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Abstract

Face anti-spoofing (FAS) plays a vital role in securing

face recognition systems from presentation attacks. Ex-

isting multi-modal FAS methods rely on stacked vanilla

convolutions, which is weak in describing detailed in-

trinsic information from modalities and easily being in-

effective when the domain shifts (e.g., cross attack and

cross ethnicity). In this paper, we extend the central dif-

ference convolutional networks (CDCN) [39] to a multi-

modal version, intending to capture intrinsic spoofing pat-

terns among three modalities (RGB, depth and infrared).

Meanwhile, we also give an elaborate study about single-

modal based CDCN. Our approach won the first place

in “Track Multi-Modal” as well as the second place in

“Track Single-Modal (RGB)” of ChaLearn Face Anti-

spoofing Attack Detection Challenge@CVPR2020 [20].

Our final submission obtains 1.02±0.59% and 4.84±1.79%

ACER in “Track Multi-Modal” and “Track Single-Modal

(RGB)”, respectively. The codes are available at

https://github.com/ZitongYu/CDCN.

1. Introduction

Face recognition has been widely used in many interac-

tive artificial intelligence systems for its convenience (e.g.,

access control, face payment and device unlock). How-

ever, vulnerability to presentation attacks (PAs) curtails its

reliable deployment. Merely presenting printed images or

videos to the biometric sensor could fool face recognition

systems. Typical examples of presentation attacks are print,

video replay, and 3D masks. For the reliable use of face

recognition systems, face anti-spoofing (FAS) methods are

important to detect such presentation attacks.

In recent years, several hand-crafted feature based [3, 4,

7, 15, 28, 27] and deep learning based [38, 33, 29, 22, 12,

34, 2, 8, 9] methods have been proposed for presentation
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Figure 1. Examples of living and spoofing faces from CASIA-

SURF CeFA dataset [21].

attack detection (PAD). On one hand, the classical hand-

crafted descriptors (e.g., local binary pattern (LBP) [3])

leverage local relationship among the neighbours as the dis-

criminative features, which is robust for describing the de-

tailed invariant information (e.g., color texture, moiré pat-

tern and noise artifacts) between the living and spoofing

faces. On the other hand, due to the stacked convolution

operations with nonlinear activation, the convolutional neu-

ral networks (CNN) hold strong representation abilities to

distinguish the bona fide from PAs. However, CNN based

methods focus on the deeper semantic features, which are

weak in describing detailed intrinsic information between

living and spoofing faces and easily being ineffective when

acquisition conditions varies (e.g., light illumination and

camera type). In order to solve this issue, central differ-

ence convolutional networks (CDCN) is developed [39] for

single-modal (RGB) FAS task and achieves state-of-the-

art performance on several benchmark datasets. Although

the state-of-the-art single-modal FAS methods are robust in



some existing testing protocols, it is still challenging when

encountering new kinds of domain shift (e.g., cross ethnic-

ity).

Recently, a large-scale cross-ethnicity face anti-spoofing

dataset, the CASIA-SURF CeFA [21], is established, which

covers three ethnicities, three modalities, 1607 subjects,

and 2D plus 3D attack types. Some typical examples are

shown in Fig. 1. The most challenging protocol 4 (si-

multaneously cross-attack and cross-ethnicity) is utilized

for ChaLearn Face Anti-spoofing Attack Detection Chal-

lenge@CVPR2020 [20]. The baseline results in CASIA-

SURF CeFA dataset [21] indicate: 1) multiple modalities

(i.e., RGB, depth and infrared (IR)) fusion is more robust

than using an arbitrary single modal, and 2) the multi-modal

result, only 31.8±10.0% ACER in protocol 4, is barely

satisfactory. Hence it is necessary to explore more effec-

tive multi-modal FAS methods for cross-attack and cross-

ethnicity testing.

Motivated by the discussions above, we first analyze how

different modality influences the performance of CDCN.

Then we extend CDCN to a multi-modal version, intending

to capture intrinsic spoofing patterns among various modal-

ities. Our contributions include:

• We are the first to utilize CDCN for depth and infrared

modalities based FAS and analyze how CDCN per-

forms with these two modalities. Besides considering

CDCN as a single-modal network, we extend it to a

multi-modal version, which captures rich discrimina-

tive clues among modalities and represents invariant

intrinsic patterns across ethnicities and attacks.

