box threat model corresponds to the situation

when the adversary does not have access to the exact details

of the forensic classifier, but is aware what type of classi-

fier is in place. Defenses are only interesting if they remain

secure against an adversary who is aware they are present;

“security through obscurity” is not a valid defense [5]. As

such, the black-box threat model assumes that the adversary

knows that there is a defense in place, and similarly knows

the general strategy of the defense.

We find that forensic classifiers are vulnerable to adver-

sarial examples even in this more restrictive black-box set-

ting. To mount these attacks, we make use of the transfer-

ability property of adversarial examples [37, 32]. Consider

two forensic classifiers, a source classifier f1(·) and a tar-



get classifier f2(·), both trained to perform the same task.

An adversarial input x that is misclassified by f1(·) is also

likely to be misclassified by f2(·), even if these source and

target classifiers are different neural-network architectures,

trained with different algorithms on different training data.

This source to target transferability works because the deci-

sion boundaries learned by different classifiers, solving the

same underlying problem, are sufficiently similar that ad-

versarial examples transfer between classifiers [32].

In order to transfer an attack to the target detector of

Wang et al. [43], we develop our own forensic classifier. We

collect one million ProGAN-generated images and one mil-

lion real images on which ProGAN was trained. We then

train a ResNet-18 (as compared to Wang et al.’s ResNet-

50) to classify images as fake or real. Unlike Wang et al.,

our classifier was not pre-trained on ImageNet. We apply

the standard ImageNet transformations: randomly crop a

224 × 224 pixel bounding box from each input image; and

horizontally flip each real image with a 50% probability.

Our classifier achieves an overall AUC of 0.85, signifi-

cantly less than the AUC of 0.96 achieved by Wang et al..

As we will see next, despite the differences in the training

arhitecture and data, and the lower accuracy of our source

classifier, we are still able to transfer an attack from our

classifier to Wang et al.’s classifier.

We first generated white-box adversarial examples on

our source classifier using the previously described ℓ0-

distortion minimizing attack (with a distortion bound of

1/255 per pixel – the smallest distortion bound that can still

be saved to a PNG). These adversarial examples reduce our

source classifier’s AUC from 0.85 to 0.003. Shown in Fig-

ure 3(d) is the effect of transferring these exact adversarial

examples to Wang et al.’s classifier. This attack reduces the

target classifier AUC from 0.96 to 0.22.

While this is the weakest of all attacks that we have pre-

sented it is not weak as it drives the forensic classifier to be-

low chance performance. This attack is also the most realis-

tic since in practice, attacks will likely need to be mounted

within this black-box threat model.

5. Discussion

Motivating the Rules. Having demonstrated the vulnera-

bility of forensic classifiers under the standard perturbation-

based, adversarial machine-learning threat model, we now

turn to the fundamental question posed by Gilmer et

al. [22]: is an actual adversary limited to perturbation at-

tacks? We believe that the answer in this setting is firmly

no. It is not realistic to require that an adversary only ap-

ply an indistinguishable perturbation to an image to cause

misclassification. True adversaries will have a much larger

space of valid actions to operate under. For example, even

standard image laundering – resizing, rescaling, cropping,

or recompression – often reduces the true positive rate by

over ten percentage points. A naive adversary might still

succeed through these techniques alone, without needing to

resort to more powerful, but also more complicated, attacks.

Further, an adversary does not necessarily need one par-

ticular image to be identified as real, but rather some seman-

tically similar image to be classified as real. For example,

the exact image of Mr. Walz shown in Figure 1 was not es-

sential to create a fictional congressional candidate’s Twit-

ter account – any number of photorealistic portrait photos

would have sufficed. As such, even if Twitter was using a

forensic classifier to scan portrait photos for synthetically-

generated content, an adversary would need only repeatedly

upload different photos until one simply failed detection.

Even with a relatively high true positive rate of 90%, an

adversary would need only upload, on average, ten images

before the classifier failed to detect a fake image.

Even though we only considered attacks that are harder

than those that might actually be applied in reality, we still

believe that it is worthwhile to study this worst-case, low-

distortion perturbation attacks. While this is not the only

possible attack, it is highly restrictive and therefore difficult

to execute. Given the relative ease with which we were able

to make this restrictive attack succeed, other attacks with

fewer constraints are likely to be even easier to execute.

Who goes first? A second important question to consider

in these types of defender/forger situations is which agent

goes first and which agent has to react. In a traditional situ-

ation, the defender acts first, releasing some product or ser-

vice, and then the forger responds, looking for vulnerabili-

ties. In this situation, the forger has the advantage because

she need only construct one successful attack whereas the

defender has to prevent all possible attacks. In other sce-

narios, the forger commits to a particular approach and the

defender reacts, adjusting her defenses accordingly. In prac-

tice, either scenario is possible. Twitter might, for example,

deploy a forensic classifier to classify uploaded profile pho-

tos as real or fake. The forger could then modify her gen-

erator to defeat the classifier. Alternatively, a fact-checking

organization might retroactively apply a forensic classifier

over historical news photos. In this scenario, the defender

is likely to know the forger’s potential synthesis techniques.

