
Deepfakes Detection with Automatic Face Weighting

Daniel Mas Montserrat, Hanxiang Hao, S. K. Yarlagadda, Sriram Baireddy, Ruiting Shao

János Horváth, Emily Bartusiak, Justin Yang, David Güera, Fengqing Zhu, Edward J. Delp

Video and Image Processing Laboratory (VIPER)

School of Electrical Engineering

Purdue University

West Lafayette, Indiana, USA

Abstract

Altered and manipulated multimedia is increasingly

present and widely distributed via social media platforms.

Advanced video manipulation tools enable the generation

of highly realistic-looking altered multimedia. While many

methods have been presented to detect manipulations, most

of them fail when evaluated with data outside of the datasets

used in research environments. In order to address this

problem, the Deepfake Detection Challenge (DFDC) pro-

vides a large dataset of videos containing realistic manipu-

lations and an evaluation system that ensures that methods

work quickly and accurately, even when faced with chal-

lenging data. In this paper, we introduce a method based on

convolutional neural networks (CNNs) and recurrent neural

networks (RNNs) that extracts visual and temporal features

from faces present in videos to accurately detect manipu-

lations. The method is evaluated with the DFDC dataset,

providing competitive results compared to other techniques.

1. Introduction

Manipulated multimedia is rapidly increasing its pres-

ence on the Internet and social media. Its rise is fueled

by the mass availability of easy-to-use tools and techniques

for generating realistic fake multimedia content. Recent ad-

vancements in the field of deep learning have led to the de-

velopment of methods to create artificial images and videos

that are eerily similar to authentic images and videos. Ma-

nipulated multimedia created using such techniques typi-

cally involving neural networks, such as Generative Adver-

sarial Networks (GAN) [1] and Auto-Encoders (AE) [2], are

generally referred to as Deepfakes. While these tools can be

useful to automate steps in movie production, video game

design, or virtual reality rendering, they are potentially very

damaging if used for malicious purposes. As manipulation

Figure 1. Example of images from DFDC [3] dataset: original im-

age (left) and manipulated image with the swapped face (right).

tools become more accessible, realistic, and undetectable,

the divide between real and fake multimedia is blurred. Fur-

thermore, social media allows for the uncontrolled spread of

manipulated content at a large scale. This spread of misin-

formation damages journalism and news providers as it gets

increasingly difficult to distinguish between reliable and un-

trustworthy information sources.

Human facial manipulations are among the most com-

mon Deepfake forgeries. Through face swaps, an individual

can be placed at some location he or she was never present

at. By altering the lip movement and the associated speech

signal, realistic videos can be generated of individuals say-

ing words they actually never uttered. This type of Deep-

fake manipulation can be very damaging when used to gen-

erate graphic adult content or fake news that can alter the

public opinion. In fact, many images and videos containing

such Deepfake forgeries are already present on adult con-

tent web sites, news articles, and social media.

Image and video manipulations have been utilized for

a long time. Before the advent of Deepfakes, editing

tools such as Photoshop [4] or GIMP [5] have been widely

used for image manipulations. Some common forgeries



include splicing (inserting objects into images) [6], copy

and moving parts within an image (copy-move forgery) [7],

or shadow removal [8]. While research on detecting such

manipulations has been conducted for more than a decade

[6, 9, 10, 8, 11, 12, 13, 7, 14], many techniques fail to

detect more recent and realistic manipulations, especially

when the multimedia alterations are performed with deep

learning methods. Fortunately, there is an increasing ef-

fort to develop reliable detection technology such as AWS,

Facebook, Microsoft, and the Partnership on AI’s Media

Integrity Steering Committee with the Deepfake Detection

Challenge (DFDC) [3].

Advances in deep learning have resulted in a great vari-

ety of methods that have provided groundbreaking results

in many areas including computer vision, natural language

processing, and biomedical applications [15]. While sev-

eral neural networks that detect a wide range of manipu-

lations have been introduced [16, 17, 18, 19, 20, 21], new

generative methods that create very realistic fake multime-

dia [22, 23, 24, 25, 26] are presented every year, leading to

a push and pull problem where manipulation methods try

to fool new detection methods and vice-versa. Therefore,

there is a need for methods that are capable of detecting

multimedia manipulations in a robust and rapid manner.

In this paper, we present a novel model architecture that

combines a Convolutional Neural Network (CNN) with a

Recurrent Neural Network (RNN) to accurately detect fa-

cial manipulations in videos. The network automatically

selects the most reliable frames to detect these manipula-

tions with a weighting mechanism combined with a Gated

Recurrent Unit (GRU) that provides a final probability of a

video being real or being fake. We train and evaluate our

method with the Deepfake Detection Challenge dataset, ob-

taining a final score of 0.321 (log-likelihood error, the lower

the better) at position 117 of 2275 teams (top 6%) of the

public leader-board.