• Our approach won the first place in “Track Multi-

Modal”1 as well as the second place in “Track Single-

Modal (RGB)”2 of ChaLearn Face Anti-spoofing At-

tack Detection Challenge@CVPR2020 [20].

2. Related Work

In this section, we first introduce some recent progress

in the single-modal FAS community; and then demonstrate

few recent works about multi-modal FAS. Finally, classical

convolution operators for vision tasks are presented.

Single-Modal Face Anti-Spoofing. Traditional single-

modal face anti-spoofing methods usually extract hand-

crafted features from the RGB facial images to capture the

spoofing patterns. Several classical local descriptors such as

LBP [3, 7], SIFT [27], SURF [5], HOG [15] and DoG [28]

are utilized to extract frame level features while video level

methods usually capture dynamic clues like dynamic tex-

ture [14], micro-motion [32] and eye blinking [24]. More

recently, a few deep learning based methods are proposed

for both frame level and video level face anti-spoofing. For

1https://competitions.codalab.org/competitions/23318
2https://competitions.codalab.org/competitions/22151

frame level methods [39, 29, 16, 26, 9, 12], deep CNN mod-

els are utilized to extract features in a binary-classification

setting. In contrast, auxiliary depth supervised FAS meth-

ods [2, 22] are introduced to learn more detailed informa-

tion effectively. On the other hand, several video level

CNN methods are presented to exploit the dynamic spatio-

temporal [33, 34, 19] or rPPG [17, 22, 18, 36, 37, 31]

features for PAD. Despite achieving state-of-the-art per-

formance, single-modal methods are easily influenced by

unseen domain shift (e.g., cross ethnicity and cross attack

types) and not robust for challenging cases (e.g., harsh en-

vironment and realistic attacks).

Multi-Modal Face Anti-Spoofing. There are also few

works for multi-modal face anti-spoofing. Zhang et al. [40]

take ResNet18 as the backbone and propose a three-stream

network, where the input of each stream is RGB, Depth and

IR face images, respectively. Then, these features are con-

catenated and passed to the last two residual blocks. Alek-

sandr et al. [25] also consider the similar fusion network

with three streams. ResNet34 is chosen as the backbone

and multi-scale features are fused at all residual blocks. Tao

et al. [30] present a multi-stream CNN architecture called

FaceBagNet. In order to enhance the local detailed repre-

sentation ability, patch-level images are adopted as inputs.

Moreover, modality feature erasing operation is designed

to prevent overfitting and obtain more robust modal-fused

features. All previous methods just consider standard back-

bone (ResNet) with stacked vanilla convolutions for mul-

tiple modalities, which might be weak in representing the

intrinsic features between living and spoofing faces.

Convolution Operators. The convolution operator is

commonly used in extracting basic visual features in deep

learning framework. Recently extensions to the vanilla con-

volution operator have been proposed. In one direction,

classical local descriptors (e.g., LBP [1] and Gabor filters

[11]) are considered into convolution design. Representa-

tive works include Local Binary Convolution [13] and Ga-

bor Convolution [23], which are proposed for saving com-

putational cost and enhancing the resistance to the spatial

changes, respectively. Recently, Yu et al. propose Central

Difference Convolution (CDC) [39], which is suitable for

FAS task because of its excellent representation ability for

detailed intrinsic patterns. Another direction is to modify

the spatial scope for aggregation. Two related works are

dialated convolution [35] and deformable convolution [6].

However, these convolution operators are always designed

for RGB modality, it is still unknown how they perform for

depth and IR modalities.

In order to overcome the above-mentioned drawbacks

and fill in the blank, we extend the state-of-the-art single-

modal network CDCN to a multi-modal version for chal-

lenging cross-ethnicity and cross-attack FAS task.



3. Methodology

In this section, we will first introduce CDC [39] as a

preliminary in Section 3.1, then demonstrate our single-

modal and multi-modal neural architectures in Section 3.2

and Section 3.3, respectively. At last the supervision signals

and loss functions are presented in Section 3.4.

