
Neural Network Compression Using Higher-Order Statistics and Auxiliary

Reconstruction Losses

Christos Chatzikonstantinou Georgios Th. Papadopoulos Kosmas Dimitropoulos Petros Daras

Information Technologies Institute, Centre for Research and Technology Hellas, Greece

{chatziko,papad,dimitrop,daras}@iti.gr

Abstract

In this paper, the problem of pruning and compressing

the weights of various layers of deep neural networks is in-

vestigated. The proposed method aims to remove redundant

filters from the network to reduce computational complex-

ity and storage requirements, while improving the perfor-

mance of the original network. More specifically, a novel

filter selection criterion is introduced based on the fact that

filters whose weights follow a Gaussian distribution corre-

spond to hidden units that do not capture important aspects

of data. To this end, Higher Order Statistics (HOS) are

used and filters with low cumulant values that do not de-

viate significantly from Gaussian distribution are identified

and removed from the network. In addition, a novel prun-

ing strategy is proposed aiming to decide on the pruning

ratio of each layer using the Shapiro-Wilk normality test.

The use of auxiliary MSE losses (intermediate and after

the softmax layer) during the fine-tuning phase further im-

proves the overall performance of the compressed network.

Extensive experiments with different network architectures

and comparison with state-of-the-art approaches on well-

known public datasets, such as CIFAR-10, CIFAR-100 and

ILSCVR-12, demonstrate the great potential of the proposed

approach.

1. Introduction

Deep Neural Networks (DNNs) usage has been extraor-

dinarily expanded recently, due to the fact that such net-

works have been experimentally shown to provide robust

solutions to numerous and diverse applications in which

machine learning techniques are required, e.g., computer

vision, natural language processing and speech recognition,

etc [21, 22]. The remarkable success of DNNs in the afore-

mentioned tasks has inevitably triggered significant atten-

tion towards their implementation in embedded systems,

so as to enable their application in settings of decreased

availability of computational resources. To this end, meth-

ods targeting the reduction of the DNN parameters, while

maintaining their recognition performance, have received

particular attention within the deep learning community.

These approaches are typically termed DNN acceleration

and compression techniques.

Multiple network acceleration and compression ap-

proaches have been proposed so far and they can be roughly

grouped into five main categories: a) Pruning methods,

which aim at removing redundant parameters from the net-

work in order to reduce computational complexity and stor-

age requirements [2, 7, 11, 45]; b) low-rank approxima-

tion methods that make use of decomposition techniques to

split the DNN convolutional matrices into smaller ones in

order to reduce the computational complexity of the net-

work [10]; c) teacher-student methods that train a more

compact and computationally efficient DNN (student net-

work), using a larger DNN (teacher network) for guid-

ance [43]; d) compact network design strategies, that con-

struct low-complexity network architectures at the expense

of a small classification performance reduction (e.g., re-

placement of fully connected layers with global average

pooling operators [37], use of depthwise separable convo-

lutions [24], etc.); e) network quantization methods that re-

duce the precision of DNN parameter values enabling the

reduction of storage requirements and computational com-

plexity [44].

Pruning of filters’ parameters is one of the most pop-

ular compression approaches, which are based on the as-

sumption that many parameters in DNNs are often redun-

dant. Depending on the part of the network that they op-

erate, pruning methods are categorized into different cat-

egories [3, 5]. Filter-level pruning techniques [7], which

aim at removing convolutional filters or feature channels,

have received particular attention due to their reported effi-

ciency in compressing DNNs and their reduced implemen-

tation simplicity. Nevertheless, no attention has been drawn

to the higher-order statistical characteristics of the DNN pa-

rameters. Thus, the existing filter-level pruning approaches

do not take into consideration the Gaussian priors, which

are imposed to the DNN parameters during training or ini-

1



tialization

The fundamental consideration of the current work is

based on the observation that DNN training initialization

(and hence DNN learning tendency) typically forces fil-

ters parameters to follow a Gaussian distribution resulting

in hidden units with negligible effect to the network out-

put [29]. In this respect, the values of the DNN filter pa-

rameters can be considered as signal samples generated by

a zero mean stationary process. Higher Order Statistics

(HOS) [28], which are a particular type of cumulant met-

rics, provide a reliable measure of the distance of a random

process from Gaussianity.

