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Abstract

Regarding image forensics, researchers have proposed

various approaches to detect and/or localize manipulations,

such as splices. Recent best performing image-forensics al-

gorithms greatly benefit from the application of deep learn-

ing, but such tools can be vulnerable to adversarial attacks.

Due to the fact that most of the proposed adversarial exam-

ple generation techniques can be used only on end-to-end

classifiers, the adversarial robustness of image-forensics

methods that utilize deep learning only for feature extrac-

tion has not been studied yet. Using a novel algorithm ca-

pable of directly adjusting the underlying representations

of patches we demonstrate on three non end-to-end deep

learning-based splice localization tools that hiding manip-

ulations of images is feasible via adversarial attacks. While

the tested image-forensics methods, EXIF-SC, SpliceRadar,

and Noiseprint, rely on feature extractors that were trained

on different surrogate tasks, we find that the formed ad-

versarial perturbations can be transferable among them re-

garding the deterioration of their localization performance.

1. Introduction

There is an increasing demand for tools capable of de-

tecting manipulated digital media, including fake pictures.

Researchers proposed various approaches to detect and/or

localize image manipulations. While detection only pro-

vides a verdict on the authenticity of the picture in ques-

tion, localization shows the tampered pixels of the manip-

ulated image and, therefore, gives us a better insight about

the nature and goal of the modification. Recent advances

in image forensics are, at least, partially due to the appli-

cation of machine learning as some of the best perform-

ing splice localization systems are deep learning-based ap-

proaches [1, 15, 11, 7, 28, 24, 26].

Although the utilization of deep learning yields improve-

ments in image forensics, deep learning models can be ma-

nipulated. Szegedy et al. [25] demonstrated that machine

Figure 1: ADVERSARIAL EXAMPLE GENERATION. Adver-

sarial attacks on networks performing recognition tasks, as shown

on the left, are simple as there is one loss function that combines

the scores from the classes and it can be back-propagated to the in-

put image. Splice localization tools, displayed on the right, break

their input image into 100s or 1000s of patches that often over-

lap. Then a feature representation is extracted for each patch, from

which group statistics identify discrepancies yielding the localiza-

tion of manipulated regions. In such systems there is no single loss

function to target and there is also no differential path backwards

through the statistical processes. This paper develops an alterna-

tive attack by directly manipulating the patch representations.

learning models, including the state-of-the-art deep neural

networks, can misclassify slightly perturbed, otherwise cor-

rectly classified inputs. The existence of such adversarial



examples raises fundamental questions about the general-

ization properties and the real-world applications of ma-

chine learning models.

Researchers developed various counter-forensics tools to

impede traditional multimedia-forensics methods – Barni et

al. [3] provides a detailed overview on the subject area –

but the adversarial robustness of the latest deep learning-

based manipulation localization approaches has not been

analyzed yet. While the latest image-forensics methods uti-

lize deep learning models for extracting feature representa-

tions to localize manipulations, most adversarial attacks are

capable of forming adversarial perturbations only on end-

to-end recognition systems [25, 12, 17, 4, 19, 18, 8]. Con-

sequently, as visually demonstrated in Figure 1, such ap-

proaches are not suitable for performing adversarial attacks

on non end-to-end systems.

In this paper, we show that non end-to-end deep learning-

based splice localization tools can be manipulated via ad-

versarial attacks. We perform experiments on three of the

best performing tools that are available, EXIF-SC [15],

SpliceRadar [11], and Noiseprint [7]. Our experiments

on three datasets demonstrate that the splice localization

performance of the targeted deep learning-based image-

forensics tools can significantly deteriorate due to our novel

adversarial attack. Namely, by imperceptibly and simulta-

neously perturbing each image patch, we can hide manipu-

lations of spliced images from the targeted image-forensics

methods. We find that adversarial perturbations between

the three image-forensics tools can be transferable, with

different effectiveness. For instance, the adversarial exam-

ples generated on EXIF-SC tend to greatly decrease the lo-

calization performance of SpliceRadar. Interestingly, this

transferability appears to be asymmetric as it does not oc-

cur in the other direction. Overall, our experimental results

suggest that Noiseprint is the most robust among the three

tested image-forensics tools.