3.1. Preliminary: CDC

The feature maps and convolution can be represented in

3D shape (2D spatial domain and extra channel dimension)

in modern deep learning frameworks. For simplicity, all

convolutions in this paper are described in 2D while exten-

sion to 3D is straightforward.

Vanilla Convolution. There are two main steps in the

2D spatial convolution: 1) sampling local receptive field

region R over the input feature map x; 2) aggregation of

sampled values via weighted summation. Hence, the output

feature map y can be formulated as

y(p0) =
∑

pn∈R

w(pn) · x(p0 + pn), (1)

where p0 denotes current location on both input and out-

put feature maps while pn enumerates the locations in

R. For instance, local receptive field region for convo-

lution operation with 3×3 kernel and dilation 1 is R =
{(−1,−1), (−1, 0), · · · , (0, 1), (1, 1)}.

Central Difference Convolution. For FAS task, the

‘discriminative’ and ‘robust’ features indicate fine-grained

living/spoofing patterns and environment invariant clues,

respectively. Local gradient operator (e.g., basic element

in local binary pattern (LBP) [3]), as a residual and differ-

ence term, is able to capture rich detailed patterns and not

easily affected by external changes.

Inspired by LBP [3], we introduce central difference

context into vanilla convolution to enhance its representa-

tion and generalization capacity. Similar to vanilla convo-

lution, central difference convolution also consists of two

steps, i.e., sampling and aggregation. The sampling step

is similar to that in vanilla convolution while the aggrega-

tion step is different: central difference convolution prefers

to aggregate the center-oriented gradient of sampled values.

Thus Eq. (1) becomes

y(p0) =
∑

pn∈R

w(pn) · (x(p0 + pn)− x(p0)). (2)

When pn = (0, 0), the gradient value always equals to zero

with respect to the central location p0 itself.

As both the intensity-level semantic information and

gradient-level detailed message are crucial for distinguish-

ing the living and spoofing faces, which indicates that com-

bining vanilla convolution with central difference convo-

lution might be a feasible manner to provide more robust

Vanilla Convolution  

Central Difference Convolution

Generalized Central 
Difference Convolution

(CDC)expand

Figure 2. Generalized central difference convolution (CDC).

modeling capacity. As illustrated in Fig. 2, we generalize

central difference convolution as

y(p0) = θ ·
∑

pn∈R

w(pn) · (x(p0 + pn)− x(p0))

︸ ︷︷ ︸

central difference convolution

+(1− θ) ·
∑

pn∈R

w(pn) · x(p0 + pn)

︸ ︷︷ ︸

vanilla convolution

,
(3)

where hyperparameter θ ∈ [0, 1] tradeoffs the contribution

between intensity-level and gradient-level information. The

higher value of θ means the more importance of central dif-

ference gradient information. Similar to [39], we refer to

this generalized central difference convolution as CDC.

3.2. Single­Modal CDCN

We follow the similar configuration ‘CDCN++’ [39] as

our single-modal backbone, including low-mid-high level

cells and Multiscale Attention Fusion Module (MAFM). In

the consideration of the large-scale training data in CASIA-

SURF CeFA dataset, we set the initial channel number as 80

instead of 64. The specific network is shown in Fig. 3(a).

Single-modal face image with size 256×256×3 is taken as

the network input and the output is the predicted 32×32

grayscale mask.

3.3. Multi­Modal CDCN

We adopt the configuration ‘CDCN’ [39] as the back-

bone of each modality branch as we find the MAFM would

drop the performance when using multi-modal fusion. As

illustrated in Fig. 3(b), the backbone network of each

modality branch is not shared. Thus each branch is able

to learn modality-aware features independently. The multi-

level features from each modality branch are fused via con-

catenation. Finally, the two head layers aggregate the multi-

modal features and predict the grayscale mask.

As the feature-level fusion strategy might not be optimal

for all protocols, we also try two other fusion strategies: 1)
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Figure 3. The architecture of (a) single-model and (b) multi-modal CDCN. The red thin rectangle denotes a max pool layer with stride 2.

