
LSQ+: Improving low-bit quantization through learnable offsets and better

initialization

Yash Bhalgat1 Jinwon Lee1 Markus Nagel2 Tijmen Blankevoort2 Nojun Kwak3†

1Qualcomm AI Research, Qualcomm Technologies, Inc.
2Qualcomm AI Research, Qualcomm Technologies Netherlands B.V.

3Seoul National University

{ybhalgat, jinwonl, markusn, tijmen}@qti.qualcomm.com, nojunk@snu.ac.kr

Abstract

Unlike ReLU, newer activation functions (like Swish, H-

swish, Mish) that are frequently employed in popular ef-

ficient architectures can also result in negative activation

values, with skewed positive and negative ranges. Typi-

cal learnable quantization schemes [5, 7] assume unsigned

quantization for activations and quantize all negative ac-

tivations to zero which leads to significant loss in perfor-

mance. Naively using signed quantization to accommodate

these negative values requires an extra sign bit which is ex-

pensive for low-bit (2-, 3-, 4-bit) quantization. To solve this

problem, we propose LSQ+, a natural extension of LSQ [7],

wherein we introduce a general asymmetric quantization

scheme with trainable scale and offset parameters that can

learn to accommodate the negative activations. Gradient-

based learnable quantization schemes also commonly suffer

from high instability or variance in the final training per-

formance, hence requiring a great deal of hyper-parameter

tuning to reach a satisfactory performance. LSQ+ alle-

viates this problem by using an MSE-based initialization

scheme for the quantization parameters. We show that this

initialization leads to significantly lower variance in final

performance across multiple training runs. Overall, LSQ+

shows state-of-the-art results for EfficientNet and MixNet

and also significantly outperforms LSQ for low-bit quanti-

zation of neural nets with Swish activations (e.g.: 1.8% gain

with W4A4 quantization and upto 5.6% gain with W2A2

quantization of EfficientNet-B0 on ImageNet dataset). To

the best of our knowledge, ours is the first work to quantize

such architectures to extremely low bit-widths.

†Currently a Visiting Researcher at Qualcomm Technologies, Inc.

Qualcomm AI Research is an initiative of Qualcomm Technologies,

Inc.

1. Introduction

With the popularity of deep neural networks across vari-

ous use-cases, there is now an increasing demand for meth-

ods that make deep networks run efficiently on resource-

constrained edge-devices. These methods include model

pruning, neural architecture search (NAS) and hand-crafted

efficient networks made out of novel architectural blocks

(e.g. depth-wise separable or group convolutions, squeeze-

excite blocks, etc.). Finally we can also perform model

quantization, where the weights and activations are quan-

tized to lower bit-widths allowing efficient fixed-point in-

ference and reduced memory bandwidth usage.

Due to the surge in more efficient architectures found

with NAS, newer and more general activation functions

(like Swish [20], H-swish [10], Leaky-ReLU) are replacing

the traditional ReLU. Unlike ReLU, these activation func-

tions also take over values below zero. Current state-of-

the-art quantization schemes like PACT [5] and LSQ [7] as-

sume unsigned quantization ranges for activation quantiza-

tion where all the activation values below zero are discarded

by quantizing them to zero. This works well for traditional

ReLU-based architectures like ResNet [9], but leads to a

significant loss of information when applied to modern ar-

chitectures like EfficientNet [24] and MixNet [25], which

employ Swish activations. For example, LSQ achieves

W4A4 quantization of preactivation-ResNet50 with no loss

in acccuracy but leads to a 4.1% loss in accuracy when

quantizing EfficientNet-B0 to W4A41. Naively using a

signed quantization range to accommodate these negative

values also results in a drop in performance.