2. Related Work

There are many techniques for face manipulation and

generation. Some of the most commonly used include

FaceSwap [27], Face2Face [28], DeepFakes [25], and Neu-

ralTextures [26]. FaceSwap and Face2Face are computer

graphics based methods while the other two are learning

based methods. In FaceSwap [27], a face from a source

video is projected onto a face in a target video using fa-

cial landmark information. The face is successfully pro-

jected by minimizing the difference between the projected

shape and the target face’s landmarks. Finally, the rendered

face is color corrected and blended with the target video. In

Face2Face [28], facial expressions from a selected face in

a source video are transferred to a face in the target video.

Face2Face uses selected frames from each video to create

dense reconstructions of the two faces. These dense recon-

structions are used to re-synthesize the target face with dif-

ferent expressions under different lighting conditions. In

DeepFakes [25], two autoencoders [2] (with a shared en-

coder) are trained to reconstruct target and source faces. To

create fake faces, the trained encoder and decoder of the

source face are applied on the target face. This fake face

is blended onto the target video using Poisson image edit-

ing [29], creating a Deepfake video. Note the difference

between DeepFakes (capital F), the technique now being

described, and Deepfakes (lowercase f), which is a gen-

eral term for fake media generated with deep learning-based

methods. In NeuralTextures [26], a neural texture of the

face in the target video is learned. This information is used

to render the facial expressions from the source video on the

target video.

In recent years, methods have been developed to detect

such deep learning-based manipulations. In [16], several

CNN architectures have been tested in a supervised set-

ting to discriminate between GAN generated images and

real images. Preliminary results are promising but the

performance degrades as the difference between training

and testing increases or when the data is compressed. In

[17, 18, 19], forensic analysis of GAN generated images re-

vealed that GANs leave some high frequency fingerprints in

the images they generate.

Additionally, several techniques to detect videos con-

taining facial manipulations have been presented. While

some of these methods focus on detecting videos contain-

ing only DeepFake manipulations, others are designed to

be agnostic to the technique used to perform the facial ma-

nipulation. The work presented in [30, 31] use a temporal-

aware pipeline composed by a Convolutional Neural Net-

work (CNN) and a Recurrent Neural Network (RNN) to de-

tect DeepFake videos. Current DeepFake videos are created

by splicing synthesized face regions onto the original video

frames. This splicing operation can leave artifacts that can

later be detected when estimating the 3D head pose. The au-

thors of [32] exploit this fact and use the difference between

the head pose estimated with the full set of facial landmarks

and a subset of them to separate DeepFake videos from

real videos. This method provided competitive results on

the UADFV [33] database. The same authors proposed a

method [34] to detect DeepFake videos by analyzing the

face warping artifacts. The authors of [20] detect manip-

ulated videos generated by the DeepFake and Face2Face

techniques with a shallow neural network that acts on meso-

scopic features extracted from the video frames to distin-

guish manipulated videos from real ones. However, the re-

sults presented in [21] demonstrated that in a supervised

setting, several deep network based models [35, 36, 37]

outperform the ones based on shallow networks when de-

tecting fake videos generated with DeepFake, Face2Face,

FaceSwap, and NeuralTexture.



Figure 2. Block Diagram of our proposed Deepfake detection system: MTCNN detects faces within the input frames, then EfficientNet

extracts features from all the detected face regions, and finally the Automatic Face Weighting (AFW) layer and the Gated Recurrent Unit

(GRU) predict if the video is real or manipulated.

3. Deepfake Detection Challenge Dataset

The Deepfake Detection Challenge (DFDC) [3] dataset

contains a total of 123,546 videos with face and audio ma-

nipulations. Each video contains one or more people and

has a length of 10 seconds with a total of 300 frames. The

nature of these videos typically includes standing or sitting

people, either facing the camera or not, with a wide range

of backgrounds, illumination conditions, and video quality.

The training videos have a resolution of 1920 × 1080 pix-

els, or 1080 × 1920 pixels if recorded in vertical mode.

Figure 1 shows some examples of frames from videos of

the dataset. This dataset is composed by a total of 119,146

videos with a unique label (real or fake) in a training set,

400 videos on the validation set without labels and 4000

private videos in a testing set. The 4000 videos of the test

set can not be inspected but models can be evaluated on it

through the Kaggle system. The ratio of manipulated:real

videos is 1:0.28. Because only the 119,245 training videos

contain labels, we use the totality of that dataset to train and

validate our method. The provided training videos are di-

vided into 50 numbered parts. We use 30 parts for training,

10 for validation and 10 for testing.

