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Abstract

Artificial, CNN-generated images are now of such high

quality that humans have trouble distinguishing them from

real images. Several algorithmic detection methods have

been proposed, but these appear to generalize poorly to

data from unknown sources, making them infeasible for

real-world scenarios. In this work, we present a frame-

work for evaluating detection methods under real-world

conditions, consisting of cross-model, cross-data, and post-

processing evaluation, and we evaluate state-of-the-art de-

tection methods using the proposed framework. Further-

more, we examine the usefulness of commonly used image

pre-processing methods. Lastly, we evaluate human perfor-

mance on detecting CNN-generated images, along with fac-

tors that influence this performance, by conducting an on-

line survey. Our results suggest that CNN-based detection

methods are not yet robust enough to be used in real-world

scenarios.

1. Introduction

Recently, state-of-the-art CNN-based generative models

have radically improved the visual quality of generated im-

ages [21, 22]. Combined with an increasing ease of us-

ing such models by non-experts through user friendly ap-

plications (e.g. [8, 10, 39]), there is sufficient reason to be

cautious about its use by people with harmful intents. The

malicious use of technologies employing generative models

has been demonstrated with DeepFakes in the form of (re-

venge) pornography, where faces of women are mapped to

pornographic videos [8], and with DeepNude by undress-

ing women [10]. The potential of DeepFakes for political

purposes has also been demonstrated in [9, 15, 36], and has

the capability to become a significant problem in terms of

fake news and propaganda. Current state-of-the-art gener-

ative models [21, 22] go one step further and are capable

of creating fully-generated realistic images of human faces.

The development of image generation techniques will likely

have ethical, moral, and legal consequences.

1Left four are real (from the FFHQ dataset), and right four are gener-

ated by StyleGAN (trained on the FFHQ dataset).

Figure 1: Can you distinguish fake from real images? The answers

are shown below.1

Generative Adversarial Networks (GANs) [16] could be

regarded as the most promising and widely used type of

generative models for image creation and manipulation.

In only a few years of existence, many features such as:

visual image quality; image resolution; range of control

over the output; and ease of training these models have

been improved. Recently, [21] proposed StyleGAN, which

is able to generate nearly photo-realistic facial images of

1024x1024 resolution, along with some stylistic control

over the output, as presented in Figure 1. [22] has proposed

an improved version with reduced visual artefacts. To coun-

teract the development of generative models, automatic fake

imagery detection methods have gained increasing interest.

Many works focus on learning-based detection, using Con-

volutional Neural Networks (CNNs). They work well on

data similar to that seen during training, but often fail when

images are generated by other GANs [13] or when images

are post-processed [28].

Deviations in data sources and post-processing tech-

niques are inconvenient in real-world scenarios. In this

work, we refer to real-world scenarios as scenarios where

an image encountered has an unknown source and possi-

bly underwent unknown forms of post-processing after its

creation. Furthermore, an image should be of reasonable

size and should have no clearly visible alterations that low-

ers its credibility of being authentic. An example of such a

real-world scenario is a forensic setting where the authen-

ticity of an image must be determined. It is desirable that a



Figure 2: Overview of our experimental pipeline. Two state-of-the-art detection models are evaluated under real-world scenarios with a

focus on cross-model, cross-data and post-processing scenarios. Pre-processing techniques are examined for generalizability.

detection method works well, independently of the type of

model that generated or manipulated the encountered im-

age. Another example is images encountered on social me-

dia pages, which may be unintentionally or deliberately al-

tered. Examples of unintentional alterations are compres-

sion and resampling (or resizing), which often happen when

uploading images onto social media or viewing images in a

web browser. Blurring, adding noise, and adjusting colors

are examples of deliberate alterations. We also assume that

in real-world scenarios, the majority of users that encounter

these images are not trained to detect fake images. Based on

the trend of applications using DeepFakes and the advanced

techniques to create realistic fully-generated images, we ex-

pect that the use of fully-generated images will be the next

trend for new applications. For this reason, it is important to

take both real-world conditions and fully-generated images

into consideration when evaluating detection methods.

In this work, we aim to evaluate state-of-the-art image

generation models under an approximation of real-world

conditions, using the following three categories: 1) a cross-

model scenario, where the type of model used to gener-

ate an image is unknown, 2) a cross-data scenario, where

the data used to train a generative model is unknown, and

3) a post-processing scenario, where an image is modified

with an unknown type of post-processing. For each cate-

gory we examine whether the generalizability of learning-

based methods could be improved using commonly used

pre-processing methods. Our work focuses on facial im-

ages, since most applications are targeted on facial genera-

tion or manipulation.