To alleviate these drops in performance which are com-

monly observed with very low-bit (2-, 3-, 4-bit) quantiza-

tion, we propose using a general asymmetric quantization

1WxAx quantization indicates quantizing the weights and output acti-

vations of all layers to x bits

scheme with a learnable offset parameter as well as a learn-

able scale parameter. We show that the proposed quantiza-

tion scheme learns to accommodate the negative activation

values differently for different layers and recovers the ac-

curacy loss incurred by LSQ, e.g. 1.8% accuracy improve-

ment over LSQ with W4A4 quantization and upto 5.6% im-

provement with W2A2 quantization on EfficientNet-B0. To

the best of our knowledge, ours is the first work to quan-

tize modern architectures like EfficientNet and MixNet to

extremely low bit-widths.

Another problem faced especially by any gradient-based

learnable quantization scheme is its sensitivity to initializa-

tion, meaning that a poor initialization can lead to a high

variance in final performance across multiple training runs.

This problem is especially observed with min-max initial-

ization (used in [1]). We show that using an initialization

scheme based on mean-squared-error (MSE) minimization

[22, 23] for the offset and scale parameters leads to signif-

icantly higher stability in final performance than min-max

quantization. We also compare this initialization scheme

with the one proposed in [7].

In summary, our proposed method, called LSQ+, extends

LSQ [7] by adding a simple yet effective learnable offset pa-

rameter for activation quantization to recover the lost accu-

racy on architectures employing Swish-like activations. Fur-

thermore, our other contribution is showing the importance

of proper initialization for stable training, especially in the

low-bit regime.

2. Related Work

A good overview of the basics of quantization is given in

[15], where the differences between asymmetric and sym-

metric quantization are explained. In general, we can clas-

sify quantization methods into post-training methods that

work without fine-tuning and quantization-aware training

methods that need fine-tuning.

Post-training quantization methods [2, 29, 6] optimize

neural networks for quantization without full training and

using a little amount of data. [18, 4] do this better without

using any data at all. Although these methods work well

on typical 8-bit quantization, they were not able to achieve

good accuracy on very low-bit (2, 3, 4-bit) quantization.

Quantization-aware training generally outperforms these

methods on low-bit tasks given enough time to op-

timize. Simulated quantization-aware training meth-

ods and improvements for these are discussed in

Gupta2015,jacob2018cvpr,louizos2018relaxed. Essen-

tially, operations are added to the neural network computa-

tional graph that simulate how quantization would be done

on an actual device. Several recent papers improve over

these methods by learning the quantization parameters, e.g.

QIL [13], TQT [12] and LSQ [7]. This is the approach we

build upon in our paper, but a similar asymmetric quantiza-

tion scheme and initialization we suggest could be used for

any other methods.

In a parallel line of research, some works [14, 16, 19]

have tried to apply knowledge distillation to quantization re-

sulting in improved performances. Also, some recent work

[26] has been done on automatically learning the bit-width

alongside of the ranges. Note that our proposed method is

orthogonal to these works, and thus it can be jointly used

with them. Lastly, several papers have introduced different

quantization grids than uniform one we use. In [17] and

[27], a logarithmic space or fully free-format quantization

space are used to quantize the network. In this paper, we

do not consider this, as the hardware implementations for

these are simply inefficient, requiring costly lookup table or

approximation on runtime.

3. Method

In LSQ [7], a symmetric quantization scheme with a

trainable scale parameter is proposed for both weights and

activations. This scheme is defined as follows:

x̄ =
⌊

clamp
(x

s
, n, p

)⌉

x̂ = x̄× s
(1)

where ⌊·⌉ indicates the round function and the clamp(·)
function clamps all values between n and p. x̄ and x̂
denote the coded bits and quantized values, respectively.

LSQ can make use of a signed or an unsigned quantiza-

tion range. However, both are suboptimal for activation

functions like Swish or Leaky-ReLU which have skewed

negative and positive ranges2. Using an unsigned quanti-

zation range, i.e. n = 0, p = 2b − 1, clamps all negative

activations to zero leading to a significant loss of informa-

tion. On the contrary, using a signed quantization range, i.e.

n = −2b−1, p = 2b−1 − 1, will quantize all negative acti-

vations to integers in the range [−2b−1, 0] and all positive

activations to [0, 2b−1 − 1], hence giving equal importance

to the negative and positive portions of the activation func-

tion. However, this loses valuable precision for skewed dis-

tributions where the positive dynamic range is significantly

larger than the negative one. In Sec. 4.1, we will show that

both quantization schemes lead to a significant loss in accu-

racy when quantizing architectures with Swish activations.