A unique label is assigned to each video specifying

whether it contains a manipulation or not. However, it is not

specified which type of manipulation is performed: face,

audio, or both. As our method only uses video information,

manipulated videos with only audio manipulations will lead

to noisy labels as the video will be labeled as fake but faces

will be real. Furthermore, more than one person might be

present in the video, with face manipulations performed on

only one of them.

The private set used for testing evaluates submitted

methods within the Kaggle system and reports a log-

likelihood loss. Log-likelihood loss drastically penalizes

being both confident and wrong. In the worst case, a pre-

diction that a video is authentic when it is actually manip-

ulated, or the other way around, will add infinity to your

error score. In practice, if this worst-case happens, the loss

is clipped to a very big value. This evaluation system poses

an extra challenge, as methods with good performance in

metrics like accuracy, could have very high log-likelihood

errors.

4. Proposed Method

Our proposed method (Figure 2) extracts visual and tem-

poral features from faces by using a combination of a CNN

with an RNN. Because all visual manipulations are located

within face regions, and faces are typically present in a

small region of the frame, using a network that extracts fea-

tures from the entire frame is not ideal. Instead, we focus on

extracting features only in regions where a face is present.

Because networks trained with general image classification

task datasets such as ImageNet [38] have performed well

when transferred to other tasks [39], we use pre-trained

backbone networks as our starting point. Such backbone

networks extract features from faces that are later fed to an

RNN to extract temporal information. The method has three

distinct steps: (1) face detection across multiple frames us-

ing MTCNN [40], (2) feature extraction with a CNN, and

(3) prediction estimation with a layer we refer to as Auto-

matic Face Weighting (AFW) along with a Gated Recurrent

Unit (GRU). Our approach is described in detail in the fol-

lowing subsections, including a boosting and test augmen-

tation approach we included in our DFDC submission.

4.1. Face Detection

We use MTCNN [40] to perform face detection.

MTCNN is a multi-task cascaded model that can produce

both face bounding boxes and facial landmarks simultane-

ously. The model uses a cascaded three-stage architecture to

predict face and landmark locations in a coarse-to-fine man-

ner. Initially, an image pyramid is generated by resizing the

input image to different scales. The first stage of MTCNN

then obtains the initial candidates of facial bounding boxes



and landmarks given the input image pyramid. The second

stage takes the initial candidates from the first stage as the

input and rejects a large number of false alarms. The third

stage is similar to the second stage but with a larger input

image size and deeper structure to obtain the final bound-

ing boxes and landmark points. Non-maximum suppression

and bounding box regression are used in all three stages to

remove highly overlapped candidates and refine the predic-

tion results. With the cascaded structure, MTCNN refines

the results stage by stage in order to get accurate predic-

tions.

We choose this model because it provides good detection

performance on both real and synthetic faces in the DFDC

dataset. While we also considered more recent methods like

BlazeFace [41], which provides faster inferencing, its false

positive rate on the DFDC dataset was considerably larger

than that of MTCNN.

We extract faces from 1 every 10 frames for each video.

In order to speed up the face detection process, we down-

scale the frame by a factor of 4. Additionally, we include

a margin of 20 pixels at each side of the detected bounding

boxes in order to capture a broader area of the head as some

regions such as the hair might contain artifacts useful to de-

tect manipulations. After processing the input frames with

MTCNN, we crop all the regions where faces were detected

and resize them to 224 × 224 pixels.

4.2. Face Feature Extraction

After detecting face regions, a binary classification

model is trained to extract features that can be used to clas-

sify the real/fake faces. The large number of videos that

have to be processed in a finite amount of time for the Deep-

fake Detection Challenge requires networks that are both

fast and accurate. In this work, we use EfficientNet-b5 [42]

as it provides a good trade-off between network parameters

and classification accuracy. Additionally, the network has

been designed using neural architecture search (NAS) al-

gorithms, resulting in a network that is both compact and

accurate. In fact, this network has outperformed previous

state-of-the-art approaches in datasets such as ImageNet

[38] while having fewer parameters.

Since the DFDC dataset contains many high-quality

photo-realistic fake faces, discriminating between real and

manipulated faces can be challenging. To achieve a better

and more robust face feature extraction, we combine Effi-

cientNet with the additive angular margin loss (also known

as ArcFace) [43] instead of a regular softmax+cross-entropy

loss. ArcFace is a learnable loss function that is based on

the classification cross-entropy loss but includes penaliza-

tion terms to provide a more compact representation of the

categories. ArcFace simultaneously reduces the intra-class

difference and enlarges the inter-class difference between

the classification features. It is designed to enforce a mar-

gin between the distance of the sample to its class center and

the distances of the sample to the centers of other classes in

an angular space. Therefore, by minimizing the ArcFace

loss, the classification model can obtain highly discrimina-

tive features for real faces and fake faces to achieve a more

robust classification that succeeds even for high-quality fake

faces.