More specifically, in this paper, a four-step compression

algorithm is proposed (Figure 1). Firstly, HOS are used

as a filter selection criterion, where filters with low cumu-

lant value (i.e., not deviating significantly from the Gaus-

sian distribution) are removed. Secondly, Higher Order

Orthogonal Iteration (HOOI) [19] is applied to the DNN

matrices in order to reduce the computational complexity

of the network. The third step involves the fine-tuning of

the compressed DNN. Auxiliary mean squared error (MSE)

losses are computed during the fine-tuning of the com-

pressed DNN both after the softmax layer and the interme-

diate layers. Finally, the fourth step of the algorithm in-

cludes further fine-tuning of the DNN without the usage of

auxiliary losses in order to improve the overall accuracy of

the network. More specifically, the main contributions of

this paper are summarized as follows:

• A novel filter selection criterion is proposed based on

the fact that filters whose weights follow a Gaussian

distribution correspond to hidden units that do not cap-

ture important aspects of data. To this end, higher-

order statistics are used for the identification and re-

moval of filters with low cumulant values, i.e., filters

whose parameters deviate significantly from a Gaus-

sian distribution.

• A novel pruning strategy is proposed aiming to de-

fine the pruning ratio of each individual layer using

the Shapiro-Wilk normality test. The proposed strat-

egy defines an adaptive per layer pruning ratio, instead

of a global one, to further optimize the pruning of fil-

ters in each layer.

• To improve the recognition accuracy of the network,

the employment of auxiliary MSE losses (intermediate

and after the softmax layer) during the fine-tuning step

is proposed. Experimental results show that the aux-

iliary losses optimize the filter parameters improving

the performance of the compressed network.

Extensive experiments with different network architec-

tures and comparison with state-of-the-art approaches on

well-known public datasets, such as CIFAR-10, CIFAR-100

and ILSCVR-12, demonstrate the efficiency of the proposed

approach.

The remainder of the paper is organized as follows: Rel-

evant previous work is discussed in Section 2. The proposed

method is presented in Section 3. Thorough experimental

analysis and extensive comparative evaluation are provided

in Section 4. Finally, conclusions are drawn in Section 5.

2. Related Work

Filter-level pruning methods target the removal of con-

volutional filters or feature channels, in order to reduce the

DNN parameter space. One of the main advantages of these

methods is their compression efficiency (while maintainin-

ing high classification accuracy), combined with increased

implementation simplicity. More specifically, Li et al. [23]

prune a certain percentage of channels in each layer, based

on the L1-norm of its filter weights, while in [13] a filter-

pruning approach is introduced, which prunes the filters

with a median value similar to the median value of the filters

within the same layer. Moreover in [26] L1 regularization

is imposed to the importance factor of each layer during

training and, subsequently, channels with lower importance

are discarded. Yu et al. [42] introduce a so called Final

Response Layer (FRL) and neurons in previous layers are

removed based on the propagation of the importance scores

to the FRL one. On the other hand, Ding et al. [7] propose

a SGD optimization method, which creates identical filters

during training. All but one identical filters are pruned with

minimum accuracy loss. Additionally, You et al. [41] mul-

tiply the output of each filter with a trainable parameter,

taking advantage of the Taylor expansion to estimate the

change in the loss function. The less important filters are

pruned based on the modification of the loss function. Neu-

ral architecture search is used in [8] to define the channel

and layer sizes of the pruned network. Furthermore, Lin et

al. [25], solve the optimization problem of network pruning

using a learning algorithm inspired by Generative Adver-

sarial Networks (GANs).

On the other hand, some filter-level pruning methods

take advantage of the MSE loss to guide the pruning pro-

cess. Luo et al. [14] and He et al. [27] prune the filters

which have the smallest impact to the reconstruction error

between the baseline and the pruned network. In [45] aux-

iliary losses are added into the network to increase the dis-

criminative power of intermediate layers. Channel selection

is conducted based on the additional losses and the recon-

struction error of the feature maps. Contrary to previous

methods, which used the MSE loss for channel selection, in

the proposed method the MSE loss is employed during the

fine-tuning step of the compression algorithm.