The proposed method LSQ+ solves the above mentioned

problem with a more general learnable asymmetric quan-

tization scheme for the activations, described in Sec. 3.1.

Sec. 3.2 describes the initialization scheme used in LSQ+.

3.1. Learnable asymmetric quantization

As a solution to the above mentioned problem, we pro-

pose a general asymmetric activation quantization scheme

2For example, the negative portion of Swish activation lies only be-

tween −0.278 and 0 whereas the positive portion is unbounded.

where not only the scale parameters but also the offset pa-

rameters are learned during training to handle skewed acti-

vation distributions:

x̄ =

⌊

clamp

(
x− β

s
, n, p

)⌉

x̂ = x̄× s+ β

(2)

Here, the offset parameter β and the scale s are both

learnable. The gradient update of the parameter s is cal-

culated using:

∂x̂

∂s
=

∂x̄

∂s
s+ x̄

≃







−x− β

s
+

⌊
x− β

s

⌉

if n <
x− β

s
< p

n or p otherwise.

(3)

And the gradient update of β is calculated using:

∂x̂

∂β
=

∂x̄

∂β
s+ 1 ≃

{
0 if n < (x− β)/s < p
1 otherwise.

(4)

In both (3) and (4), straight-through-estimator (STE) [3] is

used in approximating ∂x̄/∂s and ∂x̄/∂β.

For weight quantization, we use symmetric signed quan-

tization (1) since the layer weights can be empirically ob-

served to be distributed symmetrically around zero. Be-

cause of this, asymmetric quantization of activations has no

additional cost during inference as compared to symmetric

quantization since the additional offset term can be precom-

puted and incorporated into the bias at compilation time:

ŵx̂ = (w̄ × sw)(x̄× sx + β) = w̄x̄swsx + βsww̄
︸ ︷︷ ︸

bias

. (5)

Table 1 shows four possible parametrizations for the pro-

posed quantization scheme in (2). Configurations 1 and 2

do not use an offset parameter, hence following the learn-

able symmetric quantization scheme proposed in LSQ [7].

Since Configuration 1 uses an unsigned range with this sym-

metric quantization scheme, it corresponds exactly to the

parametrization proposed in LSQ for activation quantiza-

tion. Configurations 3 and 4 learn both the scale and offset

parameter for activation quantization, the only difference

being signed and unsigned quantization ranges. We will

analyze these different parametrizations in the experiments

section.

3.2. Initialization of quantization parameters

As we enter the extremely low bit-width regime with

gradient-based learnable quantization methods, the final

performance after training becomes highly sensitive to the

initialization of the quantization hyperparameters. This sen-

sitivity problem is amplified in the presence of depthwise

Figure 1. Figure shows the scale parameter of weight quantizer in

blocks.1.conv.0 layer of EfficientNet-B0 before and after finetun-

ing with LSQ and LSQ+ initializations. For both experiments, we

used configuration 4 for activation quantization. As shown, LSQ

init of the scale is further from the converged value as compared

to LSQ+. More on effects of initialization in Sec 4.3

separable convolutions which are known to be challenging

to quantize [28]. In this work, we propose an initialization

scheme for the scale and offset parameters that achieves sig-

nificantly more stable and sometimes better performance

than other initializations (while keeping the quantization

configuration unchanged) proposed in the literature [11, 7].

3.2.1 Scale initialization for weight quantization

As mentioned before, we use signed symmetric quantiza-

tion for the weights (similar to Configuration 2) in our

method. Hence, no offset is used for weight quantization.