4.3. Automatic Face Weighting

While an image classification CNN provides a predic-

tion for a single image, we need to assign a prediction for

an entire video, not just a single frame. The natural choice

is to average the predictions across all frames to obtain a

video-level prediction. However, this approach has several

drawbacks. First, face detectors such as MTCNN can erro-

neously report that background regions of the frames con-

tain faces, providing false positives. Second, some videos

might include more than one face but with only one of them

being manipulated. Furthermore, some frames might con-

tain blurry faces where the presence of manipulations might

be difficult to detect. In such scenarios, a CNN could pro-

vide a correct prediction for each frame but an incorrect

video-level prediction after averaging.

In order to address this problem, we propose an auto-

matic weighting mechanism to emphasize the most reli-

able regions where faces have been detected and discard the

least reliable ones when determining a video-level predic-

tion. This approach, similar to attention mechanisms [44],

automatically assigns a weight, wj , to each logit, lj , out-

putted by the EfficientNet network for each jth face region.

Then, these weights are used to perform a weighted aver-

age of all logits, from all face regions found in all sampled

frames to obtain a final probability value of the video being

fake. Both logits and weights are estimated using a fully-

connected linear layer with the features extracted by Effi-

cientNet as input. In other words, the features extracted by

EfficientNet are used to estimate a logit (that indicates if

the face is real or fake) and a weight (that can provide infor-

mation of how confident or reliable is the logit prediction).

The output probability, pw, of a video being false, by the

automatic face weighting is:

pw = σ(

∑N

j=1
wj lj

∑N

j=1
wj

) (1)

Where wj and lj are the weight value and logit obtained

for the jth face region, respectively and σ(.) is the Sigmoid

function. Note that after the fully-connected layer, wj is

passed through a ReLU activation function to enforce that

wj ≥ 0. Additionally, a very small value is added to avoid

divisions by 0. This weighted sum aggregates all the esti-

mated logits providing a video-level prediction.



4.4. Gated Recurrent Unit

The backbone model estimates a logit and weight for

each frame without using information from other frames.

While the automatic face weighting combines the estimates

of multiple frames, these estimates are obtained by using

single-frame information. However, ideally the video-level

prediction would be performed using information from all

sampled frames.

In order to merge the features from all face regions and

frames, we include a Recurrent Neural Network (RNN) on

top of the automatic face weighting. We use a Gated Re-

current Unit (GRU) to combine the features, logits, and

weights of all face regions to obtain a final estimate. For

each face region, the GRU takes as input a vector of di-

mension 2051 consisting of the features extracted from Ef-

ficientNet (with dimension 2048), the estimated logit lj , the

estimated weighting value wj , and the estimated manipu-

lated probability after the automatic face weighting pw. Al-

though lj , wj , pw, and the feature vectors are correlated,

we input all of them to the GRU and let the network itself

extract the useful information. The GRU is composed of

3 stacked bi-directional layers and a uni-directional layer

with a hidden layer with dimension 512. The output of the

last layer of the GRU is mapped through a linear layer and

a Sigmoid function to estimate a final probability pRNN of

the video being manipulated.

4.5. Training Process

We use a pre-trained MTCNN for face detection and

we only train our EfficientNet, GRU, and the Automatic

Face Weighting layers. The EfficientNet is initialized with

weights pre-trained on ImageNet. The GRU and AFW lay-

ers are initialized with random weights. During the train-

ing process, we oversample real videos (containing only

unmanipulated faces) to balance the dataset. The network

is trained end-to-end with 3 distinct loss functions: an Ar-

cFace loss with the output of EfficentNet, a binary cross-

entropy loss with the automatic face weighting prediction

pw, and a binary cross-entropy loss with the GRU predic-

tion pRNN .

The ArcFace loss is used to train the EfficientNet lay-

ers with batches of cropped faces from randomly selected

frames and videos. This loss allows the network to learn

from a large variety of manipulated and original faces with

various colors, poses, and illumination conditions. Note

that ArcFace only trains the layers from EfficientNet and

not the GRU layers or the fully-connected layers that output

the AFW weight values and logits.

The binary cross-entropy (BCE) loss is applied at the

outputs of the automatic face weighting layer and the GRU.