2. Related Work

Many image-forensics techniques, especially manipula-

tion detection and localization approaches, rely on artifacts

that are introduced by the image formation pipeline. The

idea is that manipulations, although they may not leave any

visual clues, alter such underlying artifacts of images [20].

EXIF-SC proposed by Huh et al. [15] utilizes EXIF

metadata for manipulation detection and localization.

Given a pair of image patches, a Siamese network has been

trained to predict the probability that patches share the same

value for each of the 83 EXIF metadata attributes. Each

branch of the network produces a 4096-dimensional fea-

ture vector which represents the EXIF metadata information

of the particular patch. Following that, a two-layer Multi-

Layer Perceptron (MLP) is applied to combine the EXIF

metadata consistency predictions to an overall consistency.

Finally, mean shift [5] is used for finding the most consistent

mode among all consistency maps of the selected patches.

SpliceRadar of Ghosh et al. [11] relies on low-level im-

age statistics related to camera models and disregards high-

level features connected to semantics. The feature extractor

has been trained via a surrogate task of camera model iden-

tification. After an image patch is fed into a learned and

constrained convolutional layer mimicking the filters pro-

posed in [10], mutual information computed between the

patch and its corresponding intermediate feature represen-

tation is used as a penalty to further suppress semantics.

During inference, a 100-dimensional feature representation

is obtained for each image patch. Similar to [6], a Gaussian

Mixture Model (GMM) with two components is applied to

localize genuine and forged regions of the particular image

based upon the feature representation of the patches.

Noiseprint proposed by Cozzolino et al. [7] extracts

noise residuals – called noiseprints – from images and uti-

lizes those patterns as camera model fingerprints. Based on

a convolutional image denoiser proposed in [27], the au-

thors train a Siamese network to classify whether a pair of

patches originate from the same camera model and loca-

tion. Each branch of the network yields a 2-D feature map

which represents the camera noise residuals. A distance-

based logistic loss is applied during training to ensure small

distances between noiseprints that belong to same camera

model/location and large distances otherwise. During infer-

ence, noiseprint is extracted via the trained image denoiser

for the particular image. With the assumption that genuine

and forged patches originate from different camera models

and, therefore, yield discrepancies on noise residuals of the

corresponding patches, Noiseprint, similar to [6], utilizes a

GMM to separate genuine and manipulated regions.

The feasibility and effectiveness of adversarial attacks

as counter-forensics on non end-to-end deep learning-based

manipulation localization approaches, such as EXIF-SC,

SpliceRadar, or Noiseprint, have not been analyzed yet.

Güera et al. [13] showed that an end-to-end Convolutional

Neural Network (CNN), which was trained to identify the

camera source of images, can be spoofed via adversarial at-

tacks, such as the Fast Gradient Sign (FGS) method [12]

or the Jacobian-based Saliency Map Attack (JSMA) [19].

Barni et al. [2] assessed the transferability of adversarial ex-

amples formed via the iterative FGS [17] and JSMA meth-

ods using two CNN architectures that were trained to de-

tect image resizing and median filtering, respectively. Note

that the two previously mentioned related works experiment

with adversarial attacks on end-to-end networks. Also,

those image-forensics algorithms perform manipulation de-

tection rather than localization.

To perform adversarial attacks on EXIF-SC, SpliceR-

adar, or Noiseprint, adversaries need to directly manipulate

the internal feature representations these image-forensics



methods rely on. The approach of Sabour et al. [23] yields

adversarial examples that cause misclassifications and also

mimic the internal representations of targeted inputs. They

use the computationally expensive L-BFGS optimization

technique, which limits the application of their technique.

The Layerwise Origin-Target Synthesis (LOTS) of Rozsa

et al. [21, 22] is similar as it is also capable of directly

manipulating internal representations, but it is computation-

ally more efficient. Inkawhich et al. [16] used an approach

very similar to LOTS to show its effectiveness of forming

transferable adversarial examples between end-to-end deep

learning-based recognition systems. To experiment with the

targeted image-forensics methods, we adapt LOTS to simul-

taneously manipulate the feature representations of overlap-

ping patches representing the spliced images.