LSQ [7] proposes using the square-root normalized average

absolute value of layer weights, i.e. 2〈|w|〉/√p, to intialize

the scale parameter. This leads to a very large initializa-

tion for 2-, 3- or 4-bit quantizaiton, e.g. sinit = 〈|w|〉/
√
2

for 4-bit case. From our experiments, this initialization was

observed to be far from the converged values of the scale pa-

rameters. One of the instances of this phenomenon is shown

in Figure 1.

We fix this problem by using the statistics of the weight

distribution rather than the actual weight values for the ini-

tialization. Similar to [18], we use a Gaussian approxima-

tion for the weight distribution in each layer. Following this,

we initialize the scale parameter for each layer by:

sinit = max(|µ− 3 ∗ σ|, |µ+ 3 ∗ σ|)/2b−1

where µ and σ are the mean (same as 〈|w|〉) and standard

deviation of the weights in that layer.

3.2.2 Scale/offset initialization for activation quantiza-

tion

Let xmin and xmax denote the min and the max value of the

activation function. For example, xmin = 0 for ReLU and

Table 1. Different possible parametrizations for LSQ+’s learnable asymmetric quantization scheme

Configuration s β n p

Config 1 : Unsigned + Symmetric (LSQ) trainable N/A 0 2b − 1
Config 2 : Signed + Symmetric trainable N/A −2b−1 2b−1 − 1
Config 3 : Signed + Asymmetric trainable trainable −2b−1 2b−1 − 1
Config 4 : Unsigned + Asymmetric trainable trainable 0 2b − 1

xmin = −0.278 in case of Swish activations3. Intuitively,

a full utilization of the quantization range can be obtained

when xmin is quantized to the lower bound of the quanti-

zation range and xmax to the upper bound. Following this

intuition, an initialization for s and β would satisfy:

xmin − βinit

sinit
−→ n ,

xmax − βinit

sinit
−→ p. (6)

Solving these constraints yields:

sinit =
xmax − xmin

p− n
, βinit = xmin − n ∗ sinit. (7)

But the above initialization is highly prone to outliers

in the activation distribution, especially since the activation

ranges are dynamic. To overcome this, we propose initializ-

ing the scale and offset parameters per layer by optimizing

the MSE minimization problem, similar to [22, 23]:

sinit, βinit = argmin
s,β

||x̂− x||2F (8)

where x̂ is given by (2). There is no closed-form solution to

(8). Hence, we embed equations (3) and (4) into PyTorch’s

autograd functionality to optimize for {sinit, βinit} over a

few batches of data.

4. Experiments

We evaluate the effectiveness of our method by quantiz-

ing architectures with Swish activations to W2A2, W3A3

and W4A4. To the best of our knowledge, ours is the first

work to quantize such architectures to extremely low bit-

widths. As a sanity check, we show that LSQ+ also main-

tains the performance of LSQ [7] on traditional architec-

tures with ReLU activation function. Finally, we show the

effect of using different initializations on the performance

of the proposed quantization method. All experiments are

performed on the ImageNet [21] dataset.

In all configurations and all experiments, the weight pa-

rameters are initialized with the pretrained floating point

weights of the deep network. Although we will compare the

effectiveness of different initializations for the scale/offset

parameters in Sec 4.3, we use our proposed initialization

from Sec 3.2 for experiments in sections 4.1 and 4.2.

3For unbounded activation functions (e.g. positive portion of Swish),

xmin or xmax can be estimated from a few forward passes.

4.1. Results on Swish activation

Tables 2 and 3 show the performance impact of quanti-

zation with all the configurations of the proposed method

on EfficientNet-B0 [24] and MixNet-S [25], respectively.

MixNet-S uses ReLU activation in the initial 3 layers and

Swish activation in rest of the layers. By using the learn-

able offset parameter, we observe a 1.6-1.8% and 1.2-

1.3% performance improvement for W4A4 quantization on

EfficientNet-B0 and MixNet-S respectively (see Configura-

tions 3 and 4 compared to Configuration 1 (LSQ)). This per-

formance improvement using our proposed learnable asym-

metric quantization scheme is most prominent in the case of

W2A2 quantization.

