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Abstract

The analysis of inks plays a crucial role in the exami-

nation process of questioned documents. To address this

issue, we propose a new approach for ink mismatch detec-

tion in Hyperspectral document (HSD) images based on a

new orthogonal and graph regularized Nonnegative Matrix

Factorization (NMF) model. Although some previous works

have proposed orthogonality constraints to solve cluster-

ing problems in different contexts, the application of such

constraints is not straightforward due to the sum-to-one as-

sumption related to the physical nature of Hyperspectral im-

ages. In this work, we demonstrate that under some acqui-

sition protocols, latent factors in HSD images can be con-

strained to be orthogonal. We also incorporate a graph

regularized term to exploit the geometric information lost

by the matricization of HSD images. Furthermore, we pro-

pose an efficient alternating direction method of multipliers

based algorithm to solve the proposed method. Our em-

pirical validation demonstrates the competitiveness of the

proposed algorithm compared to the state-of-the-art meth-

ods. It shows a high potential to be used as a reliable tool

for quick investigation of questioned documents.

1. Introduction

Forensic document analysis aims to answer questions

about the authenticity of questioned documents that refer to

documents whose authenticity is not certain. Forensic sci-

entists use scientific methods to identify if any changes or

modifications have been made to a document and determine

whether it has been a subject of fakes, forgeries, or not.

Analysis of documents involves physical examinations

of the ink and paper from which questioned documents

are made. The scientific procedures used for inks exami-

nation can be broadly classified into destructive and non-

destructive techniques. Destructive analysis methods, such

as Thin Layer Chromatography (TLC) [2], includes sam-

pling fragments and removing parts from documents for the

purpose of destructive analysis. These methods cause in

general permanent and irreversible changes to documents.

Non-destructive techniques, such as digital imaging and

spectroscopy methods, allow the characterization and iden-

tification of materials without the need for destructive sam-

pling. Indeed, Hyperspectral (HS) and Multispectral (MS)

imaging modalities have demonstrated to be useful for the

analysis of documents, and they are becoming a key tool for

forensic questioned document examination. Spectral imag-

ing has shown to be a powerful non-contact analysis tech-

nique for document analysis. It has opened new prospects

for the detection, characterization, and identification of ma-

terial composition. For instance, it has been used for the de-

tection, visualization, identification and age estimation of

forensic traces [11], artwork authentication [25], age esti-

mation of old manuscripts [27], sketch layer separation [9],

and ink mismatch detection [18].

Spectral imagery allows differentiation between differ-

ent types of materials present on the scanned scene (or spec-

imen) based on their spectral responses. However, one of

the key issues of HSD image processing is the automatic

identification and mapping of materials. NMF factoriza-

tion technique is a powerful tool that can be used to ex-

tract meaningful information from high-dimensional data.

NMF is widely used for remote sensing and data mining

application. Due to its meaningful nonnegativity property,

it has been used successfully to address the spectral unmix-

ing problem, which aims to decomposing mixed pixels into

a set of endmembers and abundance fractions.

In this work, we propose a novel approach for ink forgery

detection in HSD images via a graph orthogonal nonneg-

ative matrix factorization model. The advantages of this

model are: i) it is independent of the number of spectral

bands, ii) it exploits the spectral and spatial information of

pixels as well, and iii) it performs unsupervised classifica-

tion of inks, it does not require training data, and its perfor-

mance is totally independent of the type of ink. Thus, the

proposed method could be used as a reliable tool for quick

investigation of questioned documents.

We summarize our contribution as follows: 1) we de-
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velop a new NMF based method to address the issue of ink

mismatch detection in HSD images. 2) Besides the nonneg-

ativity of low-rank factors, we show that under some con-

ditions, the latent components in HSD images can be con-

strained to be orthogonal (independent), and accordingly,

we incorporate a manifold regularization. 3) We leverage

these three properties to perform source (inks) separation.

4) We develop an ADMM based algorithm for the optimiza-

tion of our model, and we validate our model on real HSD

images.

The remainder of this paper is organized as follows. The

following section presents related works and relevant stud-

ies published in this filed. Section 3 then presents the pro-

posed approach and the optimization method adopted to

solve the formulated problem. The obtained results are pre-

sented in Section 5 with the pertinent discussions. Section 6

closes the paper with a conclusion and future works.