Our main contributions are the following:

1) We propose a framework, presented in Figure 2, consist-

ing of three types of evaluation required for robust evalua-

tion under real-world conditions: cross-model, cross-data,

and post-processing evaluation;

2) We evaluate the most promising state-of-the-art model

architectures and pre-processing methods;

3) We perform a user study with 496 participants and mea-

sure human performance of detecting state-of-the-art gener-

ated images and factors that influence this performance.

2. Related work

In this section, we review methods for CNN-generated

image detection, image pre-processing and human detec-

tion of image forgery. GANs [16] have recently emerged as

the state-of-the-art in generating realistic imagery, in terms

of image resolution and visual quality. Recent works have

been able to generate nearly photo-realistic facial images

[21, 22]. Other works focus on more control over the out-

put images, mainly in the fields of stylistic manipulation

[6, 18, 55] or semantic manipulation [17, 35, 37, 50]. Our

work includes models capable of unconditional generation

[20, 21] and conditional stylistic manipulation [6, 21, 23] of

human faces.

CNN-generated image detection Early work of CNN-

generated image detection uses handcrafted features based

on domain knowledge. Two examples of domain knowl-

edge that could be exploited are image color information

and human facial appearances [24, 30, 31, 49]. While these

methods have reasonable performance, such handcrafted

features are less applicable in real-world scenarios, where

images often do not adhere to some of the assumptions

made for these methods e.g. when faces are partially cov-

ered. In this case, the methods of [30, 49] might not work.

Following these works, learning-based methods have

been proposed, using CNNs to automatically learn features

of real and generated images [1, 3, 7, 12, 13, 40]. [13]

presents ForensicTransfer and achieves state-of-the-art re-

sults on detecting CNN-inpainted images [17, 51] and fully

CNN-generated images [6, 19, 20, 23]. Another commonly



used architecture for CNN-generated image detection is the

Xception model [7], originally proposed as image classi-

fication model trained on ImageNet [43]. [28, 42] both

evaluate several models and show that Xception yields the

best overall performance across regular and compressed im-

ages in detecting fully-generated images [28] and CNN-

manipulated images [42]. Futhermore, the evaluation of

[13] shows good performance of Xception, in some evalua-

tion setups outperforming the ForensicTransfer model. [48]

proposes a model, along with several data augmentation

procedures, to detect fully-generated images of unknown

sources. The results suggest that increasing the number

of image classes, as well as randomly blurring and com-

pressing images during training, increases the robustness of

CNN-based detectors, yielding good results in cross-model

and post-processing scenarios. [27] finds that real and fake

images have textural differences and exploit this by propos-

ing a Gram-Net model architecture to focus on global image

textures, yielding good results in cross-model, cross-data,

and post-processing scenarios.

We select ForensicTransfer [13] and Xception [7] for our

evaluation. We did not take the architectures of [27] and

[48] into account, since they were not published yet at the

time this research was conducted. Given that these works

are extensions of the state-of-the-art models we expect our

results are still valid since our work focuses on different

types of pre-processing techniques and datasets. We also

evaluate an in the wild scenario exclusively for facial im-

ages. Additionally, we are the first to perform a large scale

user study that compare human performance under realistic

conditions to model performance.

Image pre-processing Pre-processing an image before

passing it to a CNN-based model is not uncommon in the

field of image forgery detection and has been studied by

several works [5, 11, 12, 13, 24, 25, 33, 41]. The motiva-

tion is to enrich or focus on specific information in the im-

age, such that learning the difference between real and gen-

erated (or manipulated) might be more fruitful. As shown

by [2, 29, 52], CNN-generated images have pixel patterns

dissimilar to real images, which might become more dis-

tinctive by learning more intrinsic (pixel-level) image fea-

tures, such that detection models might generalize better to

unseen (e.g. model-unaware) fake images.

Several works on image forgery detection [12, 13, 25,

32, 41] include high-pass filters as a way to accentuate

the high-frequency structure of an image. Another type

of pre-processing is color transformation, where non-RGB

color information is used to detect forgeries. [24] has

shown the effectiveness of detecting generated images, us-

ing HSV (hue, saturation, value) and YCbCr (luma, red-

chroma difference, and blue-chroma difference) color in-

formation along with a feature-based approach. Lastly,

several works use co-occurrence matrices to focus on ir-

regularities in pixel-patterns, for example in steganalysis

[12, 14, 38, 45, 46] and detection of forged images [11, 12].