The performance of Configuration 3 (signed range +

learnable offset) and 4 (unsigned range + learnable offset) is

almost similar for all the bit-widths. This is because, since

we learn the offset parameter, the activation range is appro-

priately mapped to the quantization range irrespective of it

being signed or unsigned.

Another interesting observation is that Configuration 2

performs consistently worse than all other configurations.

This is because, due to the lack of an offset parameter, only

2b−1 quantization levels are utilized by the positive part of

the activation range while the positive portion of the Swish

activation is much larger than the negative portion, as men-

tioned in Section 3. Hence, compared to Configurations 3

and 4 which allocate 2b quantization levels for the entire ac-

tivation range, Configuration 2 has a poor utilization of its

quantization range, leading to a worse performance.

4.2. Results on ReLU activation

The results on ResNet shown in the LSQ paper [7] use

the pre-activation version of ResNet architecture [9] which

has about 0.4-0.6% higher top-1 ImageNet accuracy than

the standard ResNet(s). Hence, for a fair comparison with

other state-of-the-art methods, we run our own implemen-

tation of LSQ (Configuration 1) and all other configura-

tions on the standard ResNets. Tables 4 shows the quan-

tization performance of all the configurations of the pro-

posed method on ResNet18. Our implementation of LSQ

(Configuration 1) can achieve a 70.7% accuracy with W4A4

quantization which is more than full-precision accuracy of

70.1%. This is sanity check that proves that our LSQ re-

sults are at par with the original LSQ paper [7]. Also, Con-

Table 2. Comparison of all configurations of quantization with EfficientNet-B0 (FP accuracy: 76.1%)

Method W2A2 W3A3 W4A4

Config 1 : LSQ (Unsigned + Symmetric) 43.5% 67.5% 71.9%

Config 2 : Signed + Symmetric 23.7% 54.8% 68.8%

Config 3 : Signed + Asymmetric 49.1% 69.9% 73.5%

Config 4 : Unsigned + Asymmetric 48.7% 69.3% 73.8%

Table 3. Comparison of all configurations of quantization with MixNet-S (FP accuracy: 75.9%)

Method W2A2 W3A3 W4A4

Config 1 : LSQ (Unsigned + Symmetric) 39.9% 64.3% 70.4%

Config 2 : Signed + Symmetric 23.4% 62.1% 67.2%

Config 3 : Signed + Asymmetric 42.5% 66.7% 71.6%

Config 4 : Unsigned + Asymmetric 42.8% 66.1% 71.7%

figurations 1, 3 and 4 outperform existing state-of-the-art

methods, namely PACT [5], DSQ [8] and QIL [13]. It is

worth noting that, unlike EfficientNet and MixNet, there is

almost no performance gap between Configurations 1, 3 and

4 when quantizing ResNet18. We attribute this to the fact

that ReLU activation function has no negative component.

4.3. Effect of quantization parameter initialization

In this section, we compare three schemes for initializing

the quantization scale and offset parameters. Since we use

symmetric quantization for weights, no offset is used for

weight quantization. Also, configurations 1 and 2 for acti-

vation quantization don’t use an offset. The three compared

initialization methods are as follows:

1. Min-max initialization. We use the minimum and

maximum values of each layer’s weights and activa-

tions (obtained over first batch of input images) to

initialize the quantization scale and offset parameters.

This initialization scheme is formalized in (7).

2. LSQ initialization. The scale for both weight quan-

tization and activation quantization is initialized as

2 ∗mean(|v|)/√p, where v indicate layer weights or

activations and p is the upper bound of the quantization

range.