2. Related Work

Several previous studies have addressed the issue of inks

analysis using spectral imaging modalities, and their po-

tential has been demonstrated for the analysis and the de-

termination of forgery, fraud, and manipulation of docu-

ments. For instance, authors in [14] and [29] developed

a HS imaging-based system for forensic analysis of docu-

ment forgery. With the advancements in pattern recognition

capabilities, automated analysis techniques continue to re-

place visual analysis of questioned documents.

Spectral image processing techniques used for inks dis-

crimination and mismatch detection can be broadly cate-

gorized into supervised and unsupervised techniques. Un-

supervised techniques exploit the rich spectral information

obtained by HS imagery and make use of clustering tech-

niques to analyze HS images as in [18, 19, 21]. HS unmix-

ing methods have also been used to address the ink differ-

entiation problem as in [1].

Unlike unsupervised techniques, supervised methods re-

quire training data to build discriminative models. Morales

et al. [23] proposed an approach for ink analysis in hand-

written documents and pen verification using hyperspectral

analysis and Least Square SVM classification. Recently, the

booming of deep learning techniques attracted the attention

of researchers in this field. For instance, Jaleed Khan et

al. [17] proposed a spatio-spectral hybrid CNN based ap-

proach for HSD authentication. Supervised methods, espe-

cially deep learning-based approaches, show great potential

if only we train them with a huge amount of images. Their

performances rely on training data, i.e., they could not deal

with new spectral signatures of inks that they have not seen

before during the learning process.

Previous studies show some limitations to real applica-

tions. Unsupervised approaches are inspired by methods

developed for remote HS imaging without taking into ac-

count the physical properties of HS images of documents,

which make them not well adapted for the analysis of HSD

images. Supervised methods rely on labeled training data,

that might be costly to obtain or not immediately avail-

able. Furthermore, the applicability of supervised classifi-

cation systems is limited to scenarios where prior informa-

tion about the type of inks used in a questioned document is

available, which is not the case in real-life problems. There-

fore, in this work, we develop a new NMF-based method

to handle the inks discrimination issue. Unlike previous

works, the proposed method takes into account the physi-

cal properties of HSD, does not rely on any trained model,

and can work with an arbitrary number of channels.

3. Proposed method

The overall pipeline of our method is shown in Fig. 1.

Given an input set of spectral images (Si)1≤i≤mof an ar-

bitrary number of bands m, the input data cube is first re-

shaped into one data matrix, then factorized using the pro-

posed graph orthogonal NMF model (GONMF-ADMM)

that is described hereafter. Due to the nonnegativity prop-

erty, the obtained parts are directly interpretable without any

further post processing.

Let Y ∈ R
m×n be a data matrix of m features and n

samples, and with only nonnegative entries. It is possi-

ble to approximate Y by the product of two low-rank non-

negative matrices M ∈ R
m×k and A ∈ R

k×n, where

k = min(n,m). The factorization problem then writes:

Y ≈MA.

The performance of the factorization can be measured

using several well-known cost functions to measure the dis-

tance between the data matrix and the two factors product.

For instance, the most used cost functions in the literature

are the Euclidian distance [24], the Kullback-Leibler (KL)

divergence, the Itakura-Saito (IS) divergence [13], and the

Earth Mover’s Distance (EMD) [28]. Generally, the factor-

ization problem yields an optimization problem that mini-

mizes the cost functions used. Furthermore, a regularization

term could be added to the cost function to allow the obten-

tion of low-rank factors with specific properties. Therefore,

the NMF problem can be expressed by a general mathemat-

ical formulation by solving

min
M≥0,A≥0

D(Y|MA) + λR(M, A), (1)

where D denotes a given cost function, R a regulariza-

tion term, and λ is a parameter that controls the importance

of the regularization.

Besides the nonnegativity constraint, the problem in 2

could be constrained with additional conditions depending

on the problem in hand. For instance, in the field of HS im-

age processing, the matrix A of abundances fractions should

also obey the full additivity condition, i.e. the sum-to-one



Figure 1: Pipeline of GONMF-ADMM based forgery detection in HSD images.

constraint defined as
∑k

i=1
Aij = 1 for all j, due to some

physical assumptions related to HS data.

