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Abstract

The analysis of inks plays a crucial role in the exami-
nation process of questioned documents. To address this
issue, we propose a new approach for ink mismatch detec-
tion in Hyperspectral document (HSD) images based on a
new orthogonal and graph regularized Nonnegative Matrix
Factorization (NMF) model. Although some previous works
have proposed orthogonality constraints to solve cluster-
ing problems in different contexts, the application of such
constraints is not straightforward due to the sum-to-one as-
sumption related to the physical nature of Hyperspectral im-
ages. In this work, we demonstrate that under some acqui-
sition protocols, latent factors in HSD images can be con-
strained to be orthogonal. We also incorporate a graph
regularized term to exploit the geometric information lost
by the matricization of HSD images. Furthermore, we pro-
pose an efficient alternating direction method of multipliers
based algorithm to solve the proposed method. Our em-
pirical validation demonstrates the competitiveness of the
proposed algorithm compared to the state-of-the-art meth-
ods. It shows a high potential to be used as a reliable tool
for quick investigation of questioned documents.

1. Introduction

Forensic document analysis aims to answer questions
about the authenticity of questioned documents that refer to
documents whose authenticity is not certain. Forensic sci-
entists use scientific methods to identify if any changes or
modifications have been made to a document and determine
whether it has been a subject of fakes, forgeries, or not.

Analysis of documents involves physical examinations
of the ink and paper from which questioned documents
are made. The scientific procedures used for inks exami-
nation can be broadly classified into destructive and non-
destructive techniques. Destructive analysis methods, such
as Thin Layer Chromatography (TLC) [2], includes sam-
pling fragments and removing parts from documents for the

purpose of destructive analysis. These methods cause in
general permanent and irreversible changes to documents.

Non-destructive techniques, such as digital imaging and
spectroscopy methods, allow the characterization and iden-
tification of materials without the need for destructive sam-
pling. Indeed, Hyperspectral (HS) and Multispectral (MS)
imaging modalities have demonstrated to be useful for the
analysis of documents, and they are becoming a key tool for
forensic questioned document examination. Spectral imag-
ing has shown to be a powerful non-contact analysis tech-
nique for document analysis. It has opened new prospects
for the detection, characterization, and identification of ma-
terial composition. For instance, it has been used for the de-
tection, visualization, identification and age estimation of
forensic traces [1 1], artwork authentication [25], age esti-
mation of old manuscripts [27], sketch layer separation [9],
and ink mismatch detection [18].

Spectral imagery allows differentiation between differ-
ent types of materials present on the scanned scene (or spec-
imen) based on their spectral responses. However, one of
the key issues of HSD image processing is the automatic
identification and mapping of materials. NMF factoriza-
tion technique is a powerful tool that can be used to ex-
tract meaningful information from high-dimensional data.
NMF is widely used for remote sensing and data mining
application. Due to its meaningful nonnegativity property,
it has been used successfully to address the spectral unmix-
ing problem, which aims to decomposing mixed pixels into
a set of endmembers and abundance fractions.

In this work, we propose a novel approach for ink forgery
detection in HSD images via a graph orthogonal nonneg-
ative matrix factorization model. The advantages of this
model are: i) it is independent of the number of spectral
bands, ii) it exploits the spectral and spatial information of
pixels as well, and iii) it performs unsupervised classifica-
tion of inks, it does not require training data, and its perfor-
mance is totally independent of the type of ink. Thus, the
proposed method could be used as a reliable tool for quick
investigation of questioned documents.

We summarize our contribution as follows: 1) we de-



velop a new NMF based method to address the issue of ink
mismatch detection in HSD images. 2) Besides the nonneg-
ativity of low-rank factors, we show that under some con-
ditions, the latent components in HSD images can be con-
strained to be orthogonal (independent), and accordingly,
we incorporate a manifold regularization. 3) We leverage
these three properties to perform source (inks) separation.
4) We develop an ADMM based algorithm for the optimiza-
tion of our model, and we validate our model on real HSD
images.

The remainder of this paper is organized as follows. The
following section presents related works and relevant stud-
ies published in this filed. Section 3 then presents the pro-
posed approach and the optimization method adopted to
solve the formulated problem. The obtained results are pre-
sented in Section 5 with the pertinent discussions. Section 6
closes the paper with a conclusion and future works.

