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Abstract

Manipulated videos are frequently an important part of

misinformation campaigns. While much attention has re-

cently focused on sophisticated threats such as deepfakes,

the majority of videos used in misinformation campaigns

have been created using relatively simple manipulations

that can be produced by commonly available editing soft-

ware. One important manipulation that has been used

in previous misinformation attempts is altering the speed

of a video. In the previous 18 months, widely circulated

videos have had their speed manipulated to make Speaker

of the House Nancy Pelosi appear disoriented, and to make

reporter Jim Acosta appear to act aggressively toward a

White House staffer. Currently, however, there are no ap-

proaches to accurately detect video speed manipulation that

can be deployed at scale. In this paper, we propose new al-

gorithms to detect video speed manipulation and to estimate

the rate by which a video’s speed has been modified. To do

this, we identify a new trace left by video speed manipula-

tion and show how it can be extracted from a video. Our ap-

proaches to trace extraction, speed manipulation detection,

and manipulation rate estimation are computationally effi-

cient and can be run in a matter of milliseconds. We present

experimental results that show that our proposed approach

can detect manipulated videos with up to 99% accuracy.

1. Introduction

Videos have become a integral part of modern commu-

nication. Websites, such as YouTube and Facebook, as well

as apps like Instagram and Twitter, allow users to instantly

share videos with others across the world. However, is be-

coming increasingly easier to edit videos. Particularly, it is
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easy for some users to create maliciously edited videos. As

a result, fake videos and misinformation are shared faster

than they can be verified. This is causing the authenticity of

many videos to be called into question [28, 4].

Recently, Deepfakes have emerged as a new threat, gar-

nering attention from both researchers and the news me-

dia [17]. Through the use of deep learning techniques

like Generative Adversarial Networks, an attacker can arti-

ficially create a visually realistic video of a target by swap-

ping the face in one video, with another face [23, 3, 25].

In response, several methods have been developed to detect

and combat these deepfake videos [30, 9, 18, 2]. Deepfakes

are a very powerful and dangerous technology, however,

their use is still limited. Creating fake videos usually re-

quires a skilled attacker, and most deepfake algorithms also

require a large amount of data, including images and videos,

of the target.

While much research is targeted at these advanced

techniques, longstanding, simpler techniques are left

unchecked, with no means of detection. Less advanced

video editing manipulations such as cropping, splicing, and

speed adjustment can still result in effective attacks. These

attacks can be performed by most video editing software.

One such attack, video speed adjustment, has been used

in two separate instances over the last 2 years [11, 10]. A

video of Speaker of the House Nancy Pelosi was shared

which appeared to show he slurring her words and acting

strangely [11]. It was not until later that this video was

confirmed to be manipulated. The video and audio were

artificially slowed, resulting in the speaker’s apparent ine-

briation. Before this, a video of news reporter Jim Acosta

appeared to show the man acting aggressively toward a staff

member at a press conference [10]. In reality, parts of an

authentic video of the exchange were sped-up and slowed

down causing Acosta to appear as an aggressor. This video

resulted in the revocation of Acosta’s press pass, even after

the video was declared fake by multiple sources.

The manipulation in both of these instances was the

same; the speed of the events the video was changed, result-

ing in the altered perception when viewing. To our knowl-



edge, there are no existing techniques to automatically de-

tect speed manipulation in H.264 encoded video.

In this paper, we propose a method to quickly de-

tect speed-adjusted videos encoded with the most com-

mon modern codec. First, we identify a trace that can be

quickly extracted from an encoded video. We then pro-

pose a method to detect manipulated videos using this trace.

We also propose a method of estimating the amount that a

video’s speed has changed. We perform experiments which

demonstrate that our system can reliably detect manipulated

videos with up to 99% accuracy. We also present a case

study of a video which was used in a speed manipulation

attack, and demonstrate that our system is capable to de-

tecting this real-world threat.

Our contributions are as follows:

• We identify a trace that can be used to identify speed-

adjusted videos without decoding. This trace can be

extracted from a video in milliseconds, making it use-

ful for processing videos at scale.

• We develop a model of this trace for both original and

manipulated videos. This model offers intuition on the

origin of the trace, so that it is accessible and creates a

clear foundation for further work.

• We develop algorithms to both detect manipulated

videos and estimate the parameter of their manipula-

tion.

2. Related Work

To our knowledge, there is little existing work which

aims to detect speed manipulation in modern video codecs.