In this work, we are in particular interested in the orthog-

onality constraint that demonstrates effectiveness for data

clustering. Nevertheless, the orthogonality constraint im-

plies the linear independence of the rows of the abundance’s

matrix A, by which each column is allowed to contain at

most one non-zero value. Hence, it is not possible to use it

with the presence of the sum-to-one constraint.

Therefore, to overcome this limitation, we relax the

problem with the following assumptions: 1) spectral docu-

ment images generally have a high resolution because they

are scanned from very close distances, which implies that

the size of pixels is small enough due to the small field-of-

view, thus, it is not reasonable to expect that more than one

material will occupy the area of one pixel; 2) the sum-to-one

condition itself has been criticized in the literature [16]. Ac-

cordingly, by taking into account that the digitization pro-

cess of documents is generally performed in a closed area

and under controlled conditions allows us to do not consider

this sum-to-one condition in our context.

In other hand, the matricization of HSD images involves

flattening each HSD image and stacking them together to

form the 2D data matrix required for matrix factorization.

However, images flattening results in a loss of local struc-

ture between pixels. Thus, to take into account spatial cor-

relations between pixels, we consider the following graph

regularization term [6]:

R(A) = tr(ALAT ),

where tr denotes the matrix trace operator, λ > 0 is a

regularization parameter, L ∈ R
n×n is the graph Laplacian

matrix [8] associated to the data Y.

Finally, by combining the nonnegativity, the orthogonal-

ity constraint, and the manifold regularization together, we

formulate our graph orthogonal NMF (GONMF) model as

follows:

min
M,A

1

2
‖Y−MA‖2F + λtr(ALAT ),

subject to: M ≥ 0, A ≥ 0,AAT = Ik,

(2)

where λ > 0 is a regularization parameter and Ik is an

identity matrix of k elements.

In the literature, the orthogonality constraint has been

addressed using different strategies. Ding et al. [10] de-

veloped an orthogonal nonnegative matrix tri-factorizations

model by integrating the orthogonality as a penalty term

into the objective function of his model, and solving the

problem using the multiplicative update rules. In [26],

the authors incorporated the orthogonality constraint as a

quadratic penalty term and used an alternating scheme to

update the different variables. They adopted an active-set

based method to update the first variable and a projected

gradient scheme for the second variable. Another strategy

was used in [20], based on splitting the orthogonality con-

straint for general constrained problems.

In this paper, we adopt the splitting strategy and the alter-

nating direction method to handle the orthogonality and the

graph regularization in nonnegative matrix factorizations.

The details of the developed optimization approach are pre-

sented in the next section.

4. Optimization approach

The objective function in Eq.2 is bi-convex, i.e. is not

convex for both variables M and A simultaneously. Thus,

like many approaches in the literature [24], we adopt an iter-

ative alternating optimization scheme for minimizing Eq.2

over each variable.

After discarding the terms that are independent of the

variable over which we want to optimize, the minimization

problem with respect to each variable reduces to solving the

following two sub-problems separately:

1. For A fixed, the optimal M can be computed by solv-

ing:

M← argmin
M≥0

1

2
‖Y−MA‖2F (3)

2. For M fixed, the optimal A can be obtained by solving:

A← argmin
A≥0,

AAT
=Ik

1

2
‖Y−MA‖2F + λtr(ALAT ) (4)

Solving Eq. 3 is easy. Nevertheless, Eq. 4 is difficult to

solve with the presence of the nonnegativity, the manifold

regularization, and the orthogonality constraints altogether.

Therefore, we adopt the Alternating Direction Method of

Multipliers (ADMM) [5] scheme, which is a variant of



the augmented Lagrangian method, to solve the two sub-

problems in 3 and 4 efficiently. The pseudo-code given in

Algorithm 1 summarizes the overall optimization scheme of

the original problem in 2.

Algorithm 1 : Pseudo-code for GONMF-ADMM model

Input: X, k, ρ1, ρ2, Tol, niter

Output: M, A

Initialization: M0, A0

1: for i = 1 to niter do

2: Update of M using Algorithm. 2.

3: Update of A using Algorithm. 3.

4: if ((r[i]− r[i− 1])/r[i− 1] < Tol) then

5: break..

6: end if

7: end for

8: return M, A

The optimization steps for each sub-problem are de-

scribed in detail in the next sections.