3. LSQ+ initialization. We intialize the weight quanti-

zation and activation quantization parameters as pro-

posed in Sec. 3.2

For the experiments, we quantize EfficientNet-B0 using

Configuration 4 and perform multiple training runs with

each of these initialization methods. Table 5 shows the vari-

ation (∆acc) in the final performance across 5 training runs

with each of these initializations. We can observe a high in-

stability in the final performance with W2A2 quantization,

especially with min-max quantization. This is because the

tail of the weight or activation distribution can easily influ-

ence the scale parameter intialization with 2-bit quantiza-

tion. The LSQ initialization method, which initializes the

weight quantization scale parameter with the square-root

normalized mean absolute value, also has a higher variation

in training performance. This is because LSQ initialization

leads to a large value for the sinit which is far from the con-

verged value as was shown in Figure 1.

5. Discussion

5.1. Learned offset values

It is interesting to observe the layer-wise offset val-

ues learned by the network. Figure 2 shows one such

example with Configuration 4 for W4A4 quantization of

EfficientNet-B0. Note that an offset is not used for quan-

tizing the squeeze-excite layers because sigmoid activation

function has no negative component. Also, there is no acti-

vation applied at the end of a bottleneck block in Efficient-

Net, hence we use symmetric-signed-quantization for those

activation layers. These layers are not shown in the plot.

Figure 2. Layerwise β values after covergence for EfficientNet-B0

We can observe that most of the β values are negative,

meaning that the activations are shifted “up” before being

Table 4. Comparison of all configurations of quantization with ResNet18 (FP accuracy: 70.1%)

Method W2A2 W3A3 W4A4

PACT [5] 64.4% 68.1% 69.2%

DSQ [8] 65.2% 68.7% 69.6%

QIL [13] 65.7% 69.2% 70.1%

Config 1 : LSQ (Unsigned + Symmetric) 66.7% 69.4% 70.7%

Config 2 : Signed + Symmetric 64.7% 66.1% 69.2%

Config 3 : Signed + Asymmetric 66.7% 69.4% 70.7%

Config 4 : Unsigned + Asymmetric 66.8% 69.3% 70.8%

Table 5. ∆acc around mean accuracy across 5 training runs for

EfficientNet quantization using Config 4 with different initializa-

tions. Note: other tables show the best accuracy after grid search

on hyperparameters, which is different from mean accuracy.

Quantization Parameter

Initialization
Mean Acc ±∆acc

W4A4 W2A2

Mix-max 71.3± 2.2% 43.8± 4.7%

LSQ 72.0± 1.6% 44.4± 2.9%

LSQ+ 73.0± 0.9% 46.8± 1.9%

scaled and clamped between the quantization range. This

shows that the quantization layers learn to accommodate the

negative activation values. None of the learned β values are

lower than the min value of the Swish activation function

(red dotted line). Because, from (4),

β < xmin =⇒ x− β

s
> 0 ∀x > xmin =⇒ ∂x̂

∂β
= 0

Hence, gradient for β becomes zero as soon as β < xmin.

5.2. Learned vs Fixed offset

On further observation of Figure 2, the learned offset for

most layers is away from the Swish minimum value. This

is because, if we try to represent the entire activation range

using the quantization grid (refer (6)), it leads to coarser

representation since the number of bits are fixed causing

a higher quantization error. The purpose of learning the s
and β values is to learn this trade-off between resolution of

the quantization grid and the proportion of activation range

represented by the quantization grid. Hence, the learned β
values are not exactly equal to the min value of the activa-

tion function. But one might wonder about the performance

achieved when β for each layer is fixed to xmin. Table

6 shows the difference of performance between fixed and

learned offset methods.

6. Conclusion

In this work, targeting the low-bit quantization domain,

we solve two problems: (1) quantization of deep neural net-

works with signed activation functions and (2) stability of

Table 6. Performance difference between fixed and learned offset

for EfficientNet quantization at W4A4 using Config 4

Method W4A4

Fixed β = 0 (LSQ) 71.9%

Fixed β = xmin 72.5%

Learned β 73.8%

training performance w.r.t. quantization. To do so, we pro-

pose a general asymmetric quantization scheme with train-

able scale and offset parameters that can learn to accommo-

date the negative activations without using an extra sign bit.