Previous work by Wang and Farid has shown that speed ma-

nipulation in interlaced and deinterlaced video can be de-

tected via differences in the top and bottom fields within a

frame [32]. Kobla et al. proposed a method for detecting

slow motion replays in sports videos via the macroblock

types and motion vectors [16]. Both of these methods

however are designed for MPEG-1 and MPEG-2 encoded

videos, which are not common today.

Some closely related work involves detecting the dele-

tion of one or more consecutive frames of a video. Wang

and Farid first proposed a method of detecting deleted

frames in MPEG-1 and MPEG-2 encoded videos through

analysis of the frame prediction residual [31]. This method

was later improved upon by Stamm et al. [27]. Other tech-

niques for detecting deleted frames involve tracking visual

properties across multiple frames [26, 8, 33, 34]. Many

visual-based methods for detecting frame deletion, also

serve to detect frame insertion [8, 33, 34].

Many other video forensics works focus on different

aspects of videos, such as identifying the device which

captured a video [20, 29, 4], as well as its make and

model [12, 13]. Some works have attempted to detect re-

encoding as a form of manipulation [14, 31]. Content in-

sertion is another way in which researchers identify ma-

nipulated videos, either by measuring the integrity of a

frame’s noise pattern [19, 15], or measuring the consistency

of forensic traces within a frame [7, 21].

3. Background

In order to justify our method, we first offer background

on modern video coding techniques.

Frame Coding This work is based on the most popular

modern video codec, known as AVC or H.264. This codec,

and others like it, take advantage of the temporal and spa-

tial redundancy in a video in order to reduce the number of

bits to be stored or transmitted. A single frame or picture

of a video is made up of one or more slices, which are then

divided into macroblocks. Each slice will also have an as-

sociated slice type, which determines the way in which the

macroblocks can be coded. In practice, it is common for

one frame to correspond to a single slice; in this work we

use frame and slice interchangeably, as well as frame type

and slice type.

Frames are either I, P, or B frames. I frames are coded

independently, so that they can be decoded without decod-

ing any other frames. Macroblocks in P frames can be pre-

dicted, meaning they can be encoded using pixels from pre-

vious frames in the video. This greatly reduces the number

of bytes needed to encode the frame, however these savings

are dependent on how similar the frames are. In general,

the further apart frames are in a sequence, the less simi-

lar they are. B frames, similar to P frames, can contain

blocks which are predicted. Unlike P frames, the blocks in

B frames can be encoded using pixels from both past and

future frames. However, in order to use pixels from future

frames, the frames must be encoded out of order.

Effects of Coding Order It is common coding practice

to employ hierarchical B frame coding. To explain hierar-

chical coding, first consider five consecutive frames, V (0),
V (1), V (2), V (3), and V (4), where frame V (0) has been

previously been encoded. An encoder will next encode

V (4) as a P frame, using V (0) (and earlier frames) as a

source of prediction. Next, V (2) will be encoded as a B

frame, using V (0) and V (4) for prediction. Finally, frames

V (1) and V (3) will be coded, also as B frames, having all

other frames for prediction.

As a result of this process, V (4) is likely to need the

largest number of bytes to encode. Frame V (2) will require

fewer bytes, because it can be predicted from two frames,

both only two time units away. Frames V (1) and V (3) will

need the fewest number of bytes to encode, because they

both have two adjacent frames from which to predict. One

side effect of this, assuming approximately constant mo-

tion, is that V (1) and V (3) will be nearly the same size. If



20 40 60 80 100 120
Frame Index

0

5000

10000

15000

20000

25000

30000

35000

By
te
s

(a) SMP = 0.8

20 40 60 80 100 120
Frame Index

0

5000

10000

15000

20000

25000

30000

35000

By
te
s

(b) Original

20 40 60 80 100 120
Frame Index

0

5000

10000

15000

20000

25000

30000

35000

By
te
s

(c) SMP = 1.25

Figure 1: Size (number of bytes) of encoded frames of an original video, and two manipulated copies. Red points indicate B

frames and orange points indicate P frames. I frames are not shown.

a frame is repeated, i.e. zero motion, the number of bytes

needed to encode one of those frames will be near-zero.

4. Trace Origin

When the speed of a video is altered using video editing

software, a new video sequence is created whose frames

correspond to different times than the frames in the original

video. While it is possible to interpolate between two con-

secutive frames to create the new sequence, this approach is

extremely computationally expensive, and is not adopted in

practice. Instead, editing software will periodically dupli-

cate or delete frames from the original sequence, to achieve

a result that is perceptually similar to a viewer but at a sig-

nificantly decreased computational cost.