Optimization step of M

By incorporating a positive indicator function ı(M) to

handle the nonnegativity constraint of the matrix M, that is

defined as:

ı(M) =

{

0, if M ≥ 0.

+∞, otherwise.
, (5)

we can reformulate the subproblem in Eq. 3 as follows:

min
M≥0

1

2
‖Y−MA‖2F + ı(M). (6)

Moreover, by introducing an auxiliary variable X = M,

we rewrite the problem in the following form:

min
M,X

1

2
‖Y−MA‖2F + ı(X),

subject to: M = X, X ≥ 0.

(7)

The augmented Lagrangian for Eq. 7 is then given by:

LM (M,X,Λ1) =
1

2
‖Y−MA‖2F+ı(X)+

ρ1
2
‖M−X+Λ1‖

2
2,

(8)

where Λ1 ∈ R
k×n is a Lagrangian multiplier, and ρ1 is

the corresponding penalty parameter.

Based on ADMM paradigm, we can write down all the

intermediate updates that take place to solve Eq. 8, and we

derive the iterations listed here:



















M
t+1 := argmin

M

1

2
‖Y−MA‖2F + ρ2

2
‖M− X +Λ1‖

2
2,

X
t+1 := argmin

X≥0
ı(X) + ρ2

2
‖M− X +Λ1‖

2
2,

Λ
t+1

1
= Λ1 + M− X

(9)

We note that we derived a specific optimization prob-

lem for each primal variable that only depends on the terms

corresponding to that variable in the augmented Lagrangian

LM . Next, for each primal variable, we solve the corre-

sponding minimization problem.

M minimization step: The optimal value of M that

minimize the corresponding sub-objective function has an

analytical expression that is obtained by setting the gradient

of the augmented Lagrangian with respect to M to zero,

which yields:

M
t+1 = [YHT + ρ1(X +Λ1)][HHT + ρ1I]−1 (10)

X minimization step: The X minimization problem

admits a closed-form solution given by the following prox-

imal operator :

X
t+1 = max(X +Λ1, 0) (11)

The Lagrange multiplier Λ1 is updated using the gra-

dient ascent formula given in the last line of (9). As a

stopping criterion, the normalized norm of the dual resid-

ual r1 = M−X must be smaller than a fixed tolerance.

The resulting ADMM algorithm is summarized in Algo-

rithm 2:

Algorithm 2 : Update of M using ADMM

Input: Y, M, ρ1, Tol, niter

Initialization: Λ1 = 0, X = M

1: for i = 1 to niter do

2: M← [YHT + ρ1(X +Λ1)][HHT + ρ1I]−1.

3: X← max(X−Λ1, 0).
4: Λ1 ← Λ1 + M− X.

5: if ((‖ri1‖ − ‖r
i−1

1 ‖)/‖ri−1

1 ‖ < Tol) then

6: break..

7: end if

8: end for

9: return M, r1

Optimization step of A

Similarly to the first subproblem of Eq. 3, we incorporate

a positive indicator function ı(A) to deal with the nonneg-

ativity constraint of the matrix A. Furthermore, we intro-

duce two auxiliary variables, namely Z and P, for splitting



the nonnegativity and the orthogonality constraints from A,

which yields:

min
A,Z,P

1

2
‖Y−MA‖2F + λtr(ALAT ) + ı(Z),

subject to: A = Z, Z ≥ 0,

A = P, PPT = Ik,

(12)

where

ı(Z) =

{

0, if Z ≥ 0.

+∞, otherwise.
(13)

The underlying optimization problem (12) can be refor-

mulated using the augmented Lagrangian method as fol-

lows:

LA(A,Z,P,Λ2) =
1

2
‖Y−MA‖2F + λtr(ALAT )

+ ı(Z) +
ρ2
2
‖A− Z +Λ2‖

2
2

+
ρ3
2
‖A− P +Λ3‖

2
2,

(14)

where Λ2,Λ3 ∈ R
k×n are the Lagrangian dual variables

associated with the linear constraints introduced in 12, and

ρ2, ρ3 > 0 are the corresponding penalty parameters.

