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Abstract

Satellite images are more accessible with the increase

of commercial satellites being orbited. These images are

used in a wide range of applications including agricultural

management, meteorological prediction, damage assess-

ment from natural disasters and cartography. Image manip-

ulation tools including both manual editing tools and auto-

mated techniques can be easily used to tamper and modify

satellite imagery. One type of manipulation that we exam-

ine in this paper is the splice attack where a region from

one image (or the same image) is inserted (“spliced”) into

an image. In this paper, we present a one-class detection

method based on deep belief networks (DBN) for splicing

detection and localization without using any prior knowl-

edge of the manipulations. We evaluate the performance

of our approach and show that it provides good detection

and localization accuracies in small forgeries compared to

other approaches.

1. Introduction

Satellite images can be used in many applications in-

cluding meteorological measurements, such as precipitation

prediction [1], thunderstorm detection [2] and wind speed

and direction estimation [3]. The analysis of satellite im-

ages can also be an efficient way to assess regional infras-

tructure levels [4, 5], classify crops in agricultural applica-

tions [6, 7], forest characterization [8], scene classification

[9, 10] or to estimate soil moisture [11, 12].

The number of commercial satellites is increasing ex-

ponentially [13] with many of these platforms having ad-

vanced imaging sensors. These satellites have provided

a large number of image datasets available to the public

[14, 15, 16], such as Planet Labs or the European Space

Agency image datasets [17, 18].

Satellite images can be easily forged and manipulated.

Figure 1. Examples of manipulated images (left), manipulation

masks (center), and manipulation heatmap (right).

Image and video editing tools such as GIMP [19] or Photo-

shop [20] can be used to create realistic forgeries. Machine

learning techniques [21] can quickly manipulate images in

an automatic way, without manual edition. The easy access

to image manipulation methods, coupled with an increasing

amount of digital content, poses a problem for institutions

that rely on satellite imagery. Some examples where satel-

lite images were manipulated in order to bias public opin-

ion include the Malaysia Airlines Flight incident [22], the

nighttime flyovers of India during the Diwali festivals [23]

and the fake Chinese bridge spliced images [24].

Common manipulations include splicing (cropping and

pasting regions from the same or other image sources) and

machine learning-based forgeries, typically generated with

Generative Adversarial Networks (GANs) [21]. While sev-

eral methods that validate the authenticity and integrity

of images and videos have been proposed [25, 26, 27],

verification of an satellite image authenticity still remains

an unsolved problem. The wide range of forgery objects



Figure 2. Method overview for generating the heatmap and the detection score

and techniques makes their detection challenging. Com-

mon image forensic methods are often developed for im-

ages captured by consumer cameras and fail on satellite im-

agery as they differ greatly in compression schemes, post-

processing, sensors, and color channels. There is a need for

manipulation detection methods that are accurate regardless

of the tampering objects and technologies used for image

capturing.

In this paper, we present a method based on Deep Belief

Networks (DBN) [28] to detect and localize splicing forg-

eries in satellite images. Figure 1 shows the results of the

proposed method. The left column shows the manipulated

images, the middle column contains the ground truth im-

ages of the manipulation and the right column shows the

detection results with the accurate locations and shapes of

the spliced objects. A deep belief network is a probabilis-

tic generative model that is composed of multiple layers of

Restricted Boltzmann Machines (RBM) [29]. The network

learns the distribution of the training data in an unsuper-

vised manner and can be used to detect out-of-distribution

data. The overview of the proposed method is shown in Fig-

ure 2. We first generate a set of image patches cropped from

the original satellite image. The deep belief network takes

the patches as input and outputs the reconstructed patches.

In this paper, we use two stacked Restricted Boltzmann Ma-

chines (RBMs) for the deep belief network. At the next

step, an error map is computed by combining the difference

of the original and reconstructed patches. The final recon-

structed heatmap is obtained by normalizing the error map.

We evaluate our method using a dataset containing splicing

forgeries, described in Section 3. Additionally, we show

that our method can be used as a One-Class classifier and

we evaluate it with the MNIST [30] dataset.

The main contributions of the paper are that we present

a new technique to generate datasets containing satellite

images with splicing manipulations. We also introduce a

method for splicing manipulation detection and localization

using DBNs that does not require any manipulated data dur-

ing training. We then evaluate our method with multiple

configurations of RBMs.