To systematically characterize this, we define the speed

manipulation parameter (SMP) ρ as the ratio of an edited

video’s speed to that of its original counterpart. The SMP

of a video is not a measure of its frame rate, it is a measure

of the relative passage of time in the manipulated video,

as compared to the original. For example, an item moving

across the frame at one speed in an original video, will move

at speed ρ times faster in a manipulated video. Videos with

an SMP less than one are slowed down, while those with an

SMP greater than one have had their speed increased.

We can characterize the relationship between frames

in an unaltered video sequence V (n) and its manipulated

counterpart Ṽ (n) according to the equation

Ṽ (n) = V (round(ρn)). (1)

When ρ < 1, i.e. the video is slowed down, it can be

shown that two consecutive frames in Ṽ will correspond to a

single frame in V . When this frame sequence is re-encoded,

the second frame to be re-encoded will be very efficiently

predicted, and therefore have a very small encoded frame

size. Furthermore, this will happen periodically, with period

determined by ρ. This will result in a very distinct trace that

can be used to detect video speed manipulation.

To show this trace, we define the encoded frame

size (EFS) sequence s(n) as the number of bytes which are

used to encode frame n of a given video. The EFS sequence

can be extracted from a video by writing simple code to read

these values from the video’s bitstream.

When frames are repeated due to slowing down a video,

the value of s(n) will suddenly drop to near zero. This ef-

fect can be clearly seen in Figure 1. Figure 1b shows the

EFS sequence of an unmanipulated video, while Figure 1a

shows the EFS sequence of a video that has been slowed

using an SMP of ρ = 0.8. In Figure 1a, we can distinctly

see that the frame size periodically drops to near zero in the

EFS sequence of the slowed down video. These periodic

drops are video speed manipulation traces that occur when

ρ < 1. We note that these are distinct from the natural vari-

ations in the size of B-frames due to coding order effects

described in Section 3.

A similar, though less visually distinct effect can be ob-

served when ρ > 1, i.e. the video has been sped up. Speed-

ing up the video according to (1) will cause certain pairs

of consecutive frames in Ṽ to map to frames which are not

consecutive in V , i.e. some frames will be skipped. When

this occurs, the true time difference between these consecu-

tive frames in Ṽ will be greater than the true time difference

between other consecutive frames in Ṽ . As a result, the later

of the two frames will be less predictable and will require

more bytes to encode. This will also occur in a periodic

fashion, with the period determined by ρ.

When examining the EFS sequence s(n) taken from a

sped up video, the phenomenon described above will re-

sult in periodic increases in s(n) that are distinct from those

caused by the coding order effects described in Section 3.

These periodic increases in s(n) are video speed manipula-

tion traces that occur when ρ > 1.

An example of video speed manipulation traces in a sped

up video can be seen in Figure 1c, which shows the EFS se-

quence of a video that has been sped up using an SMP of

ρ = 1.25. Here, we can observe that these speed manipula-



Figure 2: Estimation of trace-free EFS sequence, f̂(n) from

the observed sequence, s(n).

tion traces are much less visually distinct than those cause

by slowing a video. While they are less visually detectable,

we will show in subsequent sections that they can be ac-

curately captured using well designed speed manipulation

detection features.

5. Proposed Method

In this section, we provide a detailed discussion of our

approach to detect video speed manipulation and to esti-

mate the speed manipulation parameter ρ. To accomplish

this, we first propose a set of features that can capture speed

manipulation traces. We then discuss how these features

are used by our speed manipulation detection and estima-

tion systems.

5.1. Feature Extraction

In order to detect speed manipulation, or to estimate the

speed manipulation parameter ρ, we need to extract a set of

features from the EFS sequence s(n) that encodes informa-

tion about the presence and nature of any speed manipula-

tion traces.

We can view the speed manipulation traces as a se-

quence u(n) that modulates the EFS sequence of an unal-

tered video. These traces can be viewed as an impulse train

that either periodically decreases the value of the EFS se-

quence to near zero in the case of slowed down videos, or

periodically increases its value in the case of sped up videos.