Common ground of the existing filter-level pruning

methods is that they do not investigate the higher-order sta-

tistical characteristics of the DNN parameters before apply-



Figure 1. Outline of the proposed method. Initially, the HOS metrics are calculated for the filters of layer L and the least discriminant filters

are removed. Corresponding layer outputs and kernels in the subsequent layer are also pruned. Afterwards, the HOOI algorithm is applied

to the convolutional kernels. The initial convolutional kerners are replaced with three smaller ones. The next step is the fine-tuning of the

DNN, employing auxiliary MSE losses at the output of the network and after some intermediate layers. Finally, the DNN is fine-tuned

without the usage of the aforementioned losses.

ing pruning operations. The fact that Gaussian priors are

typically imposed to the DNN parameters, either during ini-

tialization or due to the employment of the L2 norm for reg-

ularization during training, is not taken into account. In this

work, the fact that the DNN filter parameters are typically

forced to follow a Gaussian distribution is utilized in order

to prune the filters with negligible effect to the DNN output.

3. Proposed approach

3.1. Motivation

It is common practice in the deep learning community

to use the L2 norm for regularization during training, in an

attempt to address the problem of exploding gradients [30].

However, L2 regularization forces the DNN filter parame-

ters to follow a Gaussian distribution [4], [33]. Neverthe-

less, Gaussianity is not an ideal characteristic for DNNs.

Specifically, “...with Gaussian priors the contributions of in-

dividual hidden units are all negligible, and consequently,

these units do not represent “hidden features” that capture

important aspects of the data...” [29]. Suitable metrics, orig-

inating from the information theory field, for measuring the

distance of a random process from Gaussianity are HOS. To

this end, HOS are utilized in this work as a criterion for de-

tecting (and subsequently removing) the convolutional fil-

ters that do not capture important and discriminative aspects

of the data.

3.2. Higher Order Statistics (HOS)

HOS [36] are defined in terms of moments and cumu-

lants. For a zero mean stationary random process z(t),
where (τ1, τ2, ..., τq−1) are the q − 1 time lags, and, for

q = 3, 4, the qth order cumulant of z(t) can be defined as

the difference between z(t) and g(t) [g(t) is a Gaussian ran-

dom process with the same second-order statistics as z(t)]:

Cq,z(τ1, τ2, ..., τq−1) =

E{z(τ1), ..., z(τq−1)} − E{g(τ1), ..., g(τq−1)},
(1)

where Cq,z is the qth order cumulant of z(t). Consequently,

cumulants can provide a measure of the distance of a ran-

dom process from Gaussianity.

Cumulants of a set of values with sample size N can be

calculated using k-order statistics. The qth order k-statistic

is the unbiased estimator of the cumulant Cq,z . In this re-

spect, the 3rd and 4th order statistics can be computed, using

the central moments mk, as follows [17]:

k3 =
N2

(N − 1) · (N − 2)
m3, (2)

k4 =
N2[(N + 1)m4 − 3(N − 1)m2

2
]

(N − 1) · (N − 2) · (N − 3)
(3)

Regarding the most commonly met HOS, skewness (γ1) and

its commonly used estimator (denoted g1) are defined, us-

ing the raw central moments µp, according to the following

expressions [1]:

γ1 =
µ3

µ
3

2

2

, (4)

g1 =
k3

k
3

2

2

. (5)

On the other hand, kurtosis is defined as follows [1]:

β2 =
µ4

µ2

2

(6)



The most commonly used form though is kurtosis excess

(γ2) and its estimator (denoted g2) [1]:

γ2 =
µ4

µ2

2

− 3 (7)

g2 =
k4
k2
2

(8)

3.3. Selection of pruning filters

According to the proposed approach, a filter-level prun-

ing method is introduced. This method makes use of HOS

values (Section 3.2) as a filter selection criterion. In partic-

ular, the values of the DNN filter parameters can be consid-

ered as signal samples generated by a zero mean stationary

process as it can be reasonably assumed based on the obser-

vation that L2 norm forces the DNN filter parameters to fol-

low a Gaussian distribution. The aforementioned assump-

tion has also been experimentally evaluated, by calculating

the mean value of each filter’s parameters and making use

of the augmented Dickey-Fuller test for evaluating the sta-

tionarity aspect [6]. More specifically, the following HOS

metrics are studied in this work:

• The 3rd order cumulant, k3 (Eq. 2).

• The 4th order cumulant, k4 (Eq. 3).

• The product of k3 and k4.

• The estimator of skewness, g1 (Eq. 4).

• The estimator of kurtosis excess, g2 (Eq. 7).

• The product of g1 and g2.