3. Approach

While the targeted image-forensics algorithms solve the

same localization task on manipulated images very dif-

ferently, from a bird’s-eye view, their architectures show

some similarities. Namely, they extract feature representa-

tions from patches and utilize those for splice localization.

While SpliceRadar and Noiseprint simply perform cluster-

ing based upon the extracted feature representations using

a two-component Gaussian Mixture Model (GMM), EXIF-

SC derives consistency maps for each patch using their fea-

ture representations and combines those to identify discrep-

ancies. Consequently, if an adversary is able to modify

pixels of patches and make feature representations of those

similar, these image-forensics tools will fail to differentiate

authentic and manipulated regions.

To be able to perform adversarial attacks on the targeted

image-forensics methods, we adapt LOTS [21, 22] to simul-

taneously manipulate the feature representations of image

patches that these splice localization tools rely on. Consid-

ering a manipulated image X and its corresponding set of

patches P , we start with identifying authentic patches, de-

noted as A, from P . We define a patch authentic if and only

if each of its pixels are authentic. Next, we specify the tar-

get representation t to be the mean feature representation of

authentic patches. Our goal is to make both authentic and

manipulated patches mimic t with their feature representa-

tions. To do so, for each patch we utilize a Euclidean loss

defined on its feature representation f (Pi) and the target

representation t, and apply its gradient with respect to the

pixels of patch Pi to move its feature representation closer

to t. These patch-gradients can be defined as

ηi(Pi, t) = ∇Pi

(

1

2
‖t− f(Pi)‖

2

)

, i = 0, ..., L , (1)

where L is the number of patches for image X . Note that

patches (P ) and feature representations of patches (f (Pi))
are obtained as defined by the targeted image-forensics tool.

The targeted image-forensics methods can rely on mul-

tiple, sometimes overlapping, patches to localize manipu-

lated regions of images. Therefore, we simply combine

the calculated patch-gradients ηi(Pi, t) according to their

corresponding locations on the particular image X to ob-

tain G (P, t). Note that G has the same dimensions as X .

We calculate and apply the combined gradients iteratively.

Therefore, our algorithm can be formalized as

X0 = X, Xn+1 = Xn − α
G
(

P (n), t
)

∥

∥G
(

P (n), t
)
∥

∥

∞

, (2)

where P (n) refers to the patches of Xn, and α defines the

step-size. After applying the scaled and combined gradients

to Xn, we clip pixels to be in the range of [0, 255]. Note that

the number of patches and their locations remain the same,

while pixel-values for P (n) can vary between iterations.

In our experiments, we run this algorithm for a prede-

fined number of iterations with a fixed step-size α, and

choose the perturbed image Xn with patches having the

smallest average distance from target t. After identifying

the best, we round pixel-values and save the resulting per-

turbed image.

4. Experiments

In this section, after describing the experimental setup,

we present the results of our adversarial attacks on three non

end-to-end deep learning-based image-forensics methods.

4.1. Experimental setup

To help reproducability and future comparisons, we aim

at revealing all details about our experiments and justifying

various decisions we made for the experimental setup.

Targeted image-forensics algorithms. Due to the na-

ture of white-box attacks, our selection is limited to ap-

proaches with available source code. Consequently, we

choose EXIF-SC [15], SpliceRadar [11], and Noiseprint

[7]. As the Columbia dataset contains smaller images

than DSO-1, we slightly adjust SpliceRadar for the former

dataset by changing the stride of patches from 48 to 24 pix-

els. This modification allows SpliceRadar to perform bet-

ter due to the increased number of patches via the smaller

stride. Regarding the adapted LOTS, while attacking EXIF-

SC and SpliceRadar, we aim at mimicking the mean feature

representations of authentic patches with the 4096- and 100-

dimensional feature vectors of patches, respectively. The

patch sizes and their locations are identical to those used

for inference. For Noiseprint – based on preliminary exper-

iments – we utilize 8×8 pixel, non-overlapping patches for

both defining the target as the mean feature representation

of authentic patches and then moving feature representa-

tions of all patches closer to the specified target. Other than



LOCALIZATION METHOD COLUMBIA DSO-1 NC16

(results on spliced images) F1 MCC AUC MAP F1 MCC AUC MAP F1 MCC AUC MAP

B
L

EXIF-SC 0.911 0.878 0.980 0.952 0.568 0.517 0.845 0.526 0.377 0.359 0.796 0.340

SpliceRadar 0.785 0.698 0.877 0.758 0.690 0.656 0.912 0.657 0.399 0.382 0.813 0.349