2. Related Work

Several previous studies have addressed the issue of inks
analysis using spectral imaging modalities, and their po-
tential has been demonstrated for the analysis and the de-
termination of forgery, fraud, and manipulation of docu-
ments. For instance, authors in [14] and [29] developed
a HS imaging-based system for forensic analysis of docu-
ment forgery. With the advancements in pattern recognition
capabilities, automated analysis techniques continue to re-
place visual analysis of questioned documents.

Spectral image processing techniques used for inks dis-
crimination and mismatch detection can be broadly cate-
gorized into supervised and unsupervised techniques. Un-
supervised techniques exploit the rich spectral information
obtained by HS imagery and make use of clustering tech-
niques to analyze HS images as in [18, 19, 21]. HS unmix-
ing methods have also been used to address the ink differ-
entiation problem as in [1].

Unlike unsupervised techniques, supervised methods re-
quire training data to build discriminative models. Morales
et al. [23] proposed an approach for ink analysis in hand-
written documents and pen verification using hyperspectral
analysis and Least Square SVM classification. Recently, the
booming of deep learning techniques attracted the attention
of researchers in this field. For instance, Jaleed Khan et
al. [17] proposed a spatio-spectral hybrid CNN based ap-
proach for HSD authentication. Supervised methods, espe-
cially deep learning-based approaches, show great potential
if only we train them with a huge amount of images. Their
performances rely on training data, i.e., they could not deal
with new spectral signatures of inks that they have not seen
before during the learning process.

Previous studies show some limitations to real applica-
tions. Unsupervised approaches are inspired by methods
developed for remote HS imaging without taking into ac-

count the physical properties of HS images of documents,
which make them not well adapted for the analysis of HSD
images. Supervised methods rely on labeled training data,
that might be costly to obtain or not immediately avail-
able. Furthermore, the applicability of supervised classifi-
cation systems is limited to scenarios where prior informa-
tion about the type of inks used in a questioned document is
available, which is not the case in real-life problems. There-
fore, in this work, we develop a new NMF-based method
to handle the inks discrimination issue. Unlike previous
works, the proposed method takes into account the physi-
cal properties of HSD, does not rely on any trained model,
and can work with an arbitrary number of channels.

3. Proposed method

The overall pipeline of our method is shown in Fig. 1.
Given an input set of spectral images (.5;)1<;<mO0f an ar-
bitrary number of bands m, the input data cube is first re-
shaped into one data matrix, then factorized using the pro-
posed graph orthogonal NMF model (GONMF-ADMM)
that is described hereafter. Due to the nonnegativity prop-
erty, the obtained parts are directly interpretable without any
further post processing.

Let Y € R™*™ be a data matrix of m features and n
samples, and with only nonnegative entries. It is possi-
ble to approximate Y by the product of two low-rank non-
negative matrices M € R™** and A € RFX" where
k = min(n,m). The factorization problem then writes:
Y ~ MA.

The performance of the factorization can be measured
using several well-known cost functions to measure the dis-
tance between the data matrix and the two factors product.
For instance, the most used cost functions in the literature
are the Euclidian distance [24], the Kullback-Leibler (KL)
divergence, the Itakura-Saito (IS) divergence [!3], and the
Earth Mover’s Distance (EMD) [28]. Generally, the factor-
ization problem yields an optimization problem that mini-
mizes the cost functions used. Furthermore, a regularization
term could be added to the cost function to allow the obten-
tion of low-rank factors with specific properties. Therefore,
the NMF problem can be expressed by a general mathemat-
ical formulation by solving

Mzr%glzo D(YMA) + AR(M, A), (1)

where D denotes a given cost function, R a regulariza-
tion term, and ) is a parameter that controls the importance
of the regularization.

Besides the nonnegativity constraint, the problem in 2
could be constrained with additional conditions depending
on the problem in hand. For instance, in the field of HS im-
age processing, the matrix A of abundances fractions should
also obey the full additivity condition, i.e. the sum-to-one
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Figure 1: Pipeline of GONMF-ADMM based forgery detection in HSD images.

constraint defined as Zle A;; = 1 for all j, due to some
physical assumptions related to HS data.