2. Related Work

The forensics community has described many techniques

to detect various types of forgeries and manipulations of

images. Some of these techniques include detecting tam-

pering by finding double-JPEG compression artifacts [31],

using neural networks with domain adaptation [32] or using

saturation cues [33]. Other techniques focus on detecting

splicing in images [34, 35]. The work presented in [34],

proposes a new feature-based algorithm to detect splicing in

images without any prior information. They extract expres-

sive features that capture traces left locally by in-camera

processing in order to detect manipulations. The work in

[35] proposes a method to extract the camera model fin-

gerprint in which the scene content is largely suppressed

and model-related artifacts are enhanced. We compare our

method performance with both of the previously described

splicing detection methods. Most of these methods fail

when used with satellite imagery. Because the image ac-

quisition process differs between “cameras” and satellites,

methods designed for the former do not transfer properly to

the latter. These differences include satellite sensor tech-

nologies and post-processing steps such as orthorectifica-

tion, radiometric corrections, and compression.

Several techniques to analyze the integrity of satellite

images have been presented using hand-crafted features

[36] and data-driven approaches including both supervised

[37] and unsupervised [38, 39] methods. Manipulate im-

ages are required to use for the supervised techniques dur-

ing training, but not for unsupervised methods. Watermark-

ing techniques have been used for tampering detection [36].

The authors in [37] introduce a supervised approach to de-

tect and localize manipulation in satellite images based on

conditional GAN [40]. It is trained on original and manip-

ulated images in order to map an input image to a forgery

mask. The work in [38] presents a GAN-based method to

encode patches extracted from the input image into a low



dimensional feature vector. Then a one-class support vector

machine (SVM) is used to detect if a patch contains forg-

eries by comparing the distribution of the feature learned

from the original image patches. The Sat-SVDD method

[39] follows a similar approach by using a modified Sup-

port Vector Data Description (SVDD) [41] to detect splic-

ing forgeries. Sat-SVDD is a kernel-based one-class classi-

fication method that performs minimum volume estimation

with a neural network to extract the statistical regularities of

the dataset. First, the SVDD encodes each image patch to a

latent space. Then, it aims to minimize the distance between

each patch and a predefined center point in the latent space.

By doing so, the model forces the latent vector of original

images inside a hypersphere. At testing, the latent vectors

outside the hypersphere are considered as forged data.

In this paper, we use deep belief networks (DBN) [42].

Deep belief networks are composed of stacked layers of re-

stricted Boltzmann machines. [43]. Boltzmann machines

are based on Hopfield networks [44, 45] which are recurrent

neural networks where each input node (or “visible unit”)

is symmetrically interconnected. These networks can learn

the data distribution from a limited set of training exam-

ples and reconstruct noisy or incomplete samples through

an optimization process of “energy” minimization. Boltz-

mann machines follow the same structure as Hopfield net-

works but add a hidden layer connected to the visible layer.

The size and computation of these networks increase ex-

ponentially concerning the data dimensionality because all

nodes are interconnected. In order to reduce such complex-

ity, [46] introduces a training process based on contrastive

divergence minimization. Furthermore, [28] presents the

restricted Boltzmann machine (RBM) that reduces the net-

work complexity and training time by removing the connec-

tions between nodes (or units) of the same layer. Many vari-

ations of the restricted Boltzmann machine have been pre-

sented. Some examples include the higher-order Boltzmann

machine [47], the conditional Boltzmann machine [45] and

the mean field Boltzmann [48] machine. While regular

Boltzmann machines are parametrized with a Bernoulli dis-

tribution, many different distributions, including Gaussian

have been explored [29, 49, 50]. Furthermore, several train-

ing methodologies [42, 51, 52] has been presented to reduce

the time complexity of the training process. More recent

work combine DBNs with modern networks such as GANs

[53].

3. Dataset

In this paper, we use satellite imagery from the region

of Slovenia taken from the Sentinel program [54]. A to-

tal of 293 orthorectified images with an image resolution of

1000×1000 pixels are collected. We use 100 of the 293 or-

thorectified images to create manipulated images. 19 differ-

ent objects are spliced into the 100 images generating a total

Figure 3. Manipulated dataset examples: two manipulated images

with spliced objects (left) and their respective ground truth masks

(right).

of 500 manipulated images with their corresponding manip-

ulation ground truth masks. The 19 objects include clouds,

planes, smoke and drones images. Figure 3 shows some ex-

amples from the manipulated dataset. As shown in Figure 4,

we splice the objects in different locations, rotation angles

and sizes including 16× 16, 32× 32, 64× 64, 128× 128,

and 256 × 256 pixels. Therefore, the forgery dataset con-

tains a total of 693 images: 193 original images and 500

manipulated images (generated from 100 original images).