Noiseprint 0.816 0.736 0.905 0.817 0.800 0.782 0.928 0.775 0.415 0.404 0.781 0.352

W
B

A

EXIF-SC 0.696 0.553 0.812 0.688 0.350 0.249 0.691 0.266 0.327 0.308 0.769 0.281

SpliceRadar 0.583 0.365 0.691 0.498 0.362 0.274 0.687 0.273 0.305 0.289 0.756 0.246

Noiseprint 0.748 0.636 0.859 0.769 0.573 0.515 0.812 0.506 0.332 0.311 0.730 0.273

T
R

A

EXIF-SC on SpliceRadar Ex. 0.896 0.860 0.973 0.937 0.557 0.507 0.845 0.516 0.378 0.360 0.795 0.341

EXIF-SC on Noiseprint Ex. 0.887 0.849 0.970 0.933 0.556 0.502 0.840 0.513 0.375 0.360 0.797 0.338

SpliceRadar on EXIF-SC Ex. 0.583 0.364 0.692 0.498 0.569 0.524 0.859 0.515 0.344 0.330 0.786 0.291

SpliceRadar on Noiseprint Ex. 0.719 0.587 0.825 0.681 0.676 0.640 0.903 0.637 0.389 0.367 0.807 0.332

Noiseprint on EXIF-SC Ex. 0.729 0.610 0.855 0.746 0.679 0.638 0.876 0.648 0.321 0.301 0.747 0.264

Noiseprint on SpliceRadar Ex. 0.702 0.564 0.818 0.670 0.735 0.704 0.911 0.720 0.355 0.335 0.763 0.304

All Authentic Attack 0.570 0.276 N/A N/A 0.279 0.136 N/A N/A 0.174 0.125 N/A N/A

Table 1: QUANTITATIVE RESULTS. This table shows performance measures for EXIF-SC, SpliceRadar, and Noiseprint on the ma-

nipulated images of the Columbia, DSO-1, and NC16 datasets, respectively. We show the baseline performances (BL) and how the

manipulation localization performances of the targeted image-forensics methods change due to adversarial white-box attacks (WBA) and

the transferability (TRA) of the formed adversarial perturbations. The last row (All Authentic Attack) presents the applicable measures for

ideal attacks where each pixel is declared authentic by the targeted image-forensics tool.

the aforementioned modifications, we use the three image-

forensics methods with their default settings.

Datasets. Regarding the publicly available datasets that

are commonly used in the literature for evaluating image-

forensics tools, we choose two on which the targeted image-

forensics methods perform well. Therefore, forming ad-

versarial perturbations for these spliced images is more

challenging. These are the Columbia [14] and DSO-1 [9]

datasets containing 180 and 100 spliced images, respec-

tively, along with manipulation masks. Comparing the two

datasets, we would like to highlight that the images of

Columbia contain larger, very perceptible spliced regions.

Note that we have excluded 5 of the 100 DSO-1 images

from our experiments as the dimensions of the spliced im-

ages and their corresponding masks differ. In addition to

Columbia and DSO-1, we also run experiments on the more

challenging NC161 dataset which was collected for the Me-

dia Forensics Challenge2. Compared to Columbia or DSO-

1, NC16 is a relatively large dataset containing 564 images

with a great variety regarding image sizes, sizes of manipu-

lated regions, acquired camera models, etc.

Attacks. We utilize the algorithm that we described in

Section 3. Based on small-scale experiments, we have cho-

sen step-size of 5 pixels (α = 5) and iterations to be limited

to 50. Limiting the number of iterations naturally requires

a larger step-size to be able to mimic the predefined target.