Ultimately, the ordering is effectively a matter of the

time-scale being considered. On a relatively short time-

scale of hours to days, if the forger goes second, then she

will have the advantage. On a longer time-scale of months

to years, the defender will eventually have knowledge of the

forger’s techniques and will have the advantage of retroac-

tively finding the fakes. On the internet, however, where, for

example, the half-life of a tweet is on the order of minutes,

the game is over in the first few hours, giving the forger an

inherent advantage.



Figure 5. Mean perturbation for the forensics classifier of [43]

(left) and an ImageNet classifier (right) needed to lead to misclas-

sification.

Classifier Sensitivity. We find that the forensic detec-

tors require perturbations roughly 10 times smaller than

necessary to fool ImageNet classifiers, also operating on

224 × 224 images. In order to better understand why these

forensic detectors are so sensitive, we compute the average

perturbation necessary to fool the forensic classifier of [43].

This is done by averaging the adversarial perturbation in-

troduced on 2000 adversarial StyleGAN examples in the

released dataset of [43]. Shown in Figure 5 is a contrast-

enhanced version of this average perturbation and, for com-

parison, the average perturbation required to fool an Ima-

geNet ResNet-50 classifier (the same architecture used by

the forensic classifier). The forensic-classifier perturbation

consists of highly reqular structure aligned with the 8 × 8
JPEG lattice. We suspect, but have not yet confirmed, that

this points to a possible JPEG artifact in the underlying

training data.

Counter-Defenses. Extensive efforts have attempted to

defend against adversarial examples on standard image

classification [35, 45, 10, 44]. Almost all proposed de-

fenses, however, have been shown to be ineffective at in-

creasing classification robustness, and leave accuracy at 0%
even under small distortion bounds [11, 6, 42]. The two

most effective defenses on large images have been adver-

sarial training [33] and randomized smoothing [30, 16]. Ad-

versarial training continuously trains on adversarial exam-

ples generated on previous versions of the classifier. In con-

trast, randomized smoothing adds large magnitude, Gaus-

sian noise to every pixel, (provably) making it impossible

for any small perturbation to change the classifier output.

We believe that it would be interesting to study the efficacy

of these two counter-defense strategies on detecting synthe-

sized images. Unfortunately, because adversarial training

only offers limited robustness on traditional image classi-

fication tasks, and because detecting synthesized images is

an even harder problem, it may be difficult to obtain mean-

ingful robustness through either of these methods alone.

6. Conclusions

To the extent that synthesized or manipulated content is

used for nefarious purposes, the problem of detecting this

content is inherently adversarial. We argue, therefore, that

forensic classifiers need to build an adversarial model into

their defenses. This model must go beyond the standard

laundering attacks of recompression, resizing, blurring, or

adding white noise.

Adversarial modeling is particularly important in the

types of data-driven, machine-learning based techniques de-

scribed here. We have shown that these techniques, are

highly vulnerable to attack because the same power and

flexibility of the underlying neural-network classifiers that

leads to high classification accuracies, can also be easily

manipulated to create adversarial images that easily subvert

detection. This subversion takes the form of white-box at-

tacks in which it is assumed that the details of the forensic

classifier are known, and black-box attacks in which it is

assumed that only a forensic classifier, of unknown detail,

exists. These attacks can imperceptibly modify fake images

so that they are misclassified as real, or imperceptibly mod-

ify real images so that they are misclassified as fake.

It may be argued that white-box attacks are not a signif-

icant threat because, in critical scenarios, the details of the

forensic classifier can be withheld. We have shown, how-

ever, the efficacy of black-box attacks in which the classifier

details are not known – the threat posted by these attacks is

surely more significant.

We have shown the efficacy of these types of attacks on

two previously published forensic classifiers, and a classi-

fier of our own creation. Previous results from the adver-

sarial machine learning literature [41, 12], however, suggest

that this vulnerability is inherent to all neural-network based

forensic classifiers [25].

Demonstrating attacks on sensitive systems is not some-

thing that should be taken lightly, or done simply for sport.

However, if such forensic classifiers are currently deployed,

the false sense of security they provide may be worse than if

they were not deployed at all – not only would a fake profile

picture appear authentic, now it would be given additional

credibility by a forensic classifier.

Even if forensic classifiers are eventually defeated by a

committed adversary, these classifiers are still valuable in

that they make it more difficult and time consuming to cre-

ate a convincing fake. They would, for example, have made

it more difficult for a 17-year old high school student to

create a realistic image to use in the creation of a fictional

congressional candidate on social media. While this is unar-

guably a low bar, continued efforts to increase the resilience

of forensic classifiers will raise this bar, eventually making

it more difficult for the average person to distribute convinc-

ing and undetectable deep-fake images.
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