The BCE loss is computed with cropped faces from frames

of a randomly selected video. Note that this loss is based on

the output probabilities of videos being manipulated (video-

level prediction), while ArcFace is a loss based on frame-

level predictions. The BCE applied to pw updates the Ef-

ficientNet and AFW weights. The BCE applied to pRNN

updates all weights of the ensemble (excluding MTCNN).

While we train the complete ensemble end-to-end, we

start the training process with an optional initial step con-

sisting of 2000 batches of random crops applied to the Ar-

cFace loss to obtain an initial set of parameters of the Effi-

cientNet. This initial step provides the network with useful

layers to later train the automatic face weighting layer and

the GRU. While this did not present any increase in detec-

tion accuracy during our experiments, it provided a faster

convergence and a more stable training process.

Due to computing limitations of GPUs, the size of the

network, and the number of input frames, only one video

can be processed at a time during training. However, the

network parameters are updated after processing every 64

videos (for the binary cross-entropy losses) and 256 ran-

dom frames (for the ArcFace loss). We use Adam as the

optimization technique with a learning rate of 0.001.

4.6. Boosting Network

The logarithmic nature of the binary cross-entropy loss

(or log-likelihood error) used at the DFDC leads to large

penalizations for predictions both confident and incorrect.

In order to obtain a small log-likelihood error we want a

method that has both good detection accuracy and is not

overconfident of its predictions. In order to do so, we use

two main approaches during testing: (1) adding a boosting

network and (2) applying data augmentation during testing.

The boosting network is a replica of the previously de-

scribed network. However, this auxiliary network is not

trained to minimize the binary cross-entropy of the real/fake

classification, but trained to predict the error between the

predictions of our main network and the ground truth la-

bels. We do so by estimating the error of the main network

on the logit domain for both the AFW and GRU outputs.

When using the boosting network, the prediction outputted

by the automatic face weighting layer, pbw, is defined as:

pbw = σ(

∑N

j=1
(wj lj + wb

j l
b
j)

∑N

j=1
(wj + wb

j)
) (2)

Where wj and lj are the weights and logits outputted

by the main network and wb
j and lbj , are the weights and

logits outputted by the boosting network for the jth input

face region and σ(.) is the Sigmoid function. In a similar

manner, the prediction outputted by the GRU, pbRNN , is:

pbRNN = σ(lRNN + lbRNN ) (3)

Where lRNN is the logit outputted by the GRU of the

main network, lbRNN is the logit outputted by the GRU of

the boosting network, and σ(.) is the Sigmoid function.



Figure 3. Diagram of the proposed method including the boosting network (dashed elements). The predictions of the main and boosting

network are combined at the AFW layer and after the GRUs. We train the main network with the training set and the boosting network

with the validation set.

While the main network is trained using the training split

of the dataset, described in section 3, we train the boosting

network with the validation split.

Figure 3 presents the complete diagram of our system

when including the boosting network. The dashed elements

and the symbols with superscripts form part of the boost-

ing network. The main network and the boosting network

are combined at two different points: at the automatic face

weighting layer, as described in equation 2, and after the

gated recurrent units, as described in equation 3.

4.7. Test Time Augmentation

Besides adding the boosting network, we perform data

augmentation during testing. For each face region detected

by the MTCNN, we crop the same region in the 2 previous

and 2 following frames of the frame being analyzed. There-

fore we have a total of 5 sequences of detected face regions.

We run the network within each of the 5 sequences and per-

form a horizontal flip in some of the sequences randomly.

Then, we average the prediction of all the sequences. This

approach helps to smooth out overconfident predictions: if

the predictions of different sequences disagree, averaging

all the probabilities leads to a lower number of both incor-

rect and overconfident predictions.

5. Experimental Results

We train and evaluate our method with the DFDC

dataset, described in section 3. Additionally, we compare

the presented approach with 4 other techniques. We com-

pare it with the work presented in [30] and a modified ver-

sion that only process face regions detected by MTCNN.

We also evaluate two CNNs: EfficientNet [42] and Xcep-

tion [37]. For these networks, we simply average the pre-

dictions for each frame to obtain a video-level prediction.

We use the validation set to select the configuration for

each models that provides the best balanced accuracy. Ta-

ble 1 presents the results of balanced accuracy. Because it

is based on extracting features on the entire video, Conv-

LSTM [30] is unable to capture the manipulations that hap-

pen within face regions. However, if the method is adapted

to process only face regions, the detection accuracy im-

proves considerably. Classification networks such as Xcep-

tion [37], which provided state-of-the-art results in Face-

Forensics++ dataset [21], and EfficientNet-b5 [42] show

good accuracy results. Our work shows that by including

an automatic face weighting layer and a GRU, the accuracy

is further improved.