Furthermore, with a larger step-size, it is less likely that the

algorithm will get stuck in a local optima regarding the sur-

face of the Euclidean loss. While these settings might yield

sub-optimal results, we can limit the computational costs

1https://www.nist.gov/itl/iad/mig/

nimble-challenge-2017-evaluation
2https://www.nist.gov/itl/iad/mig/

media-forensics-challenge

LOCALIZATION METHOD NC16 SUBSET

(results on spliced images) F1 MCC AUC MAP
B

L
EXIF-SC 0.843 0.746 0.925 0.864

SpliceRadar 0.823 0.734 0.912 0.827

Noiseprint 0.837 0.754 0.868 0.799

W
B

A

EXIF-SC 0.644 0.542 0.851 0.631

SpliceRadar 0.602 0.474 0.809 0.569

Noiseprint 0.721 0.635 0.822 0.669

T
R

A

EXIF-SC on SpliceRadar Ex. 0.739 0.670 0.904 0.733

EXIF-SC on Noiseprint Ex. 0.676 0.603 0.845 0.646

SpliceRadar on EXIF-SC Ex. 0.803 0.719 0.917 0.821

SpliceRadar on Noiseprint Ex. 0.729 0.646 0.859 0.705

Noiseprint on EXIF-SC Ex. 0.793 0.714 0.917 0.810

Noiseprint on SpliceRadar Ex. 0.764 0.678 0.898 0.760

All Authentic Attack 0.387 0.234 N/A N/A

Table 2: QUANTITATIVE RESULTS ON NC16-SUBSET.
This table shows performance measures on the subset of the NC16

dataset consisting of manipulated images for which EXIF-SC,

SpliceRadar, and Noiseprint yield F1 scores greater than or equal

to 0.6 (83 images). We show the baseline performances (BL), per-

formances of the targeted image-forensics tools under adversar-

ial white-box attacks (WBA), and the transferability (TRA) of the

formed adversarial perturbations. The last row (All Authentic At-

tack) presents the applicable measures for ideal attacks where each

pixel is declared authentic by the targeted image-forensics method.

and evaluate the effectiveness of a general attack. Note that

due to our definition of an authentic patch and the default

patch size of EXIF-SC (128×128 pixels), four images of

the NC16 dataset do not have a single authentic patch and,

therefore, cannot be attacked with our algorithm.

Evaluation metrics. To evaluate the adversarial ro-

bustness of the three targeted image-forensics methods, we

compute and compare four performance measures that are

commonly used in the literature [15, 11, 7] – F1 score, the

Matthews Correlation Coefficient (MCC), the Mean Aver-



(a) Left to right: spliced image, ground-truth manipulation mask, heatmaps via EXIF-SC, SpliceRadar, and Noiseprint

(b) Left to right: adversarial image formed on EXIF-SC, visualized adversarial perturbation, heatmaps via EXIF-SC, SpliceRadar, and Noiseprint

(c) Left to right: adversarial image formed on SpliceRadar, visualized adversarial perturbation, heatmaps via EXIF-SC, SpliceRadar, and Noiseprint

(d) Left to right: adversarial image formed on Noiseprint, visualized adversarial perturbation, heatmaps via EXIF-SC, SpliceRadar, and Noiseprint

Figure 2: ADVERSARIAL EXAMPLES ON THE COLUMBIA DATASET. This figure presents the qualitative results of adversarial

white-box and black-box attacks compared to the baseline performance of EXIF-SC, SpliceRadar, and Noiseprint on a spliced image.

The visualized heatmaps are scaled; blue for lowest and red for highest values. Note that adversarial perturbations are depicted on a gray

background and magnified by a factor of 100 for better visualization.

age Precision (MAP), and the area under the Receiving Op-

erating Characteristic curve (ROC-AUC or AUC, in short)

– before and after the adversarial attack takes place. Note

that both F1 and MCC operate on binary decision maps,

while forgery localization tools typically provide a proba-

bility map as output, which is then converted into a binary

map using a threshold. Regarding the selection of the opti-

mal threshold value, which is utilized to distinguish genuine

and forged regions based upon the formed heatmap, we fol-

low the same procedure as described in [15, 11].

4.2. Results

The quantitative results of our experiments are summa-

rized in Table 1. To demonstrate the qualitative properties of

our approach, we show examples for the Columbia, DSO-

1, and NC16 datasets in Figures 2, 3, and 4, respectively.