Recently, [33] has used this approach for detecting CNN-

generated images, suggesting good performance in several

evaluation scenarios. Most works seem to evaluate one type

or class of pre-processing method(s) with one model archi-

tecture [13, 32, 33]. The interaction between pre-processing

methods and model architectures remains unclear as well as

the benefits of pre-processing methods. In our work, we fo-

cus on these interactions by examining three common types

of pre-processing: 1) high-pass filters, 2) co-occurrence ma-

trices, and 3) color transformations.

Human detection of image forgery Humans have trouble

distinguishing forged images from authentic images, espe-

cially when no comparison material is provided to them

[34, 44, 53]. Examples include detection of erase-fill, copy-

move, cut-paste, and changes in reflections. [42] shows that

humans have trouble detecting CNN-modified images. Re-

cent work by [54] addresses human performance on fully-

generated GAN-images specifically. However, their aim is

to evaluate the quality of GAN-images, not the human de-

tection capabilities. Their results show that StyleGAN im-

ages generated using the truncation trick are perceived as

more realistic [54]. The truncation trick refers to how far

away a latent style vector is sampled from the average la-

tent style vector, which determines the amount of variety in

the generated image. Furthermore, images of 64x64 reso-

lution are harder to distinguish from real than 1024x1024

images. However, images of this small size do not occur

often in real-world scenarios. Lastly, [27] examines hu-

man performance of detecting GAN-generated images as

a direct comparison with algorithmic detection. Therefore,

they train humans by showing many examples, and then test

them with novel examples, resulting in an average classifi-

cation score of 63.9% for the FFHQ vs StyleGANFFHQ sce-

nario. While this yields an indication for upper bound per-

formance of humans, it does not examine performance of

untrained humans, and factors that influence performance,

making it difficult to project the results to real-world sce-

narios.

This work attempts to determine human performance

under an approximation of real-world conditions. It dif-

fers from [27] since we do not pre-train participants, and

measure the performance related to intermediate feedback.

Moreover, it differs from [54] since we do not include any

time constraints or training phase and evaluate more logical

image resolutions. Lastly, we examine the influence of AI-

experience on human performance, and image cues humans

use to recognise generated images.

3. Methods & Experimental Setup

Figure 2 gives an overview of our method. Each compo-

nent will be discussed next.



3.1. Datasets

Real images CelebA-HQ (CAHQ) [20] and Flickr-Faces-

HQ (FFHQ) [21] are selected as datasets for real images.

The first is a high-quality version of the original CelebA

dataset [26], consisting of 30K front view facial pictures

of celebrities. Note that high-quality refers to several pro-

cessing steps as discussed by [20], yielding high-resolution

and visually appealing images. The second is a dataset with

70K high-quality front view pictures of ordinary people, of

which the first 30K are selected.

Generated (fake) images We use five datasets of gener-

ated images for evaluation under real-world conditions: 1)

StarGANCAHQ [6], 2) GLOWCAHQ [23], 3) ProGANCAHQ

[20], 4) StyleGANCAHQ [21], and 5) StyleGANFFHQ [21].

The first two datasets are provided by [13]. StarGAN and

GLOW are conditional generative models that transform the

style of an input image to some desired style. The datasets

are created by taking a CAHQ image as input, randomly se-

lecting a facial attribute out of a small set of attributes (e.g.

hair color), and generating the corresponding image with

either the StarGAN or GLOW model. GLOW is not a GAN

but a flow-based deep generative model. The third dataset

consists of images generated by ProGAN, an unconditional

GAN that generates high-resolution facial images. We use

the dataset provided by [20].

For the last two datasets, we use images generated by

StyleGAN. StyleGAN could be regarded as the state-of-the-

art GAN in terms of visual quality [54], strengthened by

high-resolution images and some stylistic control over the

output. We use two variants of StyleGAN images to eval-

uate cross-data performance. For the first variant, we use

the dataset by [21]. From the available sets of images gen-

erated with different amounts of truncation, we select the

set generated using ψ = 0.5. Note that these images are

generated by a model trained on FFHQ images. There is no

public StyleGANCAHQ dataset, thus we generate images us-

ing a model pre-trained on CAHQ images (with ψ = 0.5).

The motivation for selecting ψ = 0.5 and the creation of

StyleGANCAHQ are discussed in further detail in Section

A.1 of the supplementary material.

For each dataset, we use 30K images, split into training

(70%), validation (20%), and test (10%) sets. The amount

of real and fake images seen during training and testing is

equal. During training, images are rescaled to match the

corresponding input layer size of both models.