We apply the ADMM algorithm that allows splitting the

optimization problem in Eq. 14 into three subproblems,

from which we derive five sequential steps to update the

involved primal and dual variables, which can be outlined

here:


























A
t+1 := argmin

A

1

2
‖Y−MA‖2F + λtr(ALAT )

+ρ2

2
‖A− Z +Λ2‖

2
2 +

ρ3

2
‖A− P +Λ3‖

2
2,

Z
t+1 := argmin

Z≥0
ı(Z) + ρ2

2
‖A− Z +Λ2‖

2
2,

P
t+1 := argmin

P

ρ3

2
‖A− P +Λ3‖

2
2, s.t.PPT = Ik,

{

Λ
t+1

2
= Λ2 + A− Z,

Λ
t+1

3
= Λ3 + A− P.

(15)

In the next steps, for each primal variable, we solve the

corresponding minimization problem. Notice that another

choice of auxiliary variables and a splitting scheme will lead

to different subproblems.

A minimization step: The first subproblem is an un-

constrained convex optimization problem that has an analyt-

ical expression that can be obtained by setting the first-order

derivative of LA with respect to A to zero.

After taking the first-order derivative and grouping simi-

lar terms together, the gradient is given by:

∂LA

∂A
= (MT M + (ρ2 + ρ3)I)A + 2λAL

+ (MT Y + ρ2(Z −Λ2) + ρ3(P −Λ3)) = 0.

(16)

Eq. 16 has the form of the Sylvester’s equation that is

given by: CA + AD = E, where:














C = MT M + (ρ2 + ρ3)I,

D = 2λL,

E = MT Y + ρ2(Z −Λ2) + ρ3(P −Λ3),

(17)

which can be reformulated using the Kronecker sum and

the vectorization operator in the form [15, Chapter 4]:

(C⊕ D)Vect(A) = Vect(E), (18)

where Vect symbol denotes a matrix vectorization oper-

ator, and the symbol ⊕ denotes the Kronecker sum of two

matrices, which is defined by: C ⊕ D = Ik ⊗ C + L ⊗ In,

where the ⊗ symbol denotes the Kronecker product.

The final form in Eq. 18 is a least square problem that

has a straightforward analytic solution given by:

Vect(A) = (C⊕ D)−1Vect(E) (19)

Z minimization step: The second subproblem has a

closed-form solution given by:

Z
t+1 = max(A +Λ2, 0) (20)

P minimization step: The third subproblem is a con-

strained quadratic problem that has a closed-form solu-

tion [22, 20] given by:

P = UIk×nVT , (21)

where U ∈ R
k×k, V ∈ R

n×n are the left and the right

singular vectors of the matrix F = A+Λ3 respectively, i.e.

F = UDVT .

Algorithm 3 outlines the needed iterations for solving

Eq. 8 to update A. As stopping criterion, we consider r2 =
max{‖riZ‖ − ‖r

i−1

Z ‖)/‖ri−1

Z ‖, ‖riP ‖ − ‖r
i−1

P ‖)/‖ri−1

P ‖},
where rZ = A− Z, and rP = A−P.

5. Experimental results

For the sake of results reproducibility, we report in this

section all the details about the used dataset, the evaluation

metric, the hyper-parameters setting, and the obtained re-

sults. The implementation code will be available here 1.

5.1. Writing ink HSD image Database

Experiments are carried out on the HS multi-ink hand-

written image database 2, which is a dataset of real hand-

written notes scanned with an HS imaging system of 33

1https://github.com/arahiche/GONMF-ADMM
2http://www.csse.uwa.edu.au/%7Eajmal/databases.

html



Algorithm 3 : Update of A using ADMM

Input: Y, M, A, ρ2, ρ3, Tol, niter

Initialization: Λ2 = 0, Λ3 = 0, P = A, Z = A

1: for i = 1 to niter do

2: Calculate C,D, and E using Eq. 17, and update A by

solving:

Vect(A)← (C⊕ D)−1Vect(E), (see Eq. 19).

3: Z
t+1 ← max(A +Λ2, 0).

4: Calculate F = A +Λ3 and update P with :

P = UIk×nVT , (see Eq.21).

5: Λ2 ← Λ2 + A− Z.

6: Λ3 ← Λ3 + A− P.

7: if (ri2 < Tol then

8: break..

9: end if

10: end for

11: return A, r2

bands. The same notes were written by 7 subjects using

10 different inks, including 5 varieties of blue inks and 5

types of black inks. As described in [18, 19], different com-

binations of writing ink images were produced by merging

portions from images of samples written by each subject

with different inks in different ratios. We note that blue and

black ink samples were not inter-mixed because their dif-

ferentiation is trivial, even with a naked eye. Also, authors

choose not to mix inks among different subjects to avoid

any possible bias on the results. Hereafter in this section,

we use the symbol Cij to indicate a two-inks HSD sample

composed of a proportion from two inks i and j.