As we will see, on the more challenging NC16 dataset

the tested image-forensics methods do poorly. Since at-

tacking an already struggling splice localization tool does

not have much space for making further damage, we also

present results on a subset containing the manipulated im-

ages for which EXIF-SC, SpliceRadar, and Noiseprint per-

form better regarding the localization of the manipulated

areas (F1≥0.6). The results for this subset consisting of 83

images of the NC16 dataset are presented in Table 2.

Baselines. As a starting point, we obtain the perfor-

mance measures for the three targeted image-forensics al-

gorithms on the forged images of the three datasets. We

can see in Table 1 that EXIF-SC outperforms SpliceRadar

and Noiseprint on the Columbia dataset but falls behind

them on the more challenging DSO-1 and NC16 datasets.

In Figures 2(a), 3(a), 4(a), we show the qualitative splice

localization performances of EXIF-SC, SpliceRadar, and

Noiseprint on spliced images of the Columbia, DSO-1, and

NC16 datasets, respectively. As we can see, the three

image-forensics methods can more or less successfully lo-



(a) Left to right: spliced image, ground-truth manipulation mask, heatmaps via EXIF-SC, SpliceRadar, and Noiseprint

(b) Left to right: adversarial image formed on EXIF-SC, visualized adversarial perturbation, heatmaps via EXIF-SC, SpliceRadar, and Noiseprint

(c) Left to right: adversarial image formed on SpliceRadar, visualized adversarial perturbation, heatmaps via EXIF-SC, SpliceRadar, and Noiseprint

(d) Left to right: adversarial image formed on Noiseprint, visualized adversarial perturbation, heatmaps via EXIF-SC, SpliceRadar, and Noiseprint

Figure 3: ADVERSARIAL EXAMPLES ON THE DSO-1 DATASET. This figure demonstrates the qualitative results of adversarial

white-box and black-box attacks compared to the baseline performance of EXIF-SC, SpliceRadar, and Noiseprint on a spliced image.

The visualized heatmaps are scaled; blue for lowest and red for highest values. Note that adversarial perturbations are depicted on a gray

background and magnified by a factor of 100 for better visualization.

calize the manipulated regions denoted by the manipulation

masks as the authentic and forged regions can be separated

on the computed heatmaps by applicable threshold values.

Note that EXIF-SC also produces some false positive splice

localization on the DSO-1 example shown in Figure 3(a).

White-box attacks. To put the results of our adver-

sarial white-box attacks on EXIF-SC, SpliceRadar, and

Noiseprint into perspective, we show the applicable perfor-

mance measures for an “ideal attack” in the last row of Ta-

ble 1 labeled as All Authentic Attack. In short, this ideal

attack occurs when each pixel – both authentic and manip-

ulated – of the manipulated image is declared as authentic

by the image-forensics tool. Note that this ideal attack does

not yield lower bounds regarding the performance measures

that we can achieve. Due to the fact that SpliceRadar and

Noiseprint utilize a Gaussian Mixture Model (GMM) with

two components, they always declare authentic and ma-

nipulated regions. Consequently, it is impossible to per-

form an ideal attack on these two image-forensics tools.

Compared to baselines, we can see in Table 1 that white-

box attacks greatly decrease the performance measures of

both EXIF-SC and SpliceRadar, and we can notice that

Noiseprint is more resilient, especially on the Columbia

dataset. The qualitative results depicted in Figures 2(b)-

(d), 3(b)-(d), and 4(b)-(d) (leftmost images) demonstrate

that the formed adversarial examples contain impercepti-

bly small perturbations that are capable of impeding the

targeted image-forensics methods. Considering the visual-

ized perturbations, we notice that those formed on EXIF-

SC are stronger than the others generated on SpliceRadar

and Noiseprint. Note that due to our algorithm mimicking

the target representation with each patch, the false positive

splice localizations via EXIF-SC for the DSO-1 example

are all declared as authentic regions for the adversarially

perturbed image shown in Figure 3(b) (third image). Over-

all, the qualitative results visually demonstrate that the ad-



(a) Left to right: spliced image, ground-truth manipulation mask, heatmaps via EXIF-SC, SpliceRadar, and Noiseprint

(b) Left to right: adversarial image formed on EXIF-SC, visualized adversarial perturbation, heatmaps via EXIF-SC, SpliceRadar, and Noiseprint

(c) Left to right: adversarial image formed on SpliceRadar, visualized adversarial perturbation, heatmaps via EXIF-SC, SpliceRadar, and Noiseprint

(d) Left to right: adversarial image formed on Noiseprint, visualized adversarial perturbation, heatmaps via EXIF-SC, SpliceRadar, and Noiseprint

Figure 4: ADVERSARIAL EXAMPLES ON THE NC16 DATASET. This figure demonstrates the qualitative results of adversarial

white-box and black-box attacks compared to the baseline performance of EXIF-SC, SpliceRadar, and Noiseprint on a spliced image.