Isolating speed manipulation traces can be challenging

however, due to other variations that occur within s(n). For

example, the size of each frame depends on its frame type:

I-frames require substantially more bytes to encode than P-

frames, which themselves are larger than B-frames. As a

result, the value of s(n) varies substantially depending on

the frame type of the nth, as can be seen in Figure 1. Fur-

thermore, the value of s(n) varies with the motion of the

video as well as the content of the scene being captured.

We wish to reduce the effects of these variations when

capturing traces left by speed manipulation. To understand

how we do this, let us first assume that s(n) is the EFS

sequence of a video whose speed has been manipulated. We

can model the EFS sequence extracted from the video as

s(n) = f(n)
(

1 + u(n)
)

+ ǫm(n),

= f(n) + u(n)f(n) + ǫm(n), (2)

where f(n) is the ideal frame size sequence that is free from

any manipulation traces and ǫM (n) is model noise.

We note that we use this multiplicative model for the fin-

gerprint because its effects are to scale s(n) to near zero if

the video is slowed, or to proportionally increase the value

of s(n) if the video is sped up. An additive fingerprint

model would correspond to a constant increase or decrease

in s(n), which is not what we have observed when examin-

ing speed manipulation traces.

Next, we assume we can create some estimate f̂(n) of

the sequence f(n) such that

f̂(n) = f(n) + ǫe(n) (3)

where ǫe(n) is noise due to estimation error.

We can obtain a residual signal r(n) that contains the

speed manipulation fingerprint u(n) while also largely sup-

pressing components of s(n) that may interfere with us cap-

turing u(n) such that

r(n) = s(n)− f̂(n),

= f(n) + u(n)f(n) + ǫm(n)− f(n)− ǫe(n),

= u(n)f(n) + ǫ(n), (4)

where the separate noises ǫe(n) and ǫm(n) have been

grouped together into a single noise term ǫ(n) = ǫe(n) −
ǫm(n).

Alternatively, if the speed of the video has not been ma-

nipulated, the EFS can be modeled simply as

s(n) = f(n) + ǫm(n). (5)

As a result, the residual signal becomes

r(n) = ǫ(n). (6)

We can see from examining (4) and (6), that the residual

signal is more suitable for searching for speed manipula-

tion traces than directly examining the EFS sequence. If the

video’s speed has been altered, then r(n) is a noisy version

of the periodic speed manipulation trace. By contrast, if the

video is unmanipulated then r(n) is simply noise.



In order to obtain the residual, however, the estimated

signal f̂(n) must be produced from s(n). To accomplish

this, we leverage the fact that speed manipulation traces are

temporally isolated changes in the EFS sequence.

To produce f̂(n), we first split s(n) into three subse-

quences corresponding to their frame type: sI(k) consist-

ing only of I-frames, sP (k) consisting only of P-frames,

and sB(k) consisting only of B-frames. We intentionally

index these subsequences by a different variable k since

sℓ(k) is the size of the kth ℓ-frame, which is not the kth

entry of s. When creating these subsequences, we create

three indexing functions iℓ(k) where ℓ ∈ {I, P,B} that re-

late the kth entry of sℓ(k) to the nth entry of s(n), such that

sℓ(k) = s(iℓ(k)).
As a result, each subsequence sℓ(k) of a manipulated

video can be expressed as

sℓ(k) = fℓ(k)
(

1 + u(iℓ(k))
)

+ ǫ(iℓ(k))

= fℓ(k) + u′(k)fℓ(k) + ǫ′(k) (7)

where u′(k) = u(iℓ(k)) and ǫ′(k) = ǫ(iℓ(k)). Similarly,

each subsequence in an unaltered video can be expressed as

sℓ(k) = fℓ(k) + ǫ′(k). (8)

We can then obtain an estimated version of each subse-

quence fℓ(k) by median filtering the subsequence sℓ(k)

f̂ℓ(k) = medw(sℓ(k)) (9)

where w is the size of the median filter window and

medw(sℓ(k)) = median{sℓ(k − w−1

2
), . . . , sℓ(k + w−1

2
)}.

Because u′(k) is a sparse signal and because ǫ(k) is noise,

median filtering will remove these terms from (7) and (8).

After f̂I , f̂P , and f̂B are individually estimated, these

subsequences can be recombined to form the estimated se-

quence f̂ . We then calculate the residual signal r(n) us-

ing (6). The formation of f̂ from s(n) is shown in Figure 2.