In (5), we show that using such asymmetric quantization

for activations incurs zero runtime overhead. Our work is

the first to quantize modern efficient architectures like Effi-

cientNet and MixNet to extremely low bits. We show that

LSQ+ significantly improves the performance of 2-, 3- and

4-bit quantization on these architectures. Our experiments

with traditional ReLU-based ResNet18 architecture show

that we can use LSQ+ instead of LSQ everywhere without

hurting performance. Finally, we show that using MSE-

minimization based initialization scheme for the activation

quantization parameters leads to a more stable performance,

which is of high importance for low-bit quantization-aware

training.

References

[1] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy

Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,

Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Is-

ard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Man-

junath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga,

Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,

Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Tal-

war, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fer-

nanda Viégas, Oriol Vinyals, Pete Warden, Martin Watten-

berg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensor-

Flow: Large-scale machine learning on heterogeneous sys-

tems, 2015. Software available from tensorflow.org. 2

[2] Ron Banner, Yury Nahshan, and Daniel Soudry. Post train-

ing 4-bit quantization of convolutional networks for rapid-

deployment. In Advances in Neural Information Processing

Systems 32: Annual Conference on Neural Information Pro-

cessing Systems 2019, NeurIPS 2019, 8-14 December 2019,

Vancouver, BC, Canada, pages 7948–7956, 2019. 2

[3] Yoshua Bengio, Nicholas Léonard, and Aaron Courville.

Estimating or propagating gradients through stochastic

neurons for conditional computation. arXiv preprint

arXiv:1308.3432, 2013. 3

[4] Yaohui Cai, Zhewei Yao, Zhen Dong, Amir Gholami,

Michael W. Mahoney, and Kurt Keutzer. Zeroq: A novel

zero shot quantization framework. CoRR, abs/2001.00281,

2020. 2

[5] Jungwook Choi, Zhuo Wang, Swagath Venkataramani,

Pierce I-Jen Chuang, Vijayalakshmi Srinivasan, and Kailash

Gopalakrishnan. PACT: parameterized clipping activa-

tion for quantized neural networks. arXiv preprint

arxiv:805.06085, 2018. 1, 5, 6

[6] Yoni Choukroun, Eli Kravchik, Fan Yang, and Pavel Kisilev.

Low-bit quantization of neural networks for efficient infer-

ence. In 2019 IEEE/CVF International Conference on Com-

puter Vision Workshops, ICCV Workshops 2019, Seoul, Ko-

rea (South), October 27-28, 2019, pages 3009–3018, 2019.

2

[7] Steven K Esser, Jeffrey L McKinstry, Deepika Bablani,

Rathinakumar Appuswamy, and Dharmendra S Modha.

Learned step size quantization. arXiv preprint

arXiv:1902.08153, 2019. 1, 2, 3, 4

[8] Ruihao Gong, Xianglong Liu, Shenghu Jiang, Tianxiang Li,

Peng Hu, Jiazhen Lin, Fengwei Yu, and Junjie Yan. Differen-

tiable soft quantization: Bridging full-precision and low-bit

neural networks. In Proceedings of the IEEE International

Conference on Computer Vision, pages 4852–4861, 2019. 5,

6

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Identity mappings in deep residual networks. In European

conference on computer vision, pages 630–645. Springer,

2016. 1, 4

[10] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh

Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,

Ruoming Pang, Vijay Vasudevan, et al. Searching for mo-

bilenetv3. In Proceedings of the IEEE International Confer-

ence on Computer Vision, pages 1314–1324, 2019. 1

[11] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu,

Matthew Tang, Andrew Howard, Hartwig Adam, and Dmitry

Kalenichenko. Quantization and training of neural networks

for efficient integer-arithmetic-only inference. In The IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), June 2018. 3