3.2. Pre­processing

For pre-processing techniques we use high-pass filters,

co-occurrence matrices, and color transformations, since

these have recently been demonstrated to work well in

CNN-generated image detection [13, 33, 24]. For each of

these three categories, one or multiple variants have been

experimented with. We select the best performing methods

Regular image Res1 filtered Res3 filtered Cooc filtered

Figure 3: Visualization of several pre-processing methods using a

StyleGANFFHQ image. Note that HSV is not visualized since it is not

meaningful to display using RGB color conventions.

to be included in the results. A visualization of these meth-

ods is shown in Figure 3. Res1 is a first-order derivative

filter: [1 −1] [4, 14]. It is included as baseline high-pass

filter. Similar to [13], this filter is applied in horizontal and

vertical direction in parallel and the resulting channels are

concatenated, yielding 6 image channels. Res3 is a third-

order derivative filter: [1 −3 3 −1] [12, 13]. Again, it is

applied similarly to Res1 and is equal to the RES filter used

by [13]. Note that we have experimented with other im-

plementations (i.e. applying the filter horizontally and ver-

tically in sequence, yielding three channels) but these per-

formed worse, thus choosing the implementation by [13].

Cooc calculates the co-occurrence matrix of an input im-

age, similar to [33]. This is done by a matrix multiplication

of the original image with its transpose, resulting in three

image channels. HSV converts to the hue, saturation, value

(HSV) color space, resulting in three image channels. This

is inspired by [24], who use HSV and YCbCr color spaces,

as discussed in Section 2. Our initial experiments showed

better performance of HSV, so YCbCr is not considered.

3.3. Model architectures

Based on the work of [13, 28, 42], we select Xception

[7] and ForensicTransfer [13] as state-of-the-art model ar-

chitectures for CNN-generated image detection. Xception

(X) [7] is a deep CNN with depth-wise separable convo-

lutions [7], inspired by Inception modules [47], and has

shown good performance in multiple image forgery detec-

tion tasks [13, 28, 42], both for regular and compressed

images. ForensicTransfer (FT) is a CNN-based encoder-

decoder architecture, which learns to encode the properties

of fake and real images in latent space, outperforming sev-

eral other methods when combined with high-pass filtering

the images, or using transfer learning for few-shot adapta-

tion to unknown classes [13]. Images are classified as real if

the real partition in latent space is more active than the fake

partition, and vice versa. The training procedures for both

models are described in Section A.2 of the supplementary

material.



3.4. Evaluation

To examine the performance of detection methods under

real-world conditions, we include five types of evaluation.

Default (fully aware) In the easiest setup, test images are

created by the same generative model as train images and

are from the same data distribution. These test images

are not further manipulated. This setup gives an upper

bound on the performance of a detection method, but has

no correspondence to a real-world scenario. We test this for

StyleGANCAHQ and StyleGANFFHQ.

Cross-model (model-unaware) In a real-world scenario,

many generative models exist and new models will be cre-

ated in the future. In this setup, test images are generated by

one or multiple different models than images in the training

set. The detection model has no examples of similar test im-

ages. In our work, we evaluate the performance of 1) detect-

ing StarGANCAHQ, GLOWCAHQ, and ProGANCAHQ when

trained on StyleGANCAHQ, and 2) detecting StyleGANFFHQ

with ψ ∈ [0.7, 1.0] when trained on ψ = 0.5.

Cross-data (data-unaware) In a real-world setting, numer-

ous different datasets could be used to train a generative

model, each with their own biases and pre-processing meth-

ods, which have a large impact on the generated images.

Thus, it is needed to evaluate how detection models can

generalize to unknown images used for training a generative

model. In this setup, the data used for generating training

images differs from the data used for generating test images.

The model may be equal or different. In our work, we evalu-

ate the performance of detecting StyleGANFFHQ test images

when trained on StyleGANCAHQ images and vice versa.

Post-processing(-unaware) When images are uploaded to

and downloaded from the internet, they are likely to un-

dergo several types of post-processing, such as compression

and resampling. On the other hand, images could be manip-

ulated to make them less detectable, for example with blur

and noise addition. In our work, we select two types of tech-

niques, JPEG compression and Gaussian blurring, and eval-

uate how different amounts of post-processing influence the

detection of StyleGANFFHQ images. We evaluate several

degrees ranging from hardly visible to clearly visible to the

human observer.

In the wild This mimics a real-world scenario where a

detection model has access to all currently known state-

of-the-art models and encounters images generated by a

newer model. In our case, one detection model is trained

on multiple known sources (StarGANCAHQ, GLOWCAHQ

and ProGANCAHQ), and evaluated on unknown sources of

higher visual quality (StyleGANCAHQ and StyleGANFFHQ).