In this work, we are in particular interested in the orthog-
onality constraint that demonstrates effectiveness for data
clustering. Nevertheless, the orthogonality constraint im-
plies the linear independence of the rows of the abundance’s
matrix A, by which each column is allowed to contain at
most one non-zero value. Hence, it is not possible to use it
with the presence of the sum-to-one constraint.

Therefore, to overcome this limitation, we relax the
problem with the following assumptions: 1) spectral docu-
ment images generally have a high resolution because they
are scanned from very close distances, which implies that
the size of pixels is small enough due to the small field-of-
view, thus, it is not reasonable to expect that more than one
material will occupy the area of one pixel; 2) the sum-to-one
condition itself has been criticized in the literature [16]. Ac-
cordingly, by taking into account that the digitization pro-
cess of documents is generally performed in a closed area
and under controlled conditions allows us to do not consider
this sum-to-one condition in our context.

In other hand, the matricization of HSD images involves
flattening each HSD image and stacking them together to
form the 2D data matrix required for matrix factorization.
However, images flattening results in a loss of local struc-
ture between pixels. Thus, to take into account spatial cor-
relations between pixels, we consider the following graph
regularization term [6]:

R(A) = tr(ALA"),

where tr denotes the matrix trace operator, A > 0 is a
regularization parameter, L € R™*" is the graph Laplacian
matrix [8] associated to the data Y.

Finally, by combining the nonnegativity, the orthogonal-
ity constraint, and the manifold regularization together, we
formulate our graph orthogonal NMF (GONMF) model as
follows:

1
min = ||Y — MA[/% + Atr(ALAT),
MA 2 (2)
subjectto: M >0, A > 0,AAT =1,
where A > 0 is a regularization parameter and I, is an
identity matrix of k elements.

In the literature, the orthogonality constraint has been
addressed using different strategies. Ding et al. [10] de-
veloped an orthogonal nonnegative matrix tri-factorizations
model by integrating the orthogonality as a penalty term
into the objective function of his model, and solving the
problem using the multiplicative update rules. In [26],
the authors incorporated the orthogonality constraint as a
quadratic penalty term and used an alternating scheme to
update the different variables. They adopted an active-set
based method to update the first variable and a projected
gradient scheme for the second variable. Another strategy
was used in [20], based on splitting the orthogonality con-
straint for general constrained problems.

In this paper, we adopt the splitting strategy and the alter-
nating direction method to handle the orthogonality and the
graph regularization in nonnegative matrix factorizations.
The details of the developed optimization approach are pre-
sented in the next section.

4. Optimization approach

The objective function in Eq.2 is bi-convex, i.e. is not
convex for both variables M and A simultaneously. Thus,
like many approaches in the literature [24], we adopt an iter-
ative alternating optimization scheme for minimizing Eq.2
over each variable.

After discarding the terms that are independent of the
variable over which we want to optimize, the minimization
problem with respect to each variable reduces to solving the
following two sub-problems separately:

1. For A fixed, the optimal M can be computed by solv-
ing:
1
M in —||Y — MA|?
 argmin o | 2 €)

2. For M fixed, the OHtimal A can be obtained by solving:
A argmin Y — MA|% + Mr(ALAT) (4)

AAT =1,

Solving Eq. 3 is easy. Nevertheless, Eq. 4 is difficult to
solve with the presence of the nonnegativity, the manifold
regularization, and the orthogonality constraints altogether.
Therefore, we adopt the Alternating Direction Method of
Multipliers (ADMM) [5] scheme, which is a variant of



the augmented Lagrangian method, to solve the two sub-
problems in 3 and 4 efficiently. The pseudo-code given in
Algorithm 1 summarizes the overall optimization scheme of
the original problem in 2.

Algorithm 1 : Pseudo-code for GONMF-ADMM model

Input: X, &, p1, po, T0l, niter
QOutput: M, A
Initialization: Mg, Ag

1: for ¢ = 1 to niter do

2:  Update of M using Algorithm. 2.

