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Abstract

Satellite images are more accessible with the increase
of commercial satellites being orbited. These images are
used in a wide range of applications including agricultural
management, meteorological prediction, damage assess-
ment from natural disasters and cartography. Image manip-
ulation tools including both manual editing tools and auto-
mated techniques can be easily used to tamper and modify
satellite imagery. One type of manipulation that we exam-
ine in this paper is the splice attack where a region from
one image (or the same image) is inserted (“spliced”) into
an image. In this paper, we present a one-class detection
method based on deep belief networks (DBN) for splicing
detection and localization without using any prior knowl-
edge of the manipulations. We evaluate the performance
of our approach and show that it provides good detection
and localization accuracies in small forgeries compared to
other approaches.

1. Introduction

Satellite images can be used in many applications in-
cluding meteorological measurements, such as precipitation
prediction [1], thunderstorm detection [2] and wind speed
and direction estimation [3]. The analysis of satellite im-
ages can also be an efficient way to assess regional infras-
tructure levels [4, 5], classify crops in agricultural applica-
tions [6, 7], forest characterization [8], scene classification
[9, 10] or to estimate soil moisture [11, 12].

The number of commercial satellites is increasing ex-
ponentially [13] with many of these platforms having ad-
vanced imaging sensors. These satellites have provided
a large number of image datasets available to the public
[14, 15, 16], such as Planet Labs or the European Space
Agency image datasets [17, 18].

Satellite images can be easily forged and manipulated.
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Figure 1. Examples of manipulated images (left), manipulation
masks (center), and manipulation heatmap (right).

Image and video editing tools such as GIMP [19] or Photo-
shop [20] can be used to create realistic forgeries. Machine
learning techniques [21] can quickly manipulate images in
an automatic way, without manual edition. The easy access
to image manipulation methods, coupled with an increasing
amount of digital content, poses a problem for institutions
that rely on satellite imagery. Some examples where satel-
lite images were manipulated in order to bias public opin-
ion include the Malaysia Airlines Flight incident [22], the
nighttime flyovers of India during the Diwali festivals [23]
and the fake Chinese bridge spliced images [24].

Common manipulations include splicing (cropping and
pasting regions from the same or other image sources) and
machine learning-based forgeries, typically generated with
Generative Adversarial Networks (GANs) [21]. While sev-
eral methods that validate the authenticity and integrity
of images and videos have been proposed [25, 26, 27],
verification of an satellite image authenticity still remains
an unsolved problem. The wide range of forgery objects
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Figure 2. Method overview for generating the heatmap and the detection score

and techniques makes their detection challenging. Com-
mon image forensic methods are often developed for im-
ages captured by consumer cameras and fail on satellite im-
agery as they differ greatly in compression schemes, post-
processing, sensors, and color channels. There is a need for
manipulation detection methods that are accurate regardless
of the tampering objects and technologies used for image
capturing.

In this paper, we present a method based on Deep Belief
Networks (DBN) [28] to detect and localize splicing forg-
eries in satellite images. Figure 1 shows the results of the
proposed method. The left column shows the manipulated
images, the middle column contains the ground truth im-
ages of the manipulation and the right column shows the
detection results with the accurate locations and shapes of
the spliced objects. A deep belief network is a probabilis-
tic generative model that is composed of multiple layers of
Restricted Boltzmann Machines (RBM) [29]. The network
learns the distribution of the training data in an unsuper-
vised manner and can be used to detect out-of-distribution
data. The overview of the proposed method is shown in Fig-
ure 2. We first generate a set of image patches cropped from
the original satellite image. The deep belief network takes
the patches as input and outputs the reconstructed patches.
In this paper, we use two stacked Restricted Boltzmann Ma-
chines (RBMs) for the deep belief network. At the next
step, an error map is computed by combining the difference
of the original and reconstructed patches. The final recon-
structed heatmap is obtained by normalizing the error map.
We evaluate our method using a dataset containing splicing
forgeries, described in Section 3. Additionally, we show
that our method can be used as a One-Class classifier and
we evaluate it with the MNIST [30] dataset.

The main contributions of the paper are that we present
a new technique to generate datasets containing satellite
images with splicing manipulations. We also introduce a
method for splicing manipulation detection and localization
using DBNSs that does not require any manipulated data dur-
ing training. We then evaluate our method with multiple

configurations of RBMs.