4. Online survey

To examine how well humans can identify state-of-the-

art fake images, we conduct a user study with 496 partic-

Figure 4: Each participant is randomly assigned to the control-group or

feedback group. Then he/she sees 18 images sequentially of varying reso-

lutions and must decide for each image whether it is real or fake.

ipants. We also study what influences their performance.

A schematic overview of the survey is given in Figure 4.

Each participant is randomly assigned to the control-group

or feedback group. It then sees 18 images sequentially of

varying resolutions and must decide for each image if it

is real or fake. The whole process of survey design is de-

scribed in Section B of the supplementary material.

Note that our experiments aim to estimate how well hu-

mans would perform in real-world scenarios, by examining

several real-world factors that could influence this perfor-

mance. These include 1) image resolution (measured with

three resolutions), 2) how well people are trained (measured

with a feedback and control group), and 3) AI-experience

(measured with a question after completing the survey).

5. Results

5.1. Algorithmic detection

Table 1 shows results of training on StyleGANCAHQ (left)

and StyleGANFFHQ (right) images, along with cross-model

and cross-data performance. It is important to note that we

show the accuracy per dataset, and not the average accu-

racy of real and fake images combined. For this reason, the

performance on the real and fake datasets do not add up to

100%. For example, when a model is not able to detect fake

images and classifies every image as real, the accuracy we

report for the dataset with fake images will be 0%. This is

done to get a better understanding of how well each model

can detect generated images, since real images are, with few

exceptions, detected with high accuracies.

Default (fully aware) In the Default columns of Ta-

ble 1 we see that both Xception and ForensicTrans-

fer have a nearly perfect performance for both fake

images (StyleGANCAHQ/StyleGANFFHQ) and real images



Model Default Cross-model Cross-data Default Cross-model Cross-data

Pre-

process Arch.

StyleG

(CAHQ)
CAHQ

GLOW

(CAHQ)

ProG

(CAHQ)

StarG

(CAHQ)

StyleG

(FFHQ)
FFHQ

StyleG

(FFHQ)
FFHQ

StyleG

ψ = 0.7

StyleG

ψ = 1.0

StyleG

(CAHQ)
CAHQ

–
X 99.6 99.8 0.3 1.0 0.2 5.9 99.8 99.9 100 97.3 84.1 0.2 100

FT 98.3 99.3 0.3 88.9 97.5 44.7 60.7 99.2 100 97.8 94.3 0.01 100

Res1
X 91.6 96.8 0.9 65.2 37.8 37.8 69.2 91.2 100 91.8 84.5 0.2 99.9

FT 99.5 95.4 31.2 88.9 100 90.2 28.4 91.3 90.9 89.1 83.5 8.8 93.9

Res3
X 72.2 45.6 49.9 65.7 57.8 62.1 39.8 54.5 98.6 54.4 51.2 2.5 98.7

FT 93.3 89.9 36.6 65.2 99.5 87.8 36.7 72.5 75.4 70.4 67.1 30.8 84.0

Cooc
X 95.0 96.4 2.1 12.9 2.8 31.2 95.3 93.6 97.4 63.5 18.6 13.7 98.7

FT 79.6 77.8 2.3 37.3 26.8 32.4 83.8 80.4 91.5 52.9 23.7 20.6 91.8

HSV
X 99.9 99.8 3.0 63.6 12.2 44.7 87.6 99.9 99.9 98.3 87.9 0.2 99.9

FT 93.7 97.9 33.0 79.5 81.8 46.8 56.8 98.7 99.9 96.7 91.3 0.1 100

Table 1: Evaluation of default, cross-model, and cross-data performance. The first setup uses StyleGANCAHQ (ψ = 0.5) as a training dataset

and tests on 1) StyleGANCAHQ images (default evaluation), 2) GLOWCAHQ, ProGANCAHQ and StarGANCAHQ images (cross-model), and 3)

StyleGANFFHQ images (cross-data). The second setup uses StyleGANFFHQ (ψ = 0.5) as a training dataset and tests on 1) StyleGANFFHQ

images (default evaluation), 2) StyleGANFFHQ (ψ = 0.7 and ψ = 1.0) images (cross-model), and 3) StyleGANCAHQ images (cross-data).

On the left side, we denote the type of pre-processing and model architecture, where X denotes Xception and FT denotes ForensicTransfer.

We have also abbreviated StyleG(AN)CAHQ, ProG(AN)CAHQ, and StarG(AN)CAHQ for visualization purposes. Real image datasets are

cursive (CAHQ and FFHQ). Best accuracies per dataset (i.e. column) are bold. Accuracies are averaged over 5 runs.

(CAHQ/FFHQ). The third-order derivative filter seems to

harm the performance the most for both model architectures

and both datasets.