5.2. Evaluation metric

To measure the quality of ink differentiation, we consid-

ered the same accuracy metric adopted in [12, 18, 19, 1],

which is defined as:

Accuracy =
TP

TP + FP + FN
, (22)

where TP, FP, and FN denote the True positives, the False

positives and the False negatives prediction respectively.

This metric calculates the number of correctly labeled pix-

els of inki divided by the total number of pixels of that ink.

Furthermore, only pixels that correspond to inks are consid-

ered. Therefore, pixels that correspond to the background

(paper) are excluded from this measure.

5.3. Hyperparameters setting

For the initialization of our GONMF-ADMM model,

we observed that a deterministic initialization works bet-

ter than a stochastic (random) initialization. Thus, we used

a deterministic initialization based on SVD-decomposition.

Therefore, each image decomposition was run only one sin-

gle time, this because the orthogonality constraint leads

to unique NMF decomposition. The hyperparameters val-

ues of our model are chosen using the grid search method.

In our experiments, the following sets of values {ρ1 =
10−4, ρ2 = 0.1, ρ3 = 103, λ = 500}, and {ρ1 =
10−3, ρ2 = 10−5, ρ3 = 103, λ = 500} found to be opti-

mal, by which our GONMF-ADMM model achieves high-

est accuracies. As stopping criterions, we set the maxi-

mum number of iterations to niter = 50 for the outer-

loop and niter = 40 for the inner-loop respectively, and

the tolerance tol = 10−5 for the three algorithms, where

r = max{r1, r2}. For the rank selection, which is still an

open research problem, we manually set the number of inks.

We note that, in this study, we did not investigate the auto-

matic rank selection issue. However, other existing tech-

niques can be used to estimate the number of inks present

on each image, such as the Elbow method, and the princi-

pal eigenvalues of the singular value decomposition (SVD).

Finally, the setting of the graph regularization is as follows.

The number of nearest neighbors is set to 10. The weight

matrix is calculated using the Heat kernel weighting defined

by [3]: Wij = e
‖xj−xi‖

2

σ , where we set σ = 1.

5.4. Results and discussion

First, in Fig. 2, we qualitatively compare the inks

isolation results obtained by the unmixing based ap-

proach (HySim+MVES) proposed by [1] and our GONMF-

ADMM approach in terms of abundance maps. In [1], au-

thors combined the HS subspace identification by minimum

error algorithm (HySime) [4], used to estimate the number

of inks (endmembers) present in the image, and the mini-

mum volume enclosing simplex (MVES) algorithm [7] for

HSD images unmixing.

(a) HySime + MVES (taken from [1]) (b) GONMF-ADMM

Figure 2: Qualitative comparison of abundance maps ob-

tained by: (a) the unmixing MVES method [1], and (b)

the proposed GONMF-ADMM algorithm. The two sam-

ples belong to different writers but contain the same type of

ink, which do not have any effect on the final result.

As shown in Fig. 2, the proposed GONMF-ADMM ap-

proach allows better inks separation. Each one of the four

inks (endmembers) present in the original HSD image is

well located and isolated in the output images. In contrast,

the output of the unmixing MVES algorithm shows that inks

are still present as a mixture. We can clearly see that inks



are overlapping in output abundance images.

The quantitative evaluation given in Fig. 3 illustrates the

accuracy achieved by our approach for the segmentation of

HSD images produced by each writer. In this scenario, all

samples contain a combination of two inks. Exceptionally

for quantitative assessment, the output images are thresh-

olded to obtain the required image format for comparison

with the ground truth images.

Figure 3: Qualitative evaluation of the ink mismatch detec-

tion task with two inks combinations. Wk denotes a dataset

of samples of the same writer.

A second qualitative illustration is given in Fig. 4, in

which we qualitatively compare the quality of the multi-

inks segmentation results obtained by our method with the

ground-truth images provided by authors of HS dataset. Ex-

periments are carried out on images with different inks com-

binations and proportions.