To create a low dimensional feature set that captures

salient information about the presence and nature of speed

manipulation traces, we build an N th order auto-regressive

(AR) model of the residual sequence, such that

r(n) =

N
∑

i=1

air(n− i) + ξ(n) (10)

where a1, . . . , aN are the AR model coefficients and ξ(n)
is white noise.

We then group the AR model parameters to form the fea-

ture vector φ, defined as

φ = [a1, . . . , aN ]⊺, (11)

which we use to perform speed manipulation detection and

to estimate the parameter ρ. We note that we do not nor-

malize the residual by f̂(n) before building the AR model

to avoid amplifying components of ǫ(n) where s(n) is rela-

tively small.

5.2. Speed Manipulation Detection

To detect speed manipulated videos, we view this prob-

lem as a binary classification problem in which once class

corresponds to unmanipulated videos and the second class

corresponds to speed manipulated videos. We discrimi-

nate between these classes using a support vector machine

trained to perform classification using the AR model param-

eter features φ defined in (11). When performing classifi-

cation, we utilize a radial basis function (RBF) kernel.

5.3. Speed Manipulation Parameter Estimation

Once speed manipulation has been detected in a video,

an investigator may wish to estimate the speed manipulation

parameter ρ. We estimate ρ by formulating this problem as

a regression problem on the basis of the feature vector φ

defined in (11). Each manipulated video in a training set is

given a label according to its SMP value (i.e. ρ) and each

unmanipulated video is given the label ‘1’. Next, we train

an SVM to perform support vector regression (SVR) on the

basis of φ. Once trained, this SVR can be used to obtain an

estimate of the SMP ρ̂ of a video such that ρ̂ = SVR(φ).

6. Experimental Results

To evaluate the performance of our proposed system,

we conducted a series of experiments. First, we created a

dataset of manipulated videos using different speed manip-

ulation parameters. Next, we evaluated the baseline perfor-

mance of our proposed speed manipulation detection algo-

rithm and examined the effect of the AR model order on

the algorithm’s performance. After choosing an appropriate

AR model order, we conducted more detailed experiments

to assess the system’s performance at different SMP values,

as well as our algorithm’s ability to accurately estimate the

SMP parameter of a manipulated video. Finally, we demon-

strated our system’s ability to operate on organic videos –

i.e. manipulated videos created using consumer oriented

software that an attacker would likely use – and performed

a case study on the manipulated video of Speaker Nancy

Pelosi discussed in the introduction.

6.1. Dataset

We used 414 videos from the Deepfake Detection Chal-

lenge dataset [1] to create training and testing data for these

experiments. To do this we first randomly selected one of

the 50 partitions of the DFDC training data (partition 35)

and used only the videos labeled ‘REAL.’ These videos

are all 10 seconds in length and encoded according to the

H.264/AVC standard, using the mp4 file format. Addition-

ally, all videos have similar encoding parameters including,

CABAC entropy coding, a keyframe interval of 250 frames,

and a maximum of 3 B frames between P frames.



We then created manipulated copies of each of these

video at several different speed manipulation parameters us-

ing FFmpeg [6]. We selected speed manipulation parame-

ters between 0.6 and 1.4, at an interval of 0.05, and created

a manipulated version of each video using each parameter.

These parameters were chosen to span a reasonable range

of manipulations; outside of this range the manipulation

is likely to be detectable by the human eye. Manipulated

videos were created using the FFmpeg command

f fmpeg −i $VIDEO − f i l t e r : v ” s e t p t s =$RATE∗ p t s ” $NEW VIDEO

where $VIDEO and $NEW VIDEO are the names of the

real and manipulated videos, and $RATE is equal to one

divided by the chosen speed manipulation parameter.

Our final dataset of 7038 videos is composed of 414 un-

modified videos, and 6624 manipulated videos.

6.2. Manipulation Detection

Our system, as described in Section 5.1, first creates an

AR model of the residual sequence. To do this, we wrote

software to parse the mp4 file format and report, in display

order, the frame type and the number of bytes used to en-

code each frame. Using this, we extracted EFS sequences

from all videos in our dataset, and normalized them, as dis-

cussed in Section 5.1. We then used the statsmodels python

library [24] to fit an nth order AR model to each sequence.

The model tap weights are then used as features to train an

SVM classifier using the sklearn python library [22].