Cross-model (model-unaware) For the cross-model setup,

we see in Table 1 that ForensicTransfer retrieves high

performance for detecting ProGANCAHQ (88.9%) and

StarGANCAHQ (100%) images. For ProGANCAHQ and

StarGANCAHQ, the first order derivative filter yields slightly

better results than using no filter. In our second setup, we

train on StyleGANFFHQ and evaluate cross-model (parame-

ter) evaluation. Note that this type of cross-model evalua-

tion refers to the same model (ψ = 0.5), but using another

truncation (ψ = 0.7 and ψ = 1.0) for generating images,

results in differences between training and testing images.

The larger the difference between the ψ values for train-

ing and testing, the lower the accuracy for detecting fake

images. We also see this trend for different pre-processing

techniques. For example, the performance for using the co-

occurence matrix results in a drop of 45% for Xception and

29% for ForensicTransfer.

Cross-data (data-unaware) In Table 1 for both Xception

as well as ForensicTransfer there is a trade-off between

detecting fake and real images. Xception labels all im-

ages (99.8%) as true when no pre-processing is used. In

the same scenario, ForensicTransfer is able to detect fake

StyleGANFFHQ images in 45% of the cases, but as a conse-

quence detecting FFHQ as real drops to 60%. Using first or

third order derivative filters for ForensicTransfer increases

the performance for generated images, but decreases the

performance for real images. For cross-data performance

in our second setup, there is a an increase in performance

of detecting StyleGANCAHQ images, when using Forensic-

Transfer together with third order derivative filters or the co-

occurrence matrix. This increase from 0 to 20-30% is still

far from a good performance. Based on our results, there

is no clear model or pre-processing method that stands out

as best. ForensicTransfer has relatively high cross-model

and cross-data performance, and seems to benefit slightly

from high-pass filters, at the cost of a small drop in default

performance. However, high-pass filters decrease perfor-

mance for Xception, which seems to benefit slightly from

HSV transformation.

Post-processing(-unaware) This evaluation consists of

three levels of Gaussian blur, from a standard normal distri-

bution with different kernel sizes, and three levels of JPEG

compression using different quality factors. The results are

presented in Table 2. For each type of evaluation, the dif-

ference between training and testing images increases grad-

ually to the right (e.g. QF=90 is almost no compression,

and QF=10 is severe compression). Without pre-processing

techniques, Xception is much more robust to blur and com-

pression, and shows nearly no drop in performance for the

smallest amounts. For example, when using a 3x3 kernel

for Gaussian blur Xception is able to detect StyleGANFFHQ

images with 98.9% accuracy, while ForensicTransfer only

detects 18.1% of the cases. Again, ForensicTransfer seems

to benefit slightly from high-pass filters, while these dete-

riorate Xception performance. In this setup, HSV does not

benefit Xception as much, making performance on cross-

model and post-processing worse. Cooc shows no evident

pattern in performance.

In the wild As shown in Table 3, cross-model de-

tection is still low when training on images generated

by different models. When examining the average ac-

curacy of real images and unseen generated images

(StyleGANCAHQ/StyleGANFFHQ), we observe that Xception

without pre-processing performs best (62.4%), followed by

X-Cooc (61.2%) and FT-Res1 (60.5%). The other methods



Model Default Post-processing

Gaussian blur JPEG compression

Pre-

proc.
Arch.

StyleG

(FFHQ)

3x3

kernel

9x9

kernel

15x15

kernel
QF=90 QF=50 QF=10

–
X 99.9 98.9 1.7 0.0 99.5 95.8 28.4

FT 99.2 18.1 0.0 0.0 0.1 0.2 0.1

Res1
X 91.2 71.8 0.2 0.0 43.0 5.3 0.4

FT 91.3 79.5 21.9 12.4 8.0 1.4 0.9

Res3
X 54.5 11.0 0.8 1.3 16.9 6.3 5.7

FT 72.5 66.4 65.7 64.1 17.7 5.9 3.8

Cooc
X 93.6 92.3 39.6 0.8 93.0 91.9 75.5

FT 80.4 79.1 60.4 56.1 72.9 51.3 6.4

HSV
X 99.9 91.9 1.9 0.1 79.0 55.3 11.2

FT 98.7 17.7 0.0 0.0 0.1 0.0 0.0

Table 2: Evaluation of post-processing evaluation techniques using

StyleGANFFHQ as a training dataset and testing on 1) StyleGANFFHQ
images (default), 2) StyleGANFFHQ images with different amounts of

Gaussian blur (three kernel sizes), and 3) StyleGANFFHQ images with

different amounts of JPEG compression (three quality factors). The

layout is similar to the previous table.

yield an average accuracy close to 50% (with a balanced

amount of real and generated images). Lastly, some pre-

processing methods seem to decrease default performance.