Concering the pruning process, a pretrained DNN is pruned

in a single step and subsequently it is fine-tuned. Filters

whose weight distribution exhibits a small distance from

the Gaussian one are discarded since they have negligible

impact to the overall DNN outcome.

3.4. Pruning strategy

The proposed pruning method is applied to the filters of a

DNN, as shown in (Figure 1). Initially, the higher order cu-

mulants of the filters of each layer are calculated. Then, the

filters are pruned based on their distance from the Gaussian

distribution. Subsequently, corresponding layer outputs and

kernels in the subsequent layer are also removed. A criti-

cal aspect in DNN compression concerns the pruning ratio

applied to each layer.

In the current work, a novel filter-pruning strategy is pro-

posed, where the pruning process is guided by the metric

of a normality test. The latter evaluates the validity of the

null hypothesis that a sample originates from a normally

distributed population. The test is applied to each network

layer and the resulting value of the test statistic (T) is used

to define the pruning ratio of each layer. A higher value of T

indicates that the sample is more likely to originate from a

Gaussian distribution. Given the fact that a Gaussian distri-

bution of the DNN parameters is not desired (as already dis-

cussed in the beginning of this section), a layer exhibiting

a higher T value is associated with a greater pruning ratio.

The pruning ratio R of each layer is calculated according to

the following expression:

R =
T − Tmin

coef · (Tmax − Tmin)
, (9)

where Tmax is the maximum T value estimated for the

DNN, Tmin is the corresponding minimum T value and

coef is a coefficient that varies depending on the targeted

pruning ratio.

A per layer pruning ratio is estimated, instead of defining

a global NN filter-pruning threshold, for ensuring that no

layers end up with all the filters pruned. The Shapiro-Wilk

criterion [39] was selected as a formal normality test among

others due to its increased robustness [32], which was also

evaluated experimentally (Section 4.3.3).

3.5. Higher Order Orthogonal Iteration (HOOI)

At the second step of the proposed compression algo-

rithm, the HOOI [19] algorithm is applied to the pruned

convolutional kernels so as to achieve a further reduction of

the DNN parameters, through the estimation of a low-rank

approxiamtion of the network tensors. The HOOI algorithm

consists of two steps: the Higher Order SVD (HOSVD)

analysis and the Alternating Least Squares (ALS) algo-

rithm. The HOSVD is a method used to calculate the Tucker

decomposition of a N-dimensional tensor. It is used as an

initial step for the first estimation of the Tucker decompo-

sition and subsequently the ALS algorithm is used to better

estimate the decomposed matrices.

The initial convolutional kernel K ∈ R
w·h·Cin·Cout

is replaced with three smaller convolutional kernels, KC

∈ R
dC ·dC ·Cin·Cout , Kin ∈ R

din·din·Cin·Rin and Kout ∈
R

dout·dout·Rout·Cout , with Cin input filters, Cout output fil-

ters, w, h the spatial dimensions of the filter, dC = 3 and

dout = din = 1.

Specifically, the layer output Y ∈ R
Wy·Hy·Cout , where

Wy and Hy are the spatial dimensions of the output feature

map, arises from the successive convolutions of the layer

input with the tensors resulting from the low-rank approxi-

mation of the initial one [10]:

O1 = Kin⊛X, O2 = KC⊛O1, Y = Kout⊛O2, (10)

where X ∈ R
Wx·Hx·Cin , with Wx and Hx the spatial di-

mensions of the input feature map. The ranks of each net-

work layer are decided by employing a constant compres-

sion rate.



3.6. Auxiliary MSE losses

Most existing methods include a fine-tuning step after

the pruning of the initial network. In this method, a mean

squared error (MSE) term is inserted after the softmax layer

as an auxiliary loss in order to improve the convergence of

the pruned network. The MSE loss can be defined as:

LMSE =
1

N
· (Sp − Sb)2, (11)

where Sp denotes the softmax output of the pruned network,

Sb is the softmax output of the baseline network and N =
Cin*Cout. The final loss of the DNN is:

Lf = Ls +R ∗ LMSE , (12)

where Ls is the softmax layer and R is a factor which

weights the impact of the MSE loss to the final loss.

The depth of CNNs reduces the discriminative power of

intermediate layers due to the long backpropagation path.