Initially, we used our dataset to train our system to iden-

tify if a video’s speed has been manipulated, where all ma-

nipulated videos belong to a single class, and all original

videos belong to another. We varied the number of coeffi-

cients in our system’s AR model to study the effect that the

model order has on classification accuracy. In this experi-

ment, we considered AR models with between 4 and 30 co-

efficients. For each model order, we measured the detector’s

accuracy and AR model fitting time using 10-fold cross val-

idation with a 90/10 train/test split. Because of the natural

class imbalance, the accuracy was measured as the average

of the true positive rate and the true negative rate. Figure 3

shows the detection accuracy and average AR model fit time

for each model order.

As shown in Figure 3, our system achieves a maximum

accuracy of 90% with a model order of 27. Beyond this,

the accuracy of the system begins to decrease. Figure 3 also

shows that the AR model fit time appears to grow linearly

with the model order. This shows that our system is capable

of rapidly detecting manipulated videos with high accuracy.

Figure 3 shows that beyond a model order of 21, our system

shows diminishing returns in its accuracy. For this reason,

we use a 21st AR model for the test of our experiments.

We repeated this experiment to produce a Receiver Op-

erator Characteristic (ROC) curve of our system using 21st
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weights as features.

order AR model coefficients as features, as shown in Fig-

ure 4. Figure 4 shows that our detector achieves a detection

accuracy of 91.7% with a 9.04% probability of false alarm,

and has an area-under-the-curve of over 0.96. This curve

shows that our proposed system is a powerful tool for de-

tecting manipulated videos.

6.3. Effective Range of Operation

In our next experiment, we studied the efficacy of our

system when confronted with different ranges of speed ma-

nipulation. For this experiment, we defined a reasonable

range of speed manipulation parameters between 0.6 and

1.4. For each SMP in this range, we trained our system to

discriminate between an original video, and a video modi-

fied using the given SMP. We did this by isolating the 414

original videos and the 414 manipulated videos of the SMP,

creating a training set and a testing set, and training our

proposed system. We calculated the accuracy of our sys-



Table 1: Classification accuracy of our system when con-

sidering single manipulation parameters.

Speed Manipulation Parameter (Speed Decrease)

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

98.8% 98.1% 99.1% 96.4% 97.0% 97.9% 97.9% 94.1%

Speed Manipulation Parameter (Speed Increase)

1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

83.1% 93.5% 94.6% 92.4% 90.4% 94.1% 91.6% 92.5%

tem at each SMP via 10-fold cross validation with a 90/10

train/test split. Figure 1 shows the performance of our sys-

tem at each speed manipulation parameter.

Table 1 shows that we can reliably detect manipulated

videos, achieving a maximum accuracy of 99.1% at a speed

manipulation parameter of 0.7. We also see that our system

performs better when detecting slowed videos (SMP ≤ 1),

than when detecting sped-up videos, (SMP ≥ 1). This be-

havior is expected, and can be predicted when observing

Figure 1. The effects of slowing a video, as shown in Fig-

ure 1a, are much more apparent than the effects of speeding-

up the same video, as in Figure 1c.

We also note decreased performance at manipulation pa-

rameters close to 1, such as 0.95 and 1.05. At these rates,

the fingerprint signal is very weak, appearing much less of-

ten than in the case of other parameters we considered. In

light of this weak fingerprint signal, we expect these manip-

ulated videos to be difficult to detect.

6.4. Parameter Estimation

Often, an investigator will want to know, not only if a

video has been manipulated, but by how much. To do this,

we labeled all 7038 video in our dataset with the SMP used

to create it, then trained our system to estimate the SMP of

a given video. We calculated the bias and variance of our

estimator, and again verified our results using 10-fold cross

validation.

The mean error of the estimated parameter was −0.0025,

with a variance of 0.0259. Our proposed system does not

appear to exhibit a strong bias. The reported variance sug-

gests that the expected difference between the estimated pa-

rameter and the true parameter is 0.16. Figure 5 shows the

distribution of estimated parameters for each SMP we con-

sider in our dataset.

In Figure 5, we note that our proposed system’s estima-

tion appears to be multimodal when estimating some pa-

rameters in our dataset, as if two different manipulation pa-

rameters resulted in a similar fingerprint signal.

We note that slowed videos (SMP < 1) exhibit a differ-

ent fingerprint signal than sped-up videos (SMP > 1) do. In

light of this, we separated our dataset into two groups, 3726

videos with a SMP greater than or equal to 1, and 3726

videos with a SMP less than or equal to 1. Videos with a

SMP equal to 1 are unmodified videos, and appear in both
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Figure 5: Distribution of speed manipulation parameter es-

timations for each SMP, with maximum and minimum val-

ues marked.