2. Related Work

The forensics community has described many techniques
to detect various types of forgeries and manipulations of
images. Some of these techniques include detecting tam-
pering by finding double-JPEG compression artifacts [31],
using neural networks with domain adaptation [32] or using
saturation cues [33]. Other techniques focus on detecting
splicing in images [34, 35]. The work presented in [34],
proposes a new feature-based algorithm to detect splicing in
images without any prior information. They extract expres-
sive features that capture traces left locally by in-camera
processing in order to detect manipulations. The work in
[35] proposes a method to extract the camera model fin-
gerprint in which the scene content is largely suppressed
and model-related artifacts are enhanced. We compare our
method performance with both of the previously described
splicing detection methods. Most of these methods fail
when used with satellite imagery. Because the image ac-
quisition process differs between “cameras” and satellites,
methods designed for the former do not transfer properly to
the latter. These differences include satellite sensor tech-
nologies and post-processing steps such as orthorectifica-
tion, radiometric corrections, and compression.

Several techniques to analyze the integrity of satellite
images have been presented using hand-crafted features
[36] and data-driven approaches including both supervised
[37] and unsupervised [38, 39] methods. Manipulate im-
ages are required to use for the supervised techniques dur-
ing training, but not for unsupervised methods. Watermark-
ing techniques have been used for tampering detection [36].
The authors in [37] introduce a supervised approach to de-
tect and localize manipulation in satellite images based on
conditional GAN [40]. It is trained on original and manip-
ulated images in order to map an input image to a forgery
mask. The work in [38] presents a GAN-based method to
encode patches extracted from the input image into a low



dimensional feature vector. Then a one-class support vector
machine (SVM) is used to detect if a patch contains forg-
eries by comparing the distribution of the feature learned
from the original image patches. The Sat-SVDD method
[39] follows a similar approach by using a modified Sup-
port Vector Data Description (SVDD) [41] to detect splic-
ing forgeries. Sat-SVDD is a kernel-based one-class classi-
fication method that performs minimum volume estimation
with a neural network to extract the statistical regularities of
the dataset. First, the SVDD encodes each image patch to a
latent space. Then, it aims to minimize the distance between
each patch and a predefined center point in the latent space.
By doing so, the model forces the latent vector of original
images inside a hypersphere. At testing, the latent vectors
outside the hypersphere are considered as forged data.

In this paper, we use deep belief networks (DBN) [42].
Deep belief networks are composed of stacked layers of re-
stricted Boltzmann machines. [43]. Boltzmann machines
are based on Hopfield networks [44, 45] which are recurrent
neural networks where each input node (or “visible unit”)
is symmetrically interconnected. These networks can learn
the data distribution from a limited set of training exam-
ples and reconstruct noisy or incomplete samples through
an optimization process of “energy” minimization. Boltz-
mann machines follow the same structure as Hopfield net-
works but add a hidden layer connected to the visible layer.
The size and computation of these networks increase ex-
ponentially concerning the data dimensionality because all
nodes are interconnected. In order to reduce such complex-
ity, [46] introduces a training process based on contrastive
divergence minimization. Furthermore, [28] presents the
restricted Boltzmann machine (RBM) that reduces the net-
work complexity and training time by removing the connec-
tions between nodes (or units) of the same layer. Many vari-
ations of the restricted Boltzmann machine have been pre-
sented. Some examples include the higher-order Boltzmann
machine [47], the conditional Boltzmann machine [45] and
the mean field Boltzmann [48] machine. While regular
Boltzmann machines are parametrized with a Bernoulli dis-
tribution, many different distributions, including Gaussian
have been explored [29, 49, 50]. Furthermore, several train-
ing methodologies [42, 51, 52] has been presented to reduce
the time complexity of the training process. More recent
work combine DBNs with modern networks such as GANs
[53].