‘CDC 2 r’ means using two stacked CDC to increase channel number with ratio r first and then decrease back to the original channel size.

input-level fusion via concatenating three-modal inputs to

256×256×9 directly, and 2) score-level fusion via weight-

ing the predicted score from each modality. For these two

fusion strategies, the architecture of single-modal CDCN

(see Fig. 3(a)) is used. The corresponding ablation study

will be shown in Section 4.4.

3.4. Supervision

Compared with traditional guidance from the binary

scalar score, pixel-wise supervision [9] helps to learn more

discriminative patterns between living and spoofing faces.

As a result, our network prefets to predict 32×32 grayscale

mask instead of traditional scalar score. In terms of ground

truth label, we generate the binary mask via simply set

the non-zero pixel value to ‘1’ because the intensity values

of non-face background have already been ‘0’ in CASIA-

SURF CeFA dataset.

For the loss function, mean square error loss LMSE is

Figure 4. The kernel KCDL
n in contrastive depth loss..

utilized for pixel-wise supervision, which is formulated:

LMSE =
1

H ×W

∑

i∈H,j∈W

(Bpre(i,j) −Bgt(i,j))
2, (4)

where H,W denote the height and width of the binary

mask, respectively, and Bpre and Bgt mean the predicted

grayscale mask and ground truth binary mask, respectively.

Moreover, for the sake of fine-grained supervision needs in

FAS task, contrastive depth loss (CDL) LCDL [33] is con-

sidered to help the networks learn more detailed features.



Table 1. Albation study of the hyperparameter θ with RGB modality.

Single-Modal CDCN
Protocol 4@1 Protocol 4@2 Protocol 4@3 Overall

APCER(%) BPCER(%) ACER(%) APCER(%) BPCER(%) ACER(%) APCER(%) BPCER(%) ACER(%) ACER(%)

θ=0.5 12.61 4.0 8.31 6.67 2.0 4.33 4.56 8.5 6.53 6.39

θ=0.6 11.67 8.0 9.83 10.56 3.0 6.78 3.89 5.0 4.44 7.02

θ=0.7 12.83 1.25 7.04 13.33 2.0 7.67 3.72 3.0 3.36 6.02

θ=0.8 14.33 1.5 7.92 10.0 6.25 8.13 3.83 7.25 5.54 7.19

θ=0.9 11.17 2.5 6.83 21.33 5.75 13.54 3.56 7.5 5.53 8.63

Table 2. Results of Single-Modal CDCN (θ=0.7) with different modalities.

Modality
Protocol 4@1 Protocol 4@2 Protocol 4@3 Overall

APCER(%) BPCER(%) ACER(%) APCER(%) BPCER(%) ACER(%) APCER(%) BPCER(%) ACER(%) ACER(%)

RGB 12.83 1.25 7.04 13.33 2.0 7.67 3.72 3.0 3.36 6.02

Depth 5.22 1.25 3.24 2.72 0.5 1.61 4.94 1.75 3.35 2.73

IR 1.56 1.0 1.28 27.72 0.25 13.99 29.56 0.5 15.03 10.1

Table 3. Best submission result in Track Single-Modal (RGB).

Method
Protocol 4@1 Protocol 4@2 Protocol 4@3 Overall

APCER(%) BPCER(%) ACER(%) APCER(%) BPCER(%) ACER(%) APCER(%) BPCER(%) ACER(%) ACER(%)

SD-Net [21] - - - - - - - - - 35.2±5.8

Ours (Single-Modal) 11.17 2.5 6.83 6.67 2.0 4.33 3.72 3.0 3.36 4.84±1.79

CDL can be formulated as

LCDL =

∑
i∈H,j∈W,n∈N

(KCDL
n ⊙Bpre(i,j) −KCDL

n ⊙Bgt(i,j))
2

H ×W ×N
,

(5)

where KCDL
n is the n-th contrastive convolution kernel, and

N denotes the kernel numbers. The details of the kernels

(N = 8) can be found in Fig. 4. Finally, the overall loss

Loverall can be formulated as Loverall = LMSE + LCDL.

4. Experiments

In this section, extensive experiments are performed to

demonstrate the effectiveness of our method. In the follow-

ing, we sequentially describe the employed datasets & met-

rics (Sec. 4.1), implementation details (Sec. 4.2), results

(Sec. 4.3 - 4.4) and visualization (Sec. 4.5).