Table 2: Performance of SMP estimators.

Mean Bias Error variance

All -0.0025 0.02590

SMP ≥ 1 0.0011 0.01006

SMP ≤ 1 -0.0013 0.00543

groups. For each group we again trained our system to es-

timate the SMP of videos within that group. The bias and

error variance of each estimator is listed in Table 2.

In Table 2, we note that the error variance of our sys-

tem when trained and tested only on slowed videos (SMP

≤ 1) is half that of the system trained and tested on sped-up

videos (SMP ≥ 1). This result is consistent with our earlier

findings which showed that our system was better able to

discriminate slowed videos, as compared to sped-up videos.

From Figure 1 we can see that speed manipulation traces

are more pronounced in slowed videos. This reinforces the

result in Table 1, which indicated that slowed videos were

easier to detect. We attribute this difference to the bidirec-

tional nature of B frames, which allows them many more

frames from which to predict, and lessens the effect of any

particular frame being deleted.

Figure 6 shows the distribution of estimations for each

video when models are predicated on increased or de-

creased speed. Comparing Figure 6 to Figure 5, it can be

seen that restricting the system to either sped-up or slowed

down video significantly reduces our system’s error vari-

ance. In Figure 6 we note that at SMP’s close to 1, our

estimator is biased away from 1. We also observe that at

SMP’s near 0.6, our estimator is biased away form 0.6, and

likewise at SMP’s near 1.4. These extreme areas, 0.6 and

1.4, are areas where the manipulation is likely to be percep-

tible to the human eye. Videos with SMP near 1 are not

manipulated very strongly; we assume these manipulations

are less likely.
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(a) SMP ≤ 1
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(b) SMP ≥ 1

Figure 6: Distribution of speed manipulation parameter estimations for each SMP, predicated on SMP magnitude. Ticks

show maximum and minimum values.

6.5. Organic Video

Finally, we evaluated our system’s performance when

detecting videos manipulated with widely available con-

sumer video editing software [5]. Because these manipu-

lations mimic those that would naturally be used when cre-

ating a speed altered video, we refer to these as organic

videos. First, we trained our manipulation detection system

using all 7038 videos in our dataset. Next, to create organic

video, we used consumer software (without using the FFm-

peg encoder) to alter the speed of all 414 original videos

using a rate distortion parameter of 0.75. We then classi-

fied each video using our trained system. As a result, only

3 of the 414 organic videos were misclassified as unaltered,

resulting in a detection accuracy of 99.3%.

We calculated the average time needed to read a video,

extract features, and perform classification based on those

features. On average, this process took 0.042 seconds per

video. However, when we subtract the time needed to load

the video into memory and read its EFS, the average feature

extraction and classification time was measured at 0.001

seconds. From these measurements, we conclude that our

system provides a reasonable large-scale test, for use on

video sharing and social media platforms.

Case Study The last organic video we tested was a

copy of the manipulated video posted to Facebook, which

showed Speaker of the House Pelosi, in an interview. This

video was downloaded from the original Facebook post. To

ensure a reasonable sample size, we extracted both the EFS

and frame type sequences from the video, then split the se-

quences into 27 sub-sequences of 200 frames each. These

sequences were treated as individual sequences, and fea-

tures were extracted from each sequence independently. Us-

ing the same model trained in the previous experiment, we

classified each clip. All 27 clips were found by our system

to be manipulated, for a 100% detection accuracy.

Figure 7 shows a portion of the EFS sequence associated
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Figure 7: Encoded frame size sequence of manipulated

video of Speaker Pelosi.

with the video. In this Figure, we note the line of red poins

along the bottom edge, indicating the inserted frames. We

also note that the average encoded B frame size is between

0.7KB and 1.3KB, an order of magnitude less than in Fig-

ure 1a. Despite this, our system is still able to correctly

identify every part of this video as modified.

7. Concluding Remarks

In this work, we presented a novel trace for the detec-

tion of manipulated videos. Our trace uses the number of

bytes used to encode each frame as a method of detecting

inserted and deleted frames, which occur when a video’s

speed has been manipulated. This trace can be extracted

from a video faster than the video can be decoded, which

allows a large number of videos to be processed in a rela-

tively small amount of time. We also propose a detection

algorithm based on this trace, and show that our algorithm

performs with over 99% accuracy on organic videos.
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