3. Dataset

In this paper, we use satellite imagery from the region
of Slovenia taken from the Sentinel program [54]. A to-
tal of 293 orthorectified images with an image resolution of
1000 x 1000 pixels are collected. We use 100 of the 293 or-
thorectified images to create manipulated images. 19 differ-
ent objects are spliced into the 100 images generating a total

Figure 3. Manipulated dataset examples: two manipulated images
with spliced objects (left) and their respective ground truth masks
(right).

of 500 manipulated images with their corresponding manip-
ulation ground truth masks. The 19 objects include clouds,
planes, smoke and drones images. Figure 3 shows some ex-
amples from the manipulated dataset. As shown in Figure 4,
we splice the objects in different locations, rotation angles
and sizes including 16 x 16, 32 x 32, 64 x 64, 128 x 128,
and 256 x 256 pixels. Therefore, the forgery dataset con-
tains a total of 693 images: 193 original images and 500
manipulated images (generated from 100 original images).
We then split the dataset into training and testing sets. The
training dataset consist of 98 original images from the orig-
inal orthorectified images and the testing dataset consists of
595 images: 95 original images and 500 manipulated im-
ages with their corresponding ground truth masks.

4. Method
4.1. Splicing Detection

Our approach has three steps: (1) patch extraction and
normalization, (2) patch reconstruction with DBN, and (3)
manipulation heatmap and manipulation score estimation as
shown in Figure 2.

Our method starts by cropping overlapping patches of
64 x 64 pixels from the full-resolution input images. The
image patches are obtained by splitting the full-resolution
image into a set of overlapping patches with a stride of 32
and 8 pixels during training and testing respectively. We
use a larger stride for training to reduce the computational
time and a smaller stride during testing to have a more ac-
curate estimate. Finally, each patch is normalized to be in
the range of O in 1.

Then, the extracted patches are used as input to a DBN.



The DBN learns to reconstruct the input patch. We assume
that patches from original (non-manipulated) images have
different statistical properties than patches containing splic-
ing manipulations. Therefore, we train the DBN only with
original images. By doing so, the model will properly en-
code and reconstruct patches from orginal images but will
fail with forged patches.

Finally, we compute the mean square error (MSE) be-
tween the input patch and the reconstructed patch. Patches
from original (non-manipulated) images will be properly re-
constructed, and therefore the reconstruction error will be
small. However, patches with splicing manipulations will
be reconstructed poorly leading to a higher MSE. We cre-
ate a manipulation heatmap representing the probability of
containing a splice manipulation by combining the MSE at
each patch. We average the MSE properly to take into ac-
count the overlap within patches. Once the manipulation
heatmap has been estimated, we follow the same approach
as in [39] to produce a localization mask of an anomaly by
thresholding.

For the anomaly detection task, we compute a detection
score to determine the existence of anomaly given a manip-
ulation heatmap. Following the work presented in [39], we
compute a detection score as:

max(M) — ppn

d(M) = 1

ZmEM(“"*#M)Q ’
max(|M])
Where M is the estimated manipulation heatmap com-

posed by N pixels, punr = D, 7 1S the average mask
value, and max(M) is the maximum value of M. For a se-
lected threshold 7', our method considers an input image as
manipulated if d(M) > T and original (non-manipulated)
otherwise.

4.2. Network Architecture

We use a DBN composed by two stacked Restricted
Boltzmann Machines (RBM). The first RBM takes the im-
age patches as input and outputs a feature vector also, re-
ferred as hidden representation, of size 2916. The second
RBM takes as input the hidden representation of the first
layer and outputs a final hidden representation of the same
size as input. By enforcing a hidden representation with
lower dimensionality than the input patch, the network is
forced to learn compact features that contain the statistical
information of the original image which is used for the im-
age reconstruction task. Each RBM is specified by the dis-
tributions used in their visible (input) and hidden layers. We
examined three different settings for the RBMs: Gaussian-
Bernoulli RBM [49], Gaussian-Gaussian RBM [55] and
Uniform-Uniform RBM.

The Gaussian-Bernoulli RBM [49] has been used in pre-
vious work [55] and has been shown that it is able to learn

features that resemble those learned by the Independent
Component Analysis (ICA) algorithm [56]. In this RBM
the input data is modeled with a Gaussian distribution and
the hidden layer is modeled by a Bernoulli distribution. The
conditional probability of the visible layer, given the hidden
layer, is defined by the following Normal distribution:

p(vh) = N (hWT ta, 1) )

Where h are the values of the hidden layer, W the linear
parameters, a the bias term, and I the identity matrix. The
conditional probability of the hidden layer given the visible
layer is defined by the following Bernoulli distribution:

p(h‘V) = H U(WiV + bi)hi’(l - U(WiV + bi>)1_hi (3)

Where w; and b; are the ith row vector of the linear
and the bias terms, and o(.) is the Sigmoid function. By
modeling the input with a Normal distribution, it can rep-
resent data with a wide range of values (such as images).
The Bernoulli distribution enforces a binary (and therefore
sparse) representation of the hidden layer [57].