Table 1. Balanced accuracy of the presented method and previous

works.

Method Validation Test

Conv-LSTM [30] 55.82% 57.63%

Conv-LSTM [30] + MTCNN 66.05% 70.78%

EfficientNet-b5 [42] 79.25% 80.62%

Xception [37] 78.42% 80.14%

Ours 92.61% 91.88%

Additionally, we evaluate the accuracy of the predictions

at every stage of our method. Table 2 shows the balanced

accuracy of the prediction obtained by the averaging the

logits predicted by EfficientNet, lj (logits), the prediction of

the automatic face weighting layer, pw (AFW), and the pre-

diction after the gated recurrent unit, pRNN (GRU). We can



Figure 4. Examples of faces with manipulations from DFDC. The

images in the top are incorrectly classified by the network. The

bottom images are correctly classified.

observe that every stage increases the detection accuracy,

obtaining the highest accuracy with the GRU prediction.

Table 2. Balanced accuracy of at different stages of our method.

Method Validation Accuracy

Ours (logits) 85.51%

Ours (AFW) 87.90%

Ours (GRU) 92.61%

Figure 4 shows some examples of correctly (bottom) and

incorrectly (top) detected manipulations. We observed that

the network typically fails when faced with highly-realistic

manipulations that are performed in blurry or low-quality

images. Manipulations performed in high-quality videos

seem to be properly detected, even the challenging ones.

We evaluate the effect of using the boosting network and

data augmentation during testing. In order to so, we use the

private testing set on the Kaggle system and report our log-

likelihood error (the lower the better). Table 3 shows that by

using both the boosting and test augmentation we are able

to decrease our log-likelihood down to 0.321. This place

the method in the position 117 of 2275 teams (5.1%) of the

competition’s public leader-board.

6. Conclusions

In this paper, we present a new method to detect face ma-

nipulations within videos. We show that combining convo-

lutional and recurrent neural networks achieves high detec-

tion accuracies on the DFDC dataset. We describe a method

Table 3. The log-likelihood error of our method with and without

boosting network and test augmentation.

Method Log-likelihood

Baseline 0.364

+ Boosting Network 0.341

+ Test Augmentation 0.321

to automatically weight different face regions and boosting

techniques can be used to obtain more robust predictions.

The method processes videos quickly (in less than eight sec-

onds) with a single GPU.

Although the results of our experiments are promising,

new techniques to generate deepfake manipulations emerge

continuously. The modular nature of the proposed approach

allows for many improvements, such as using different face

detection methods, different backbone architectures, and

other techniques to obtain a prediction from features of mul-

tiple frames. Furthermore, this work focuses on face manip-

ulation detection and dismisses any analysis of audio con-

tent which could provide a significant improvement of de-

tection accuracy in future work.

7. Acknowledgment

This material is based on research sponsored by DARPA

and Air Force Research Laboratory (AFRL) under agree-

ment number FA8750-16-2-0173. The U.S. Government

is authorized to reproduce and distribute reprints for Gov-

ernmental purposes notwithstanding any copyright notation

thereon. The views and conclusions contained herein are

those of the authors and should not be interpreted as nec-

essarily representing the official policies or endorsements,

either expressed or implied, of DARPA and Air Force Re-

search Laboratory (AFRL) or the U.S. Government.

Address all correspondence to Edward J. Delp,

ace@ecn.purdue.edu .

References

[1] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,

D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio,

“Generative adversarial nets,” Proceedings of Advances in

Neural Information Processing Systems, pp. 2672–2680, De-

cember 2014, Montreal, Canada. 1

[2] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning,

MIT Press, 2016, http://www.deeplearningbook.

org. 1, 2

[3] B. Dolhansky, R. Howes, B. Pflaum, N. Baram, and C. C.

Ferrer, “The deepfake detection challenge (dfdc) preview

dataset,” arXiv preprint arXiv:1910.08854, 2019. 1, 2, 3

[4] E. Bailey, Adobe Photoshop: A Beginners Guide to Pho-

toshop Lightroom - The 52 Photoshop Lightroom Tricks You

Didn’t Know Existed!, vol. 1, CreateSpace Independent Pub-

lishing Platform, 2016, North Charleston, SC. 1



[5] The GIMP Development Team, “GIMP,” https://www.

gimp.org. 1

[6] D. Cozzolino and L. Verdoliva, “Noiseprint: a cnn-based

camera model fingerprint,” IEEE Transactions on Informa-

tion Forensics and Security, vol. 15, pp. 144–159, May 2019.