To this end, weighted MSE auxiliary losses are introduced

to intermediate convolutional layers and can be defined as:

LMSEc
=

1

Nc

·

Wy∑

i=1

·

Hy∑

j=1

(Op
i,j,:,: −Ob

i,j,:,:)
2, (13)

where Nc = Cin ∗ Cout ∗ Wy ∗ Hy , Op denotes the con-

volutional output of the pruned network and Ob is the con-

volutional output of the baseline network. Moreover, the

gradients of LMSEc
are multiplied by a factor:

f = max(0.01, (
Lk

LK

)ν) [9], (14)

where ν > 0 is the decaying rate of f , Lk is the index of the

layer the loss is applied and LK is the index of the softmax

layer.

Zhuang et al. [45] also use auxiliary losses to interme-

diate convolutional layers. However, in contrast to the pro-

posed approach, the auxiliary losses are softmax losses in-

stead of MSE losses. Moreover, those losses are utilised

during the channel selection step rather than during the fine-

tuning step.

The last step of the proposed algorithm involves some

epochs of fine-tuning, ommiting the MSE losses and explor-

ing the ability of the pruned DNN to achieve an increased

accuracy compared to the baseline one.

4. Experimental results

4.1. Datasets

For the experimental evaluation, the following well-

known public datasets are used for the task of image classi-

fication:

CIFAR: The CIFAR datasets [20] consist of natural im-

ages with resolution 32x32 that belong to 10 semantic

classes in the case of the CIFAR-10 dataset and 100 se-

mantic classes in the case of the CIFAR-100 dataset. The

training and test sets contain 50K and 10K images, respec-

tively.

ILSCVR-12: The ILSCVR-12 (ImageNet Large Scale

Visual Recognition Challenge-2012) [35] includes approx-

imately 1.2M training and 50K test images belonging to

1000 object categories.

4.2. Implementation details

Regarding implementation details, the input data are nor-

malized using each channel’s mean and standard devia-

tion values. A pre-defined data augmentation scheme is

adopted [12], which employs random cropping and horizon-

tal flip operations. The training set is split to training and

validation set. Regarding the CIFAR datasets, the training

set consists of the 90% of the images of the default training

set and the validation set of the remaining 10%, whereas re-

garding the ILSCVR-12, the training set consists of the 95%
of the images of the default training set and the validation

set of the remaining 5%.

With respect to the implemented DNNs, the PyTorch

framework [31] is used for all development activities. The

proposed approach is evaluated using two popular network

architectures, namely ResNet [12] and MobileNet [15] [38].

In all cases, the Stochastic Gradient Descent (SGD) opti-

mizer [34] is used with Nesterov momentum [40] equal to

0.9 and batch size set to 64.

The baseline DNNs are trained for 200 epochs using the

CIFAR-10 dataset, with learning rate 0.1, divided by 10 at

100 and 150 epochs. Concerning the CIFAR-100 dataset,

the baseline DNNs are trained for 300 epochs using learning

rate 0.1, which is divided by 10 at 150 and 225 epochs.

Regarding the ILSCVR-12 dataset, the pretrained PyTorch

baseline networks are used.

CIFAR training pipeline: The weights of the pre-trained

networks are updated for 40 epochs, with learning rate set

equal to 0.001. From the experiments of Section 4.3.3 on-

wards, which employ bigger pruning ratios, the pretrained

DNNs are fine-tuned for 140 epochs with learning rate equal

to 0.001, which is divided by 10 at 80 and 120 epochs.

Concerning the MobileNet networks, they are trained for 90

epochs, the learning rate is equal to 0.001 and it is divided

by 10 at 60 epochs.

ILSCVR training pipeline: The weights of the pre-

trained networks are updated for 70 epochs, with learning

rate set equal to 0.001, divided by 10 at epochs 10 and 50.

Regarding the pruning strategies, for the ResNet archi-

tecture, the last layer of each residual block is not pruned,

guided by the respective common practice in the litera-

ture [23, 27]. Additionally, the implemented pruning strate-



gies target the selection of network filters; therefore, the

fully connected layers are not pruned. As for the depth-

wise separable convolutional layers of the Mobilenets, they

are not directly pruned. Specifically, if the previous layer

is pruned, the respective filters of the depthwise separable

layer are pruned too. Concerning the low-rank approxi-

mation method, every layer of the network is decomposed

(fully connected and convolutional) apart from the first con-

volutional layer and the softmax layer, which cause a severe

deterioration of the DNN performance when