[12] Sambhav R Jain, Albert Gural, Michael Wu, and Chris H

Dick. Trained quantization thresholds for accurate and effi-

cient fixed-point inference of deep neural networks. arXiv

preprint arXiv:1903.08066, 2(3):7, 2019. 2

[13] Sangil Jung, Changyong Son, Seohyung Lee, Jinwoo Son,

Jae-Joon Han, Youngjun Kwak, Sung Ju Hwang, and

Changkyu Choi. Learning to quantize deep networks by op-

timizing quantization intervals with task loss. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 4350–4359, 2019. 2, 5, 6

[14] Jangho Kim, Yash Bhalgat, Jinwon Lee, Chirag Patel, and

Nojun Kwak. Qkd: Quantization-aware knowledge distilla-

tion. arXiv preprint arXiv:1911.12491, 2019. 2

[15] Raghuraman Krishnamoorthi. Quantizing deep convolu-

tional networks for efficient inference: A whitepaper. arXiv

preprint arXiv:1806.08342, Jun 2018. 2

[16] Asit Mishra and Debbie Marr. Apprentice: Using knowledge

distillation techniques to improve low-precision network ac-

curacy. arXiv preprint arXiv:1711.05852, 2017. 2

[17] Daisuke Miyashita, Edward H. Lee, and Boris Murmann.

Convolutional neural networks using logarithmic data rep-

resentation. arXiv preprint arxiv:1603.01025, 2016. 2

[18] Markus Nagel, Mart van Baalen, Tijmen Blankevoort, and

Max Welling. Data-free quantization through weight equal-

ization and bias correction. In Proceedings of the IEEE Inter-

national Conference on Computer Vision, pages 1325–1334,

2019. 2, 3

[19] Antonio Polino, Razvan Pascanu, and Dan Alistarh. Model

compression via distillation and quantization. arXiv preprint

arXiv:1802.05668, 2018. 2

[20] Prajit Ramachandran, Barret Zoph, and Quoc V Le.

Searching for activation functions. arXiv preprint

arXiv:1710.05941, 2017. 1

[21] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, Alexander C. Berg, and

Li Fei-Fei. ImageNet Large Scale Visual Recognition Chal-

lenge. International Journal of Computer Vision (IJCV),

115(3):211–252, 2015. 4

[22] Sungho Shin, Yoonho Boo, and Wonyong Sung. Fixed-point

optimization of deep neural networks with adaptive step size

retraining. In 2017 IEEE International conference on acous-

tics, speech and signal processing (ICASSP), pages 1203–

1207. IEEE, 2017. 2, 4

[23] Wonyong Sung, Sungho Shin, and Kyuyeon Hwang. Re-

siliency of deep neural networks under quantization. arXiv

preprint arXiv:1511.06488, 2015. 2, 4

[24] Mingxing Tan and Quoc V Le. Efficientnet: Rethinking

model scaling for convolutional neural networks. arXiv

preprint arXiv:1905.11946, 2019. 1, 4

[25] Mingxing Tan and Quoc V Le. Mixconv: Mixed depthwise

convolutional kernels. CoRR, abs/1907.09595, 2019. 1, 4

[26] Stefan Uhlich, Lukas Mauch, Fabien Cardinaux, Kazuki

Yoshiyama, Javier Alonso Garcı́a, Stephen Tiedemann,

Thomas Kemp, and Akira Nakamura. Mixed precision dnns:

All you need is a good parametrization. 2

[27] Karen Ullrich, Edward Meeds, and Max Welling. Soft

weight-sharing for neural network compression. In Inter-

national Conference on Learning Representations (ICLR),

2017. 2

[28] Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song

Han. Haq: Hardware-aware automated quantization with

mixed precision. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 8612–8620,

2019. 3

[29] Ritchie Zhao, Yuwei Hu, Jordan Dotzel, Christopher De Sa,

and Zhiru Zhang. Improving neural network quantization

without retraining using outlier channel splitting. In Pro-

ceedings of the 36th International Conference on Machine

Learning, ICML 2019, 9-15 June 2019, Long Beach, Cali-

fornia, USA, pages 7543–7552, 2019. 2