2

[7] M. Barni, Q.-T. Phan, and B. Tondi, “Copy move source-

target disambiguation through multi-branch cnns,” arXiv

preprint arXiv:1912.12640, 2019. 2

[8] S. Yarlagadda, D. Güera, D. M. Montserrat, F. Zhu, E. Delp,

P. Bestagini, and S. Tubaro, “Shadow removal detection and

localization for forensics analysis,” Proceedings of IEEE In-

ternational Conference on Acoustics, Speech and Signal Pro-

cessing, pp. 2677–2681, May 2019, Brighton, UK. 2

[9] D. Cozzolino, G. Poggi, and L. Verdoliva, “Splicebuster: A

new blind image splicing detector,” Proceedings of IEEE

International Workshop on Information Forensics and Secu-

rity, pp. 1–6, January 2015, Rome, Italy. 2

[10] S. K. Yarlagadda, D. Güera, P. Bestagini, F. Maggie Zhu,

S. Tubaro, and E. J. Delp, “Satellite image forgery detection

and localization using gan and one-class classifier,” Elec-

tronic Imaging, vol. 2018, no. 7, pp. 214–1, January 2018.

2

[11] E. R. Bartusiak, S. K. Yarlagadda, D. Güera, P. Bestagini,

S. Tubaro, F. M. Zhu, and E. J. Delp, “Splicing detection

and localization in satellite imagery using conditional gans,”

Proceedings of IEEE Conference on Multimedia Information

Processing and Retrieval, pp. 91–96, March 2019, San Jose,

CA. 2

[12] J. Horváth, D. Güera, S. K. Yarlagadda, P. Bestagini, F. M.

Zhu, S. Tubaro, and E. J. Delp, “Anomaly-based manipula-

tion detection in satellite images,” Networks, vol. 29, pp. 21,

2019. 2

[13] M. Barni, L. Bondi, N. Bonettini, P. Bestagini, A. Costanzo,

M. Maggini, B. Tondi, and S. Tubaro, “Aligned and non-

aligned double jpeg detection using convolutional neural net-

works,” Journal of Visual Communication and Image Repre-

sentation, vol. 49, pp. 153–163, November 2017. 2

[14] D. Güera, S. Baireddy, P. Bestagini, S. Tubaro, and E. J.