The Gaussian-Gaussian RBM [55] uses Normal distribu-
tions to model both visible and hidden layers. Such method
has been shown to be able to learn features that resemble
Principal Component Analysis (PCA) features [58]. The
conditional probability of the visible layer, given the hidden
layer, is represented in the same way as in Equation 2. The
conditional probability of the hidden layer given the visible
layer is:

p(hlv) =N (Wv + b, 1) 4)

Where v are the values of the visible layer, W the linear
parameters, b the bias term, and I the identity matrix. By
modelling both visible and hidden layer with a Normal dis-
tribution, the network is able to learn a dense representation
of the images.

Additionally, we explore using another setting, the
Uniform-Uniform RBM. In this network, both visible and
hidden layer are modeled with uniform distributions. The
conditional probability of the visible layer, given the hidden
layer is:

p(vlh) =U ()\1 (hWT + a) A (hWT + a)) (5)

The conditional probability of the hidden layer given the
visible layer is:

p(hlv) = U (A (Wv +b) Ao (Wy D)) (6)

Where v are the values of the visible layer, h are the
values of the hidden layer, W the linear parameters, and
a and b the bias terms. We empirically select the values
A1 and Ao that provide a low reconstruction error on the
training set. In this work we use A; = 2 and Ay = 5.
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Figure 4. An overview of how the manipulated image dataset is created

4.3. One-Class Classifier

The proposed method can be used for the one-class clas-
sification task. In a one-class classification problem, the
classifier learns important features to identify a known tar-
get class based on a training set containing only images
of such class. During testing, the classifier distinguishes
between images of the target class and images from other
unknown previously unseen classes, based on the features
learned during training. Such an approach is especially use-
ful for outlier and anomaly detection.

In order to evaluate our method as a one-class classifier,
we train and test it to perform as handwritten digit recog-
nition with the MNIST dataset [30]. In this scenario, the
network only has access to images of one target digit dur-
ing training. Then, the network has to distinguish between
the target digit and other digits never seen during training.
When performing a one-class classification, we do not di-
vide the image within patches but use the DBN to recon-
struct the complete input image. In this setting, the manipu-
lation heatmap M and the manipulation score d(M) are not
estimated. Instead, the reconstruction error is directly used
to classify an image as the known class or not. If the re-
construction error is below a chosen threshold 7', the image
is classified as the known class. Section 5 presents some
experiments of one-class classification with MNIST dataset
[30].

5. Experimental Results

We evaluate our method as a splicing detection and local-
ization method with the dataset presented in Section 3. We
also examine the proposed method of the one-class clas-
sification task with the MNIST [30] dataset that contains
images of handwritten digits from 0-9.

We train and test our DBN based on Uniform-Uniform
RBMs (UU-DBN) with the complete training splicing ma-
nipulation datasets and compare it with previous work.
Note that the UU-DBN is trained only with original im-
ages and no manipulated images were used during train-
ing. We compute the ROC curves for detection and Pre-
cision/Recall curves for localization tasks by changing the

threshold used to the estimated manipulation mask and ma-
nipulation score. Note that when evaluating the localization
performance, there is a larger number of original than ma-
nipulated pixels. Therefore we use the AUC of the Preci-
sion/Recall curve, which is a balanced metric, to evaluate
the localization performance. Table 1 presents our results
compared with previous methods. Different ROC and Pre-
cision/Recall are shown for each of the different sizes of the
splice objects used. In other words, ROC;¢ is the ROC for
manipulated images with spliced objects of size 16 x 16. We
can observe that UU-DBN provides similar or better results
compared to previous methods. It is able to correctly de-
tect and localize small splicing forgeries. The method pro-
vides a better P/R localization scores, specifically for forg-
eries with sizes from 16 x 16 pixels to 128 x 128 pixels.
Figure 5 provides some visual examples of the estimated
manipulation heatmaps for each of the methods. The esti-
mated manipulation heatmaps show that the method is able
to properly distinguish between splicing manipulations and
the background image.