Fig. 4 shows the effectiveness of our approach for the

separation between inks regardless of the number of inks

or the proportion of inks present in the image. All samples

show that our approach is able to cluster pixels of different

inks together successfully. Moreover, segmentation’s per-

formance is stable and writer-independent. Despite the fact

that some samples contain a very unbalanced ratio of inks,

the performance achieved by our approach is high.

Finally, we compare our approach’s performance on two

inks mismatch detection task against four state-of-the-art

methods. Table 1 illustrates the results of our GONMF-

ADMM method alongside the results of the K-means based

clustering method for HS images (HSI-All) [18], and three

bands-selection based techniques, namely, the ℓ21 sparse

principal components analysis (L21−SPCA), the sequential

forward band selection (SFBS), and the joint sparse band

selection approaches (JSBS) reported in [19].

As shown in Table 1, our approach performs better for

most cases. A slight improvement is obtained for the com-

binations C12, C13, and C14 of the blue inks, and the com-

binations C12, C13, C14, and C15 of the black inks. The

improvement is significant for the combinations C15, C23,

and C24 of the blue inks. However, for the combinations

Table 1: Qualitative comparison of two inks segmentation

results. Average accuracies obtained for all writers.

Ink Fold HSI-All SFBS ℓ21-SPCA JSBS GONMF-

ADMM

C12 99.8 99.5 99.8 99.8 99.9

C13 61.0 98.2 99.5 99.5 99.8

C14 99.7 99.9 99.9 99.9 99.9

C15 62.3 83.3 59.4 73.6 99.7

Blue C23 50.0 54.3 59.0 59.0 88.3

C24 40.0 58.0 44.1 44.2 77.9

C25 98.9 98.6 99.1 99.1 76.7

C34 45.5 45.6 91.6 93.0 69.8

C35 96.9 95.9 98.9 99.0 84.8

C45 99.7 99.8 99.8 99.8 78.9

C12 99.9 100.0 100.0 100.0 100.0

C13 96.2 80.4 94.5 98.7 99.8

C14 99.2 96.0 99.0 99.6 99.9

C15 98.9 97.5 99.2 99.7 99.8

Black C23 69.5 84.7 91.6 91.6 85.7

C24 61.9 79.9 89.0 89.0 75.4

C25 50.2 82.8 86.1 86.1 75.8

C34 50.3 58.7 60.9 69.3 70.5

C35 60.8 67.1 77.2 84.4 84.5

C45 60.4 60.6 70.7 72.2 78.9

Mean
Blue 75.4 83.3 85.1 86.7 87.6

Black 74.7 81.8 86.8 89.0 87.0

C25 in blue inks and C23, C24, and C25 in black inks the

accuracy declined. A possible reason could be that the hy-

perparameter setting is not optimal for these combinations,

and therefore, more fine-tuning is required to obtain better

results.

Unlike features selection based approaches, i.e., ℓ21-

SPCA, SFBS, SBFI, JSBS, and the unmixing (MVES)

method, in general, our GONMF-ADMM approach does

not require any further post-processing after the decompo-

sition. If the chosen hyperparameters are optimal, then the

proposed GONMF factorization will be able to extract the

latent components targeted with high accuracy.

6. Conclusion

Ink mismatch detection plays an important role in the

routine examination of questioned documents. HS imagery

provides valuable information about the different materials

that might exist in the same document scene and can not be

distinguished visually. Graph orthogonal nonnegative ma-

trix factorization model combines both spectral and spatial

information and allows unsupervised analysis and cluster-

ing of different materials in HSD images. This work opens

a new trend for forgery detection in questioned documents

using nonnegative matrix factorization based methods and

spectral imagery. In future work, we will address the is-

sue of automatic estimation of the number of inks and the

hyperparameters selection.
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(a) HSD sample of blue ink (C12) (b) HSD sample of black ink (C12)

(c) Segmentation results of blue ink with different combinations. (d) Segmentation results of black ink with different combinations.

Figure 4: An illustration of ink mismatch detection on blue and black ink images with different combinations and proportions.

a) and b) raw HSD images, ground truth images are shown in the left column of (c) and (d), respectively, and the segmented

images of blue and black inks are in the right column of (c) and (d). A pseudo-colors coding is used to represent the pixels

of each variant of ink (ink 1 in red, ink 2 in green, ink 3 in bright green, and ink 4 in pink).
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