4.1. Datasets and Metrics

CASIA-SURF CeFA Dataset [21]. CASIA-SURF

CeFA aims to provide with the largest up to date face anti-

spoofing dataset to allow for the evaluation of the gener-

alization performance cross-ethnicity and cross-attacks. It

consists of 2D and 3D attack subsets. For the 2D attack

subset, it includes print and video-reply attacks, and three

ethnicites (African, East Asian and Central Asian) with two

attacks (print face from cloth and video-replay). Each eth-

nicity has 500 subjects. Each subject has one real sample,

two fake samples of print attack captured in indoor and out-

door, and 1 fake sample of video-replay. In total, there are

18000 videos (6000 per modality).

There are four evaluation protocols in CASIA-SURF

CeFA for cross-ethnicity, cross-attack, cross-modality, and

cross-ethnicity & cross-attack testing. In this paper, our ex-

periments are all conducted on the most challenging pro-

tocol 4 (cross-ethnicity & cross-attack), which has been

utilized for ChaLearn Face Anti-spoofing Attack Detection

Challenge@CVPR2020.

Performance Metrics. Three metrics, i.e., Attack Pre-

sentation Classification Error Rate (APCER), Bona Fide

Presentation Classification Error Rate (BPCER), and Av-

erage Classification Error Rate (ACER) [10] are utilized for

performance comparison. They can be formulated as

APCER =
FP

TN + FP
,

BPCER =
FN

FN + TP
,

ACER =
APCER+BPCER

2
,

(6)

where FP , FN , TN and TP denote the false positive,

false negative, true negative and true positive sample num-

bers, respectively. ACER is used to determine the final

ranking in ChaLearn Face Anti-spoofing Attack Detection

Challenge@CVPR2020.

4.2. Implementation Details

Our proposed method is implemented with Pytorch. In

the training stage, models are trained with Adam optimizer

and the initial learning rate and weight decay are 1e-4 and

5e-5, respectively. We train models with 50 epochs while

learning rate halves every 20 epochs. The batch size is 8

on a P100 GPU. In the testing stage, we calculate the mean

value of the predicted grayscle map as the final score.

4.3. Single­Modal Testing

In this subsection, we give the ablation study about the

hyperparameter θ with RGB modality firstly. Then based on

the optimal θ for CDCN, we test depth and IR modalities.



Table 4. Ablation study of fusion strategies for multi-modal CDCN. We only report the results tried in the FAS challenge.

Modality
Protocol 4@1 Protocol 4@2 Protocol 4@3

APCER(%) BPCER(%) ACER(%) APCER(%) BPCER(%) ACER(%) APCER(%) BPCER(%) ACER(%)

Feature-level fusion 0.33 0.5 0.42 5.89 3.25 4.57 4.22 3.25 3.74

Input-level fusion 0.5 3.75 2.13 5.67 1.5 3.58 2.61 3.25 2.93

Score-level fusion - - - 1.39 0.75 1.07 1.44 1.75 1.6

Table 5. Best submission result in Track Multi-Modal.

Method
Protocol 4@1 Protocol 4@2 Protocol 4@3 Overall

APCER(%) BPCER(%) ACER(%) APCER(%) BPCER(%) ACER(%) APCER(%) BPCER(%) ACER(%) ACER(%)

PSMM-Net [21] 33.3 15.8 24.5 78.2 8.3 43.2 50.0 5.5 27.7 31.8±10.0

Ours (Multi-Modal) 0.33 0.5 0.42 1.39 0.75 1.07 1.44 1.75 1.6 1.02±0.59

Finally, we summarize our best submission results in “Track

Single Modal (RGB)” on ChaLearn Face Anti-spoofing At-

tack Detection Challenge@CVPR2020.

Impact of θ with RGB modality. As shown in Ta-

ble 1, the best overall performance (ACER=6.02%) is

achieved when θ = 0.7, which is consistent with the evi-

dence in [39]. As for the sub-protocols, θ = 0.9, θ = 0.5
and θ = 0.7 obtain the lowest ACER in protocol 4@1

(6.83%), 4@2 (4.33%) and 4@3 (3.36%), respectively.