Additionally, we train and test four different DBNs
as one-class classifiers with MNIST images. We use
DBNs based on RBNs with Bernoulli-Bernoulli (BB-
DBN), Gaussian-Bernoulli (GB-DBN), Gaussian-Gaussian
(GG-DBN) and Uniform-Uniform (UU-DBN) distribu-
tions. We compare our results with previous one-class clas-
sification methods. Table 2 shows the AUC scores for each
method. We can observe that the presented method provides
competitive results with previous methods and that a DBN
based on Uniform-Uniform distribution provides higher ac-
curacy. The Gaussian-Bernoulli, Gaussian-Gaussian and
Uniform-Uniform DBNs provide a similar AUC score while
the Bernoulli-Bernoulli DBN provides a lower score. The
binary representation used in the input and hidden layers of
the Bernoulli-Bernoulli DBN provides features less flexible
that in turn provide worse classification performance.

6. Conclusions

Satellite image manipulation detection is a challenging
task due to the wide range of manipulations that can be
present and the large variety of imaging technology used in
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Figure 5. From rows left to right: input images, ground truth masks, Cozzolino er al [34], Yarlagadda et al [38], Horvith et al [39],
Cozzolino et al [35] and UU-DBN.

Table 1. AUC scores (%) for the detection and localization task (ROC and P/R metrics). The subscript denotes the manipulation size. Best

performing methods are bold.

Detection
Cozzolino et al [34] Yarlagadda et al [38] Horvatheral [39] Cozzolino etal [35] UU-DBN
ROC 4 49.7 50.7 45.3 47.7 58.2
ROC39 50.4 59.6 57.7 47.2 68.5
ROCg4 68.6 75.9 80.0 50.8 82.6
ROC 25 84.8 81.5 87.4 56.7 88.3
ROC55¢ 86.2 83.8 89.9 55.4 89.6
Localization
Cozzolino et al [34] Yarlagadda ef al [38] Horvéth etal [39] Cozzolino et al [35] UU-DBN
P/Ryg 0.0 0.0 0.1 0.0 7.5
P/R3o 0.5 0.3 1.4 0.1 13.3
P/Re, 7.8 2.5 18.1 2.5 31.7
P/R12g 31.2 18.3 34.4 4.6 40.5
P/Ros6 48.5 37.8 55.7 7.8 48.8
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Table 2. AUC scores (%) for the detection task Receiver operating characteristic (ROC), The best performing DBN configuration is marked
in blue. The methods with best performance are bold.

Class BB-DBN GB-DBN GG-DBN UU-DBN OCSVM DCAE ONE-CLASS RCAE
/SVDD [59] [60] DEEP SVDD [61] [62]
0 97.04+0.1 99.14+£0.0 99.14+0.0 99.34+0.1 97.0+£0.7 97.6+0.7 972+ 1.2 99.81+0.0
1 99.74+0.0 99.840.0 99.81+0.0 99.8+0.1 98.6 £0.8 98.3+£0.6 97.14+1.5 99.81+0.0
2 799+03 864402 86.5+£0.1 89.5+0.1 78.9 +2.1 85.4+2.4 97.3+0.8 98.8+0.6
3 85.2+0.2 91.3+0.1 91.4+£0.1 93.5+0.1 84.3+2.6 86.7+0.9 97.3+ 1.0 99.3+0.0
4 90.0£0.2 9514+£0.1 95.2+£0.1 96.1£0.0 93.6£1.5 86.5+£2.0 97.3+1.1 99.21+0.0
5 86.2+0.2 9294+0.1 93.0£0.1 94.7+0.1 74.6 £4.5 T782+£2.7 97.1+£1.2 99.21+0.0
6 949+0.1 983+0.0 983+£0.0 98.74+0.1 95.44+1.2 94.6+£0.5 96.7 £ 1.3 99.8+1.0
7 93.84+0.1 95.64+0.1 95.84+0.1 96.4+0.0 91.9+15 923+1.0 97.4+1.0 99.2+0.1
8 78.4+0.1 844401 85.1+£0.1 87440.1 879+15 86.5+1.6 97.24+0.6 98.5+2.0
9 90.0£0.1 9454+0.1 945+£0.1 953+0.1 93.3+£1.2 904+1.8 96.6 £ 1.5 99.0+1.3
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