3:  Update of A using Algorithm. 3.
4: if ((r[i) — r[i — 1])/r[i — 1] < Tol) then
5
6

break..
end if
7: end for
8: return M, A

The optimization steps for each sub-problem are de-
scribed in detail in the next sections.

Optimization step of M

By incorporating a positive indicator function (M) to
handle the nonnegativity constraint of the matrix M, that is
defined as:

Z(M):{o, it M > 0. | )

400, otherwise.

we can reformulate the subproblem in Eq. 3 as follows:
in Y~ MAJF 4 2(M) ©
M20 2 o

Moreover, by introducing an auxiliary variable X = M,
we rewrite the problem in the following form:

1 )
min 5 [Y — MA[; +(X), o
M=X,X>0.

The augmented Lagrangian for Eq. 7 is then given by:

subject to:

1
L£a1(MX, Aq) = 2 [[Y=MA[+(X)+ 5 [M-X+Aq 3,
®)

where Ay € R¥*" is a Lagrangian multiplier, and p; is
the corresponding penalty parameter.

Based on ADMM paradigm, we can write down all the
intermediate updates that take place to solve Eq. 8, and we
derive the iterations listed here:

Mt = arg nﬁn%HY ~MA|Z + 2|M - X+ Aq]3,
Xttl.— argr}gig o(X) + 2(M— X+ Aqj3,

A=A, +M X
©)
We note that we derived a specific optimization prob-
lem for each primal variable that only depends on the terms
corresponding to that variable in the augmented Lagrangian
L. Next, for each primal variable, we solve the corre-
sponding minimization problem.

M minimization step: The optimal value of M that
minimize the corresponding sub-objective function has an
analytical expression that is obtained by setting the gradient
of the augmented Lagrangian with respect to M to zero,
which yields:

Mt = [YH” + pi (X + Ay)JHHT + o 70 (10)

X minimization step: The X minimization problem
admits a closed-form solution given by the following prox-
imal operator :

X1 = max(X + Aq,0) (11)

The Lagrange multiplier A; is updated using the gra-
dient ascent formula given in the last line of (9). As a
stopping criterion, the normalized norm of the dual resid-
uval 1 = M — X must be smaller than a fixed tolerance.

The resulting ADMM algorithm is summarized in Algo-
rithm 2:

Algorithm 2 : Update of M using ADMM

Input: Y, M, p;, Tol, niter
Initialization: A1 =0, X =M

1: for i = 1 to niter do

2 M« [YH? + pi (X + Aq)|[HHT 4 pi1)7 1.

33 X ¢+ max(X — Aq,0).

4: A+~ A +M-X.

5.

6

7

if (7] = /i~ 1D/ I7i | < Tol) then
break..
end if
8: end for
9: return M, r;

Optimization step of A

Similarly to the first subproblem of Eq. 3, we incorporate
a positive indicator function #(A) to deal with the nonneg-
ativity constraint of the matrix A. Furthermore, we intro-
duce two auxiliary variables, namely Z and P, for splitting



the nonnegativity and the orthogonality constraints from A,
which yields:
1 2 T
min, §||Y —MA||% + Atr(ALA" ) 4 4(Z),

subjectto: A=7Z, Z > 0, (12)

A=P, PPT =1,

0 if Z>0.
Wzy=4> "= (13)
400, otherwise.

where

The underlying optimization problem (12) can be refor-
mulated using the augmented Lagrangian method as fol-
lows:

1
LA(A,Z,P,As) ==||Y — MA||% + Atr(ALAT
2 F

F(Z) + %HA CZ A2 (14)
+ 2 A - P+ Aql,

where Az, Az € RF*™ are the Lagrangian dual variables
associated with the linear constraints introduced in 12, and
p2, ps > 0 are the corresponding penalty parameters.

We apply the ADMM algorithm that allows splitting the
optimization problem in Eq. 14 into three subproblems,
from which we derive five sequential steps to update the
involved primal and dual variables, which can be outlined
here:

At = arg n§n§||Y —MA|% + Atr(ALAT)

+Z A —Z+ Asfl3 + A — P+ As|3,
Ae argrzn>i£1 o(Z) + B |A —Z+ Asl3,
Pt .= arg m:}n 2 ||A =P+ Aglf3, s.t. PPT =1,

{A"2+1 =As+A-Z,

ALt = A3+ AP
(15)
In the next steps, for each primal variable, we solve the
corresponding minimization problem. Notice that another
choice of auxiliary variables and a splitting scheme will lead
to different subproblems.