Results of Depth and IR modalities. Table 2 shows

the results of different modalities using single-modal

CDCN when θ = 0.7. It is surprising that the perfor-

mance varies a lot across modalities. The IR modality per-

forms the best in protocol 4@1 (testing without Africa) but

the worst in protocol 4@2 and 4@3 (testing with Africa),

indicating that the IR modality generalizes poorly for un-

seen Africa ethnicity. Compared with RGB and IR modal-

ities, the depth modality is more robust and discriminative

in most cases (e.g., print attacks in testing stage) because

the 3D depth shape is quite distinguishable between living

and print faces. The excellent overall performance indicates

central difference convolution is not only suitable for RGB

modality, but also for IR and depth modalities.

Best Submission Result in Track Single-Modal

(RGB). Our best submission result (4.84±1.79% ACER)

is shown in Table 3, which wins the second place in Track

Single-Modal (RGB) on ChaLearn Face Anti-spoofing At-

tack Detection Challenge@CVPR2020. This final result is

combined with the best sub-protocols results (i.e., θ =0.9,

0.5 and 0.7, respectively).

4.4. Multi­Modal Testing

In this subsection, three fusion strategies are studied in

multi-modal testing. Then the best submission results in

Track Multi-Modal will be presented.

Multi-Modal Fusion Strategies. As shown in Table 4,

our proposed multi-modal CDCN (i.e., feature-level fusion

with three modalities) achieves the lowest ACER (0.42%)

in protocol 4@1. When using the concatenated inputs with

three modalities (input-level fusion), the CDCN could ob-

tain comparable performance with the single-modal results

in Table 2. However, it still causes the performance drops

compared with the best single-modal results (i.e., IR modal-

ity for protocol 4@1, depth modality for protocol 4@2 and

protocol 4@3). It also reflects the issue for both feature-

and input-level fusion, i.e., simple fusion with concatena-

tion might be sub-optimal because it is weak in representing

and selecting the importance of modalities. It is worth ex-

ploring more effective fusion methods (e.g., attention mech-

anism for modalities) in future.

Based on the prior results in Table 2, we weight the re-

sults of RGB and depth modalities averagely as the score-

level fusion (i.e., fusion score = 0.5∗RGB score+0.5∗
depth score). As shown in Table 4 (the third row), this

simple ensemble strategy helps to boost the performance

significantly. Compared with single-depth modality, score-

level fusion gives 0.54% and 1.13% ACER improvements

for protocol 4@2 and 4@3, respectively.

Best Submission Result in Track Multi-Modal. Ta-

ble 3 shows our best submission result (1.02±0.59%

ACER), which wins the first place in “Track Multi-

Modal” on ChaLearn FAS Attack Detection Chal-

lenge@CVPR2020. This final result is combined with the

best sub-protocols results (i.e., feature-level fusion for pro-

tocol 4@1 while score-level fusion for protocol 4@2 and

4@3).

4.5. Feature Visualization

The visualizations of CDCN with three modalities are

shown in Fig. 5. On one hand, it is clear that the low-

level, mid-level and high-level features in CDCN are dis-

tinguishable between living and spoofing faces among all

three modalities. In terms of low-level features, the living

have more detailed texture (especially in IR modality). As

for the high-level features, the living face regions are purer

and plainer while the spoofing ones are with more spoofin-

g/noise patterns.

On the other hand, depth and IR modalities are comple-

mentary to RGB modality and helpful for robust liveness

detection. We can see from the last row in Fig. 5 that CDCN

fails to detect spoofing1 only using RGB input while spoof-

ing1 could be accurately detected by depth or IR inputs.



Figure 5. Visualization of CDCN with three modalities.

5. Conclusion

In this paper, we give an elaborate study about the

applications of central difference convolutional networks

(CDCN) [39] for multiple modalities in face anti-spoofing

(FAS) task. The experimental results indicate the effective-

ness of CDCN for both single-modal and multi-modal FAS.

The proposed approach wins the first place in “Track Multi-

Modal” as well as the second place in “Track Single-Modal

(RGB)” of ChaLearn Face Anti-spoofing Attack Detection

Challenge@CVPR2020.
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