We then split the dataset into training and testing sets. The

training dataset consist of 98 original images from the orig-

inal orthorectified images and the testing dataset consists of

595 images: 95 original images and 500 manipulated im-

ages with their corresponding ground truth masks.

4. Method

4.1. Splicing Detection

Our approach has three steps: (1) patch extraction and

normalization, (2) patch reconstruction with DBN, and (3)

manipulation heatmap and manipulation score estimation as

shown in Figure 2.

Our method starts by cropping overlapping patches of

64 × 64 pixels from the full-resolution input images. The

image patches are obtained by splitting the full-resolution

image into a set of overlapping patches with a stride of 32

and 8 pixels during training and testing respectively. We

use a larger stride for training to reduce the computational

time and a smaller stride during testing to have a more ac-

curate estimate. Finally, each patch is normalized to be in

the range of 0 in 1.

Then, the extracted patches are used as input to a DBN.



The DBN learns to reconstruct the input patch. We assume

that patches from original (non-manipulated) images have

different statistical properties than patches containing splic-

ing manipulations. Therefore, we train the DBN only with

original images. By doing so, the model will properly en-

code and reconstruct patches from orginal images but will

fail with forged patches.

Finally, we compute the mean square error (MSE) be-

tween the input patch and the reconstructed patch. Patches

from original (non-manipulated) images will be properly re-

constructed, and therefore the reconstruction error will be

small. However, patches with splicing manipulations will

be reconstructed poorly leading to a higher MSE. We cre-

ate a manipulation heatmap representing the probability of

containing a splice manipulation by combining the MSE at

each patch. We average the MSE properly to take into ac-

count the overlap within patches. Once the manipulation

heatmap has been estimated, we follow the same approach

as in [39] to produce a localization mask of an anomaly by

thresholding.

For the anomaly detection task, we compute a detection

score to determine the existence of anomaly given a manip-

ulation heatmap. Following the work presented in [39], we

compute a detection score as:

d(M) =
max(M)− µM
√∑

x∈M
(x−µM )2

max(|M |)

, (1)

Where M is the estimated manipulation heatmap com-

posed by N pixels, µM =
∑

x∈M
x
N

is the average mask

value, and max(M) is the maximum value of M . For a se-

lected threshold T , our method considers an input image as

manipulated if d(M) > T and original (non-manipulated)

otherwise.

4.2. Network Architecture

We use a DBN composed by two stacked Restricted

Boltzmann Machines (RBM). The first RBM takes the im-

age patches as input and outputs a feature vector also, re-

ferred as hidden representation, of size 2916. The second

RBM takes as input the hidden representation of the first

layer and outputs a final hidden representation of the same

size as input. By enforcing a hidden representation with

lower dimensionality than the input patch, the network is

forced to learn compact features that contain the statistical

information of the original image which is used for the im-

age reconstruction task. Each RBM is specified by the dis-

tributions used in their visible (input) and hidden layers. We

examined three different settings for the RBMs: Gaussian-

Bernoulli RBM [49], Gaussian-Gaussian RBM [55] and

Uniform-Uniform RBM.

The Gaussian-Bernoulli RBM [49] has been used in pre-

vious work [55] and has been shown that it is able to learn

features that resemble those learned by the Independent

Component Analysis (ICA) algorithm [56]. In this RBM

the input data is modeled with a Gaussian distribution and

the hidden layer is modeled by a Bernoulli distribution. The

conditional probability of the visible layer, given the hidden

layer, is defined by the following Normal distribution:

p(v|h) = N
(

hW
T + a, I

)

(2)

Where h are the values of the hidden layer, W the linear

parameters, a the bias term, and I the identity matrix. The

conditional probability of the hidden layer given the visible

layer is defined by the following Bernoulli distribution:

p(h|v) =
∏

i

σ(wiv + bi)
hi(1− σ(wiv + bi))

1−hi (3)

Where wi and bi are the ith row vector of the linear

and the bias terms, and σ(.) is the Sigmoid function. By

modeling the input with a Normal distribution, it can rep-

resent data with a wide range of values (such as images).

The Bernoulli distribution enforces a binary (and therefore

sparse) representation of the hidden layer [57].