A minimization step: The first subproblem is an un-
constrained convex optimization problem that has an analyt-
ical expression that can be obtained by setting the first-order
derivative of £ 4 with respect to A to zero.

After taking the first-order derivative and grouping simi-
lar terms together, the gradient is given by:

aﬁA o T
A = MM (p2 + p3)DA + 20AL 6

+ (M"Y 4 p5(Z — Az) + p3(P — Ag)) = 0.

Eq. 16 has the form of the Sylvester’s equation that is
given by: CA + AD = E, where:

C=M"M+ (p2 + p3)lL,
D = 2)\L, (17)

E=M"Y + p3(Z — Az) + p3(P — As),
which can be reformulated using the Kronecker sum and
the vectorization operator in the form [15, Chapter 4]:

(C @ D)Vect(A) = Vect(E), (18)

where Vect symbol denotes a matrix vectorization oper-
ator, and the symbol & denotes the Kronecker sum of two
matrices, which is defined by: C&D =1,  C+ L ®1,,
where the @ symbol denotes the Kronecker product.

The final form in Eq. 18 is a least square problem that
has a straightforward analytic solution given by:

Vect(A) = (C @ D)~ Vect(E) (19)

Z minimization step: The second subproblem has a
closed-form solution given by:

Z' = max(A + Az,0) (20)

P minimization step: The third subproblem is a con-
strained quadratic problem that has a closed-form solu-
tion [22, 20] given by:

P = UL, V", 1)

where U € R¥*F_ V € R™*" are the left and the right
singular vectors of the matrix F = A + Ag respectively, i.e.
F=UDV".

Algorithm 3 outlines the needed iterations for solving
Eq. 8 to update A. As stopping criterion, we consider 7o =
max{||ry || = [l 1D/l Il bl = e D/l i
wherery = A —Z,andrp = A — P.

5. Experimental results

For the sake of results reproducibility, we report in this
section all the details about the used dataset, the evaluation
metric, the hyper-parameters setting, and the obtained re-
sults. The implementation code will be available here '.

5.1. Writing ink HSD image Database

Experiments are carried out on the HS multi-ink hand-
written image database 2 which is a dataset of real hand-
written notes scanned with an HS imaging system of 33

https://github.com/arahiche/GONMF-ADMM
2http://www.csse.uwa.edu.au/%7Eajmal/databases.
html



Algorithm 3 : Update of A using ADMM

Input: Y, M, A, ps, p3, Tol, niter
Initialization: Ao =0, A3 =0,P=A,Z=A

1: for ¢ = 1 to niter do

2:  Calculate C, D, and E using Eq. 17, and update A by
solving:
Vect(A) + (C @ D)~ Vect(E), (see Eq. 19).
Z*! «+ max(A + A2,0).
Calculate F = A + A3 and update P with :
P = Ul,,, VT, (see Eq.21).
5: As +— A +A 7.
6: As +— A3 +A—P.
7.
8

s w

if (r} < Tol then
break..
9: endif
10: end for
11: return A, ro

bands. The same notes were written by 7 subjects using
10 different inks, including 5 varieties of blue inks and 5
types of black inks. As described in [18, 19], different com-
binations of writing ink images were produced by merging
portions from images of samples written by each subject
with different inks in different ratios. We note that blue and
black ink samples were not inter-mixed because their dif-
ferentiation is trivial, even with a naked eye. Also, authors
choose not to mix inks among different subjects to avoid
any possible bias on the results. Hereafter in this section,
we use the symbol C;; to indicate a two-inks HSD sample
composed of a proportion from two inks ¢ and j.

5.2. Evaluation metric

To measure the quality of ink differentiation, we consid-
ered the same accuracy metric adopted in [12, 18, 19, 1],
which is defined as:

TP

ACCURSY = TPy FP+ N

(22)

where TP, FP, and FN denote the True positives, the False
positives and the False negatives prediction respectively.
This metric calculates the number of correctly labeled pix-
els of ink; divided by the total number of pixels of that ink.
Furthermore, only pixels that correspond to inks are consid-
ered. Therefore, pixels that correspond to the background
(paper) are excluded from this measure.