5.2. Human performance

In Table 4, the results of our survey with 496 participants

are presented. Note that in all tables, real refers to an au-

thentic image from the FFHQ dataset, while fake refers to

a generated image from the StyleGANFFHQ dataset. Out of

all images, 70.1% are labelled correctly. For real images,

the average accuracy is 74.8%, while for fake images it is

65.3%. In the following, we examine the results of 1) in-

termediate feedback, 2) resolution, 3) AI-experience, and

4) upper and lower bound. The cues humans use to distin-

guish these images are analysed in Section C of the supple-

mentary results.

Feedback Table 4 shows the average results of the group

with intermediate feedback (N=233) and the group without

(N=263). As shown, performance on real images is nearly

identical, while performance on fake images is roughly 10%

higher, suggesting that participants can better learn to rec-

ognize fake images when receiving intermediate feedback.

This is supported by an independent samples t-test, yield-

ing a p-value of< 0.005 (with a t-statistic of 3.3). Note that

only 18 images are evaluated in total, and this effect might

be larger with more images. As a sanity check, the distri-

bution of AI-experience among both groups is examined,

which is nearly equal.

Image Resolution When comparing performance with dif-

ferent image resolutions, Table 4 shows that average detec-

tion accuracy of real and fake images decreases when im-

ages of lower resolution are presented. However, for real

images this decrease is small, while for fake images the

difference between highest and lowest resolution is 22.5%.

Note that each participant sees 3 real and 3 fake images of

Model Default Cross-model

Pre-

proc.
Arch. FFHQ CAHQ

StarG

(CAHQ)

GLOW

(CAHQ)

ProG

(CAHQ)

StyleG

(CAHQ)

StyleG

(FFHQ)
Avg*

–
X 99.9 99.9 100 100 99.7 49.5 0.1 62.4

FT 89.3 99.1 100 99.9 78.8 7.9 10.4 51.7

Res1
X 99.6 99.7 97.6 98.5 97.6 2.9 0.2 50.6

FT 65.8 86.6 100 100 84.4 50.0 39.5 60.5

Res3
X 43.0 41.0 83.5 81.6 78.8 52.8 58.0 48.7

FT 49.7 43.6 100 100 76.3 76.3 45.6 53.8

Cooc
X 97.3 96.4 99.2 99.6 94.3 50.1 0.8 61.2

FT 27.6 15.7 88.4 85.7 86.8 86.3 69.3 49.7

HSV
X 99.9 100 100 100 99.7 12.5 0.02 53.1

FT 91.2 94.3 100 100 82.8 28.3 6.1 55.0

Table 3: Evaluation of ’in the wild’ scenario. The models are trained on

two datasets of real images (CAHQ and FFHQ) and three datasets of gen-

erated images (StarGANCAHQ, GLOWCAHQ, and ProGANCAHQ). They

are tested on two versions of StyleGAN images, that are not seen during

training. The layout is similar to the previous tables. * Average of FFHQ,

CAHQ, StyleGANCAHQ and StyleGANFFHQ, with an equal amount of

real and generated images.

Total

avg

Intermediate

Feedback

Image

resolution
AI-experience

No Yes 1024
2

512
2

256
2 Little Much

Real images 74.8 74.8 74.9 78.0 75.0 71.6 66.4 82.2

Fake images 65.3 60.4 70.9 76.5 65.5 54.0 57.1 72.6

All images 70.1 67.6 72.9 77.2 70.2 62.8 61.7 77.4

Table 4: Average accuracies of labelling real and fake images among 1) all

participants, 2) participants without/with intermediate feedback, 3) images

of different resolution, and 4) participants with little/much AI-experience.

each resolution, but the selected images and order of pre-

senting are completely random, excluding the possible in-

fluence of learning. The differences between resolution are

tested with a one-way ANOVA test, yielding a p-value of

<< 0.001 (with F-statistic 49.7). When performing post-

hoc evaluation, we see that all group means differ much

more than the standard error, suggesting that a lower image

resolution makes an image significantly harder to classify,

for the resolution tested in our survey. This is likely due to

details and artefacts being less visible on smaller scales.

AI-experience Table 4 shows the detection accuracies

among two groups of participants with different levels

of AI-experience. The first group (N=259) has much

AI-experience, and consists of AI-students, teachers, and

professionals. The second group (N=218) has little AI-

experience and consists of all others. As shown, the av-

erage level of AI-experience within a group seems to have

a large influence on detection performance. For real and

fake images combined, the difference between little and

much AI-experience is roughly 15%. This difference is sup-

ported by an independent samples t-test, yielding a p-value

of << 0.001 (with a t-statistic of 10.7). Note that people

with little AI-experience recognize fake images correctly in

57.1% of the cases, which is slightly better than random.