The visualized heatmaps are scaled; blue for lowest and red for highest values. Note that adversarial perturbations are depicted on a gray

background and magnified by a factor of 100 for better visualization.

versarial white-box attacks have succeeded as authentic and

manipulated regions cannot be separated anymore via the

targeted splice localization tools.

Transferability of adversarial examples. Using the ad-

versarial examples that we have generated via white-box

attacks, we can also perform adversarial black-box attacks

by simply evaluating those examples on the other image-

forensics tools. This way we can assess the transferability

of the formed adversarial perturbations and study the feasi-

bility of such black-box attacks against EXIF-SC, SpliceR-

adar, and Noiseprint. Note that the vulnerability to black-

box attacks is more concerning from a security perspec-

tive as adversaries can impede their targeted system without

having direct access to it. The results in Table 1 highlight

an asymmetric behavior; we can see that while adversarial

perturbations formed on EXIF-SC cause a significant de-

terioration in the localization performance of SpliceRadar,

perturbations generated on SpliceRadar barely make a dif-

ference on EXIF-SC compared to its baseline performance.

While EXIF-SC appears to be less susceptible to examples

formed by adversarial white-box attacks on other image-

forensics methods, the forgery localization performance of

Noiseprint noticeably deteriorates under such black-box at-

tacks. Interestingly, considering the results on the Columbia

dataset we find that black-box attacks are slightly more suc-

cessful on Noiseprint than the white-box attacks. Regard-

ing qualitative results, we can see in Figures 2(b) and 3(b)

that the adversarial perturbations formed on EXIF-SC limit

the splice localization capabilities of SpliceRadar. While

the other adversarially perturbed Columbia, DSO-1, and

NC16 images shown in Figures 2-4 are not fully transfer-

able to other image-forensics tools, some yield predictions

of smaller manipulated regions, e.g., Noiseprint for the ad-

versarial examples formed on EXIF-SC and SpliceRadar

presented in Figure 2(b)-(c) (rightmost images).

5. Discussion

As we have seen, adversarial white-box attacks can

generally be considered successful on both EXIF-SC and



LOCALIZATION METHOD COLUMBIA DSO-1 NC16

(results on perturbed images) l0 l2 l∞ l0 l2 l∞ l0 l2 l∞

EXIF-SC 1109644.39 1877.47 19.86 5263130.16 3318.37 18.16 9012808.50 3592.89 15.05

SpliceRadar 568532.84 981.04 12.06 1828703.85 1625.76 9.98 3195024.54 1606.36 9.07

Noiseprint 681162.14 1338.88 22.40 1762103.27 1554.88 24.88 3464998.91 1599.90 15.50

Table 3: PERTURBATION METRICS. This table shows the means for various norms of the adversarial perturbations that we obtained

while attacking EXIF-SC, SpliceRadar, and Noiseprint using the manipulated images of the Columbia, DSO-1, and NC16 datasets.

SpliceRadar. However, the results of the white-box attacks

on Noiseprint and the asymmetric transferability of adver-

sarial examples require further analysis.

5.1. On the robustness of Noiseprint

Compared to EXIF-SC and SpliceRadar, the results in-

dicate that Noiseprint is more resilient to our adversarial

white-box attack, especially on the Columbia dataset. To

make sure that the higher resistance is not due to our choice

of mimicking a target defined as the mean representation

of authentic patches, we have conducted image-based ad-

versarial white-box attacks on the Columbia dataset that

also contains authentic counterparts of the spliced images.