5.3. Hyperparameters setting

For the initialization of our GONMF-ADMM model,
we observed that a deterministic initialization works bet-
ter than a stochastic (random) initialization. Thus, we used
a deterministic initialization based on SVD-decomposition.

Therefore, each image decomposition was run only one sin-
gle time, this because the orthogonality constraint leads
to unique NMF decomposition. The hyperparameters val-
ues of our model are chosen using the grid search method.
In our experiments, the following sets of values {p; =
1074, p2 = 0.1,p3 = 103, X = 500}, and {p; =
10723, p2 = 107%, p3 = 103, A\ = 500} found to be opti-
mal, by which our GONMF-ADMM model achieves high-
est accuracies. As stopping criterions, we set the maxi-
mum number of iterations to niter = 50 for the outer-
loop and niter = 40 for the inner-loop respectively, and
the tolerance tol = 10~ for the three algorithms, where
r = max{ry,r2}. For the rank selection, which is still an
open research problem, we manually set the number of inks.
We note that, in this study, we did not investigate the auto-
matic rank selection issue. However, other existing tech-
niques can be used to estimate the number of inks present
on each image, such as the Elbow method, and the princi-
pal eigenvalues of the singular value decomposition (SVD).
Finally, the setting of the graph regularization is as follows.
The number of nearest neighbors is set to 10. The weight
matrix is calculated using the Heat kernel weighting defined

2
llwj —a |

by [3: Wi =e™ =

, where we set o = 1.

5.4. Results and discussion

First, in Fig. 2, we qualitatively compare the inks
isolation results obtained by the unmixing based ap-
proach (HySim+MVES) proposed by [ ] and our GONMF-
ADMM approach in terms of abundance maps. In [1], au-
thors combined the HS subspace identification by minimum
error algorithm (HySime) [4], used to estimate the number
of inks (endmembers) present in the image, and the mini-
mum volume enclosing simplex (MVES) algorithm [7] for
HSD images unmixing.

L. .

Pwps o

e lazy .k‘)
(b) GONMF-ADMM
Figure 2: Qualitative comparison of abundance maps ob-
tained by: (a) the unmixing MVES method [1], and (b)
the proposed GONMF-ADMM algorithm. The two sam-
ples belong to different writers but contain the same type of
ink, which do not have any effect on the final result.

(a) HySime + MVES (taken from [1])

As shown in Fig. 2, the proposed GONMF-ADMM ap-
proach allows better inks separation. Each one of the four
inks (endmembers) present in the original HSD image is
well located and isolated in the output images. In contrast,
the output of the unmixing MVES algorithm shows that inks
are still present as a mixture. We can clearly see that inks



are overlapping in output abundance images.

The quantitative evaluation given in Fig. 3 illustrates the
accuracy achieved by our approach for the segmentation of
HSD images produced by each writer. In this scenario, all
samples contain a combination of two inks. Exceptionally
for quantitative assessment, the output images are thresh-
olded to obtain the required image format for comparison
with the ground truth images.

100.000
mBlue ink mBlack ink
90.000

80.000
70.000
60.000
50.000
40.000
30.000
20.000
10.000
0.000
Weé w7

w1 w2 W3D tasetsW4 W5
Figure 3: Qualitative evaluafion of the ink mismatch detec-
tion task with two inks combinations. Wy, denotes a dataset
of samples of the same writer.

Accuracy (%)

A second qualitative illustration is given in Fig. 4, in
which we qualitatively compare the quality of the multi-
inks segmentation results obtained by our method with the
ground-truth images provided by authors of HS dataset. Ex-
periments are carried out on images with different inks com-
binations and proportions.

Fig. 4 shows the effectiveness of our approach for the
separation between inks regardless of the number of inks
or the proportion of inks present in the image. All samples
show that our approach is able to cluster pixels of different
inks together successfully. Moreover, segmentation’s per-
formance is stable and writer-independent. Despite the fact
that some samples contain a very unbalanced ratio of inks,
the performance achieved by our approach is high.