Upper and Lower Bound The upper and lower bound of

human performance is examined in Table 5. This is done



Upper bound Lower bound

Much AI

experience

Little AI

experience

Much AI

experience

Little AI

experience

Real images 85.4 69.6 78.9 61.0

Fake images 86.7 76.6 54.9 37.0

All images 86.0 73.1 66.9 49.0

Table 5: Average accuracies of labelling real and fake images in different

setups, ranging from the most easy setup (left columns), which denote av-

erage performance of participants with feedback for 1024x1024 images,

to the most difficult setup (right columns), which denote average perfor-

mance of participants without feedback for 256x256 images. Within both

groups, the performance of participants with little or much AI experience

is shown.

by evaluating the easiest scenario (i.e. with feedback and

1024-res. images) and hardest scenario (i.e. without feed-

back and 256-res. images). Within both scenarios, the dif-

ference between little and much AI-experience is examined.

As becomes clear in Table 5, the highest average detection

accuracy for fake images is 86.7% and the lowest is 37.0%.

Comparison to algorithmic performance A comparison

of algorithmic and human performance on StyleGANFFHQ

data is presented in Figure 5. The upper bound scenario

approximates the most easy setup for both. For algorith-

mic detection this is the case when the model is trained and

tested on the same dataset (StyleGANFFHQ). For humans

this is the upper bound as shown in Table 5. The real-

istic scenario approximates real-world conditions. For al-

gorithmic detection, we formulate this as the ’in the wild’

scenario as shown in Table 3, where only StyleGANFFHQ

results are used. For humans it includes three variants (dis-

played from left to right in Figure 5): 1) an optimistic realis-

tic scenario, assuming humans have average AI-experience,

learn to recognise fake images with feedback, and mainly

see high-resolution images (512 and 1024), 2) an average

realistic scenario (estimated by the average of all survey re-

sults), and 3) a pessimistic realistic scenario, assuming hu-

mans have low AI-experience, do not receive feedback, and

see images of all resolutions. Lastly, the lower bound sce-

nario presents the results of the most difficult setup. For

humans this is the lower bound as shown in 5. For algo-

rithmic detection, the lower bound is set at 50%, which is a

random guess in our two-class classification task with bal-

anced class sizes. Note that its performance in the realistic

scenario is already close to 50%.

6. Conclusion & Discussion

Our work has evaluated two state-of-the-art models for

detecting CNN-generated images, and has proposed three

types of evaluation, along with an ’in the wild’ setup, for

mimicking real-world conditions in which such detection

models will be used. Furthermore, we evaluated the benefits

Figure 5: Comparison of algorithm and human performance in different

scenarios.

of several commonly used pre-processing methods.

Based on our algorithmic experiments, we can conclude

that performance in the easiest (default) scenario doesn’t

generalize well to other evaluation scenarios. Forensic-

Transfer seems more robust in cross-model performance,

whereas Xception seems more robust in post-processing

performance. Unfortunately, there is no single type of pre-

processing that increases performance in multiple scenar-

ios, and an increase in one evaluation setup is often paired

with a decrease in other setups. Furthermore, the benefits of

pre-processing methods are not guaranteed for both models;

i.e. high-pass filters work much better for ForensicTransfer

than for Xception. Our results emphasize the importance of

evaluating multiple scenarios. We emphasize the need for

a benchmark dataset including images generated by multi-

ple models, such that these types of evaluation can be per-

formed and compared to related work.

The results of the survey suggest that humans have trou-

ble recognizing state-of-the-art fake images, which are cor-

rectly classified in roughly two-thirds of the cases. Our re-

sults suggest that the capability of detecting fake images

could be influenced by several factors that may be of impor-

tance in real-world scenarios, such as AI-experience, image

resolution, and feedback. When combining these factors,

we see large differences between the best and the worst case

(86.7% as opposed to 37.0% of fake images correctly rec-

ognized). These results emphasize the need for algorithmic

detection methods to support humans in recognizing such

images, as well as more research into the factors that in-

fluence human performance. Based on our comparison be-

tween algorithms and humans, we see that humans perform

better than our models in the realistic scenario. However,

from our upper bound performance we can conclude that

models can outperform humans when trained and employed

correctly. We encourage future work to pay more attention

to extensiveness of evaluation which will result in more ro-

bust models for real-world scenarios.
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