Namely, instead of manipulating patches in order to move

their representations closer to the predefined target, for each

spliced image we have identified their authentic counter-

part, extracted the feature representation from that image,

and used it as our target to mimic with the feature represen-

tation extracted from the whole corresponding spliced im-

age. Overall, this image-based white-box attack has failed

to outperform our patch-based approach.

We conjecture that the higher robustness of Noiseprint

compared to EXIF-SC and SpliceRadar is due to the higher

dimensional features extracted from manipulated images

and the lack of bottlenecks in the network architecture used

for feature extraction. Both bottlenecks and lower dimen-

sional features yield possible collisions – patches or images

having the same extracted feature representations – which

can be exploited by adversaries. While both EXIF-SC and

SpliceRadar work with feature representations of lower di-

mensionalities – with default settings, 72×72-pixel patches

projected into 100-dimensional and 128×128-pixel patches

mapped into 4096-dimensional feature representations, re-

spectively – Noiseprint yields 2-D noise residual maps with

height and width identical to its inputs.

5.2. Asymmetric transferability

To understand the asymmetric transferability properties

of adversarial examples, especially between EXIF-SC and

SpliceRadar, we have analyzed the perturbations that we

formed on the three targeted image-forensics algorithms.

The quantitative results are summarized in Table 3. We

can see that the adversarial perturbations formed by our ap-

proach while attacking EXIF-SC are stronger than those ob-

tained on SpliceRadar or Noiseprint. Adversarial attacks on

EXIF-SC affect the most pixels, as indicated by l0 norms,

and they lead to the highest Euclidean norms as well.

Assuming that stronger perturbations yield higher trans-

ferability rates is a reasonable hypothesis. To validate that,

we have formed new examples by scaling the formed per-

turbations; we have doubled the perturbations of examples

that we obtained on SpliceRadar and halved those we gener-

ated while attacking EXIF-SC. After evaluating these new

examples, we have found that the transferability of adver-

sarial examples is not strictly determined by the strength of

perturbations in terms of l0, l2, or l∞ norms. Considering

the results on the subset of NC16 in Table 2, we can see

on both SpliceRadar and Noiseprint that stronger perturba-

tions formed on EXIF-SC cause lower deterioration on the

splice localization performance than weaker perturbations

generated on the other two image-forensics methods.

6. Conclusion

Image forensics can play an important role to prevent

the spread of manipulated content on communication chan-

nels, such as digital and social media. The detection and/or

localization of manipulated regions on forged images have

already attracted the research community, and this research

area will likely gain more focus in the future thanks to the

increasing demand for such tools. Due to recent advances

and trends in machine learning, researchers have proposed

deep learning-based image-forensics methods that perform

well regarding the localization of various manipulations, in-

cluding splices. However, the applied deep learning models

are inherently susceptible to adversarial perturbations mak-

ing such tools vulnerable as well.

In this paper, we have demonstrated on three image-

forensics methods, EXIF-SC, SpliceRadar, and Noiseprint,

that splice localization via non end-to-end deep learning-

based approaches can be impeded by directly manipulat-

ing the internal representations of image patches. Further-

more, we have found that adversarial perturbations can be

transferable among the tested image-forensics methods to

decrease their capabilities with different effectiveness.

In summary, deep learning-based image-forensics meth-

ods that were designed to reveal manipulations, ironically,

can be impeded by the application of additional manipula-

tions. To avoid this problem, we need deep learning models

that are inherently robust to adversarial perturbations.
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[9] Tiago José De Carvalho, Christian Riess, Elli Angelopoulou,

Helio Pedrini, and Anderson de Rezende Rocha. Exposing

digital image forgeries by illumination color classification.

Transactions on Information Forensics and Security (TIFS),

2013. 4

[10] Jessica Fridrich and Jan Kodovsky. Rich models for steganal-

ysis of digital images. Transactions on Information Foren-

sics and Security (TIFS), 2012. 2

[11] Aurobrata Ghosh, Zheng Zhong, Terrance E Boult, and Ma-

neesh Singh. SpliceRadar: A learned method for blind image

forensics. In The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR) Workshops, 2019. 1, 2, 3, 4, 5

[12] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy.

Explaining and harnessing adversarial examples. In Interna-

tional Conference on Learning Representation (ICLR), 2015.

2
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