Finally, we compare our approach’s performance on two
inks mismatch detection task against four state-of-the-art
methods. Table 1 illustrates the results of our GONMF-
ADMM method alongside the results of the K-means based
clustering method for HS images (HSI-All) [18], and three
bands-selection based techniques, namely, the /o; sparse
principal components analysis (Lo; —SPCA), the sequential
forward band selection (SFBS), and the joint sparse band
selection approaches (JSBS) reported in [19].

As shown in Table 1, our approach performs better for
most cases. A slight improvement is obtained for the com-
binations C'2, C13, and C14 of the blue inks, and the com-
binations C15, C13, C14, and C45 of the black inks. The
improvement is significant for the combinations C15, Cas,
and Cy4 of the blue inks. However, for the combinations

Table 1: Qualitative comparison of two inks segmentation
results. Average accuracies obtained for all writers.

Ink Fold HSI-AllL SFBS  ¢21-SPCA  JSBS  GONMF-
ADMM
Cia 99.8 99.5 99.8 99.8 99.9
Cis 61.0 98.2 99.5 99.5 99.8
Cia 99.7 99.9 99.9 99.9 99.9
Cis 62.3 83.3 59.4 73.6 99.7
Blue | Cas 50.0 54.3 59.0 59.0 88.3
Cay 40.0 58.0 44.1 442 719
Cas 98.9 98.6 99.1 99.1 76.7
C3y 455 45.6 91.6 93.0 69.8
Css 96.9 95.9 98.9 99.0 84.8
Cius 99.7 99.8 99.8 99.8 78.9
Cia 99.9 100.0 100.0 100.0  100.0
Cis 96.2 80.4 94.5 98.7 99.8
Cia 99.2 96.0 99.0 99.6 99.9
Cis 98.9 97.5 99.2 99.7 99.8
Black| Cas 69.5 84.7 91.6 91.6 85.7
Cay 61.9 79.9 89.0 89.0 754
Cas 50.2 82.8 86.1 86.1 75.8
Cayq 50.3 58.7 60.9 69.3 70.5
Css 60.8 67.1 712 84.4 84.5
Cys 60.4 60.6 70.7 72.2 78.9
Mean Blue 75.4 83.3 85.1 86.7 87.6
Black 74.7 81.8 86.8 89.0 87.0

(55 in blue inks and Cas3, Coy, and Cas in black inks the
accuracy declined. A possible reason could be that the hy-
perparameter setting is not optimal for these combinations,
and therefore, more fine-tuning is required to obtain better
results.

Unlike features selection based approaches, i.e., fo1-
SPCA, SFBS, SBFI, JSBS, and the unmixing (MVES)
method, in general, our GONMF-ADMM approach does
not require any further post-processing after the decompo-
sition. If the chosen hyperparameters are optimal, then the
proposed GONMF factorization will be able to extract the
latent components targeted with high accuracy.

6. Conclusion

Ink mismatch detection plays an important role in the
routine examination of questioned documents. HS imagery
provides valuable information about the different materials
that might exist in the same document scene and can not be
distinguished visually. Graph orthogonal nonnegative ma-
trix factorization model combines both spectral and spatial
information and allows unsupervised analysis and cluster-
ing of different materials in HSD images. This work opens
a new trend for forgery detection in questioned documents
using nonnegative matrix factorization based methods and
spectral imagery. In future work, we will address the is-
sue of automatic estimation of the number of inks and the
hyperparameters selection.
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(a) HSD sample of blue ink (C12) (b) HSD sample of black ink (C2)
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(c) Segmentation results of blue ink with different combinations. (d) Segmentation results of black ink with different combinations.

Figure 4: An illustration of ink mismatch detection on blue and black ink images with different combinations and proportions.
a) and b) raw HSD images, ground truth images are shown in the left column of (c) and (d), respectively, and the segmented
images of blue and black inks are in the right column of (c) and (d). A pseudo-colors coding is used to represent the pixels
of each variant of ink (ink 1 in red, ink 2 in green, ink 3 in bright green, and ink 4 in pink).
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