Delp, “We need no pixels: Video manipulation detection

using stream descriptors,” Proceedings of the International

Conference on Machine Learning , Synthetic Realities: Deep

Learning for Detecting AudioVisual Fakes Workshop, June

2019, Long Beach, CA. 2

[15] Y. LeCun, Y. Bengio, and G. Hinton, “Deep Learning,” Na-

ture, vol. 521, pp. 436–444, May 2015. 2

[16] F. Marra, D. Gragnaniello, D. Cozzolino, and L. Verdoliva,

“Detection of gan-generated fake images over social net-

works,” Proceedings of the IEEE Conference on Multimedia

Information Processing and Retrieval, pp. 384–389, April

2018, Miami, FL. 2

[17] F. Marra, D. Gragnaniello, L. Verdoliva, and G. Poggi, “Do

gans leave artificial fingerprints?,” Proceedings of IEEE

Conference on Multimedia Information Processing and Re-

trieval, pp. 506–511, March 2019, San Diego, CA. 2

[18] X. Zhang, S. Karaman, and S.-F. Chang, “Detecting and

simulating artifacts in gan fake images,” arXiv preprint

arXiv:1907.06515, 2019. 2

[19] N. Yu, L. S. Davis, and M. Fritz, “Attributing fake images to

gans: Learning and analyzing gan fingerprints,” Proceedings

of the IEEE International Conference on Computer Vision,

pp. 7556–7566, October 2019, Seoul, South Korea. 2

[20] D. Afchar, V. Nozick, J. Yamagishi, and I. Echizen,

“Mesonet: a compact facial video forgery detection net-

work,” Proceedings of the IEEE International Workshop

on Information Forensics and Security, pp. 1–7, December

2018, Hong Kong. 2

[21] A. Rossler, D. Cozzolino, L. Verdoliva, C. Riess, J. Thies,

and M. Nießner, “Faceforensics++: Learning to detect ma-

nipulated facial images,” Proceedings of the IEEE Interna-

tional Conference on Computer Vision, pp. 1–11, October

2019, Seoul, South Korea. 2, 6

[22] Z. Hui, J. Li, X. Wang, and X. Gao, “Image fine-grained

inpainting,” arXiv preprint arXiv:2002.02609, 2020. 2

[23] H. Le and D. Samaras, “Shadow removal via shadow image

decomposition,” Proceedings of the IEEE International Con-

ference on Computer Vision, pp. 8578–8587, October 2019,

Seoul, South Korea. 2

[24] A. Brock, J. Donahue, and K. Simonyan, “Large scale gan

training for high fidelity natural image synthesis,” arXiv

preprint arXiv:1809.11096, 2018. 2

[25] “DeepFakes,” https://github.com/deepfakes/

faceswap. 2

[26] J. Thies, M. Zollhöfer, and M. Nießner, “Deferred neural

rendering: Image synthesis using neural textures,” ACM

Transactions on Graphics, vol. 38, no. 4, pp. 1–12, July

2019. 2

[27] M. Kowalski, “Faceswap,” https://github.com/

MarekKowalski/FaceSwap/. 2

[28] J. Thies, M. Zollhofer, M. Stamminger, C. Theobalt, and

M. Nießner, “Face2face: Real-time face capture and reen-

actment of rgb videos,” in Proceedings of the IEEE con-

ference on Computer Vision and Pattern Recognition, Las

Vegas, NV, June 2016, pp. 2387–2395. 2

[29] P. Pérez, M. Gangnet, and A. Blake, “Poisson image edit-

ing,” Proceedings of the ACM Special Interest Group on

Computer GRAPHics and Interactive Techniques, pp. 313–

318, July 2003, San Diego, California. 2

[30] D. Güera and E. J. Delp, “Deepfake video detection using

recurrent neural networks,” Proceedings of the IEEE Inter-

national Conference on Advanced Video and Signal Based

Surveillance, pp. 1–6, November 2018, Auckland, New

Zealand. 2, 6

[31] E. Sabir, J. Cheng, A. Jaiswal, W. AbdAlmageed, I. Masi,

and P. Natarajan, “Recurrent convolutional strategies for face

manipulation detection in videos,” Interfaces (GUI), vol. 3,

pp. 1, 2019. 2



[32] X. Yang, Y. Li, and S. Lyu, “Exposing deep fakes using

inconsistent head poses,” Proceedings of the IEEE Interna-

tional Conference on Acoustics, Speech and Signal Process-

ing, pp. 8261–8265, May 2019, Brighton, United Kingdom.

2

[33] Y. Li, M.-C. Chang, and S. Lyu, “In ictu oculi: Exposing ai

created fake videos by detecting eye blinking,” Proceeding

IEEE International Workshop on Information Forensics and

Security, pp. 1–7, 2018, Hong Kong. 2

[34] Y. Li and S. Lyu, “Exposing deepfake videos by detecting

face warping artifacts,” arXiv preprint arXiv:1811.00656,

2018. 2

[35] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Wein-

berger, “Densely connected convolutional networks,” Pro-

ceedings of the IEEE conference on Computer Vision and

Pattern Recognition, pp. 4700–4708, July 2017, Honolulu,

HI. 2

[36] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,

“Rethinking the inception architecture for computer vision,”

Proceedings of the IEEE conference on Computer Vision and

Pattern Recognition, pp. 2818–2826, June 2016, Las Vegas,

NV. 2

[37] F. Chollet, “Xception: Deep learning with depthwise sepa-

rable convolutions,” Proceedings of the IEEE conference on

Computer Vision and Pattern Recognition, pp. 1251–1258,

July 2017, Honolulu, HI. 2, 6

[38] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei,

“Imagenet: A large-scale hierarchical image database,” pp.

248–255, August 2009, Miami, FL. 3, 4

[39] M. Huh, P. Agrawal, and A. A. Efros, “What makes

imagenet good for transfer learning?,” arXiv preprint

arXiv:1608.08614, 2016. 3

[40] K. Zhang, Z. Zhang, Z. Li, and Y. Qiao, “Joint face detec-

tion and alignment using multitask cascaded convolutional

networks,” IEEE Signal Processing Letters, vol. 23, April

2016. 3

[41] V. Bazarevsky, Y. Kartynnik, A. Vakunov, K. Raveendran,

and M. Grundmann, “Blazeface: Sub-millisecond neural

face detection on mobile gpus,” Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition

Workshop on Computer Vision for Augmented and Virtual

Reality, June 2019, Long Beach, CA. 4

[42] M. Tan and Q. V. Le, “Efficientnet: Rethinking model

scaling for convolutional neural networks,” arXiv preprint

arXiv:1905.11946, 2019. 4, 6

[43] J. Deng, J. Guo, N. Xue, and S. Zafeiriou, “ArcFace: Ad-

ditive angular margin loss for deep face recognition,” Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, June 2019, Long Beach, CA. 4

[44] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,

A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all

you need,” Proceedings of Advances in Neural Information

Processing Systems, pp. 5998–6008, December 2017, Long

Beach, CA. 4