The Gaussian-Gaussian RBM [55] uses Normal distribu-

tions to model both visible and hidden layers. Such method

has been shown to be able to learn features that resemble

Principal Component Analysis (PCA) features [58]. The

conditional probability of the visible layer, given the hidden

layer, is represented in the same way as in Equation 2. The

conditional probability of the hidden layer given the visible

layer is:

p(h|v) = N (Wv + b, I) (4)

Where v are the values of the visible layer, W the linear

parameters, b the bias term, and I the identity matrix. By

modelling both visible and hidden layer with a Normal dis-

tribution, the network is able to learn a dense representation

of the images.

Additionally, we explore using another setting, the

Uniform-Uniform RBM. In this network, both visible and

hidden layer are modeled with uniform distributions. The

conditional probability of the visible layer, given the hidden

layer is:

p(v|h) = U
(

λ1

(

hW
T + a

)

, λ2

(

hW
T + a

))

(5)

The conditional probability of the hidden layer given the

visible layer is:

p(h|v) = U (λ1 (Wv + b) , λ2 (Wv + b)) (6)

Where v are the values of the visible layer, h are the

values of the hidden layer, W the linear parameters, and

a and b the bias terms. We empirically select the values

λ1 and λ2 that provide a low reconstruction error on the

training set. In this work we use λ1 = 3
4 and λ2 = 5

4 .



Figure 4. An overview of how the manipulated image dataset is created

4.3. One­Class Classifier

The proposed method can be used for the one-class clas-

sification task. In a one-class classification problem, the

classifier learns important features to identify a known tar-

get class based on a training set containing only images

of such class. During testing, the classifier distinguishes

between images of the target class and images from other

unknown previously unseen classes, based on the features

learned during training. Such an approach is especially use-

ful for outlier and anomaly detection.

In order to evaluate our method as a one-class classifier,

we train and test it to perform as handwritten digit recog-

nition with the MNIST dataset [30]. In this scenario, the

network only has access to images of one target digit dur-

ing training. Then, the network has to distinguish between

the target digit and other digits never seen during training.

When performing a one-class classification, we do not di-

vide the image within patches but use the DBN to recon-

struct the complete input image. In this setting, the manipu-

lation heatmap M and the manipulation score d(M) are not

estimated. Instead, the reconstruction error is directly used

to classify an image as the known class or not. If the re-

construction error is below a chosen threshold T , the image

is classified as the known class. Section 5 presents some

experiments of one-class classification with MNIST dataset

[30].

5. Experimental Results

We evaluate our method as a splicing detection and local-

ization method with the dataset presented in Section 3. We

also examine the proposed method of the one-class clas-

sification task with the MNIST [30] dataset that contains

images of handwritten digits from 0-9.

We train and test our DBN based on Uniform-Uniform

RBMs (UU-DBN) with the complete training splicing ma-

nipulation datasets and compare it with previous work.

Note that the UU-DBN is trained only with original im-

ages and no manipulated images were used during train-

ing. We compute the ROC curves for detection and Pre-

cision/Recall curves for localization tasks by changing the

threshold used to the estimated manipulation mask and ma-

nipulation score. Note that when evaluating the localization

performance, there is a larger number of original than ma-

nipulated pixels. Therefore we use the AUC of the Preci-

sion/Recall curve, which is a balanced metric, to evaluate

the localization performance. Table 1 presents our results

compared with previous methods. Different ROC and Pre-

cision/Recall are shown for each of the different sizes of the

splice objects used. In other words, ROC16 is the ROC for

manipulated images with spliced objects of size 16×16. We

can observe that UU-DBN provides similar or better results

compared to previous methods. It is able to correctly de-

tect and localize small splicing forgeries. The method pro-

vides a better P/R localization scores, specifically for forg-

eries with sizes from 16 × 16 pixels to 128 × 128 pixels.

Figure 5 provides some visual examples of the estimated

manipulation heatmaps for each of the methods. The esti-

mated manipulation heatmaps show that the method is able

to properly distinguish between splicing manipulations and

the background image.

Additionally, we train and test four different DBNs

as one-class classifiers with MNIST images. We use

DBNs based on RBNs with Bernoulli-Bernoulli (BB-

DBN), Gaussian-Bernoulli (GB-DBN), Gaussian-Gaussian

(GG-DBN) and Uniform-Uniform (UU-DBN) distribu-

tions. We compare our results with previous one-class clas-

sification methods. Table 2 shows the AUC scores for each

method. We can observe that the presented method provides

competitive results with previous methods and that a DBN

based on Uniform-Uniform distribution provides higher ac-

curacy. The Gaussian-Bernoulli, Gaussian-Gaussian and

Uniform-Uniform DBNs provide a similar AUC score while

the Bernoulli-Bernoulli DBN provides a lower score. The

binary representation used in the input and hidden layers of

the Bernoulli-Bernoulli DBN provides features less flexible

that in turn provide worse classification performance.

6. Conclusions

Satellite image manipulation detection is a challenging

task due to the wide range of manipulations that can be

present and the large variety of imaging technology used in



Figure 5. From rows left to right: input images, ground truth masks, Cozzolino et al [34], Yarlagadda et al [38], Horváth et al [39],

Cozzolino et al [35] and UU-DBN.

Table 1. AUC scores (%) for the detection and localization task (ROC and P/R metrics). The subscript denotes the manipulation size. Best

performing methods are bold.

Detection

Cozzolino et al [34] Yarlagadda et al [38] Horváth et al [39] Cozzolino et al [35] UU-DBN

ROC16 49.7 50.7 45.3 47.7 58.2

ROC32 50.4 59.6 57.7 47.2 68.5

ROC64 68.6 75.9 80.0 50.8 82.6

ROC128 84.8 81.5 87.4 56.7 88.3

ROC256 86.2 83.8 89.9 55.4 89.6

Localization

Cozzolino et al [34] Yarlagadda et al [38] Horváth et al [39] Cozzolino et al [35] UU-DBN

P/R16 0.0 0.0 0.1 0.0 7.5

P/R32 0.5 0.3 1.4 0.1 13.3

P/R64 7.8 2.5 18.1 2.5 31.7

P/R128 31.2 18.3 34.4 4.6 40.5

P/R256 48.5 37.8 55.7 7.8 48.8

orbiting satellites. In this paper we present an unsupervised

splicing manipulation and one-class classification method

based on deep belief networks. Without any prior knowl-

edge from the manipulation information during the train-

ing process, the method provides competitive results com-

pared to the previous work, especially with small splicing

manipulations. We also evaluate multiple configurations of

our network in a one-class classification framework provid-

ing competitive results compared to the common one-class

classification methods. To improve the performance of our

proposed method we plan to examine more different struc-

tures of Deep Belief Networks and Restricted Boltzmann

Machines. Furthermore, we plan to examine other type of

generative methods such as variational autoencoders.
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Table 2. AUC scores (%) for the detection task Receiver operating characteristic (ROC), The best performing DBN configuration is marked

in blue. The methods with best performance are bold.

Class BB-DBN GB-DBN GG-DBN UU-DBN OCSVM DCAE ONE-CLASS RCAE

/SVDD [59] [60] DEEP SVDD [61] [62]

0 97.0± 0.1 99.1± 0.0 99.1± 0.0 99.3± 0.1 97.0± 0.7 97.6± 0.7 97.2± 1.2 99.8±0.0

1 99.7± 0.0 99.8±0.0 99.8±0.0 99.8±0.1 98.6± 0.8 98.3± 0.6 97.1± 1.5 99.8±0.0

2 79.9± 0.3 86.4± 0.2 86.5± 0.1 89.5± 0.1 78.9± 2.1 85.4± 2.4 97.3± 0.8 98.8±0.6

3 85.2± 0.2 91.3± 0.1 91.4± 0.1 93.5± 0.1 84.3± 2.6 86.7± 0.9 97.3± 1.0 99.3±0.0

4 90.0± 0.2 95.1± 0.1 95.2± 0.1 96.1± 0.0 93.6± 1.5 86.5± 2.0 97.3± 1.1 99.2±0.0

5 86.2± 0.2 92.9± 0.1 93.0± 0.1 94.7± 0.1 74.6± 4.5 78.2± 2.7 97.1± 1.2 99.2±0.0

6 94.9± 0.1 98.3± 0.0 98.3± 0.0 98.7± 0.1 95.4± 1.2 94.6± 0.5 96.7± 1.3 99.8±1.0

7 93.8± 0.1 95.6± 0.1 95.8± 0.1 96.4± 0.0 91.9± 1.5 92.3± 1.0 97.4± 1.0 99.2±0.1

8 78.4± 0.1 84.4± 0.1 85.1± 0.1 87.4± 0.1 87.9± 1.5 86.5± 1.6 97.2± 0.6 98.5±2.0

9 90.0± 0.1 94.5± 0.1 94.5± 0.1 95.3± 0.1 93.3± 1.2 90.4± 1.8 96.6± 1.5 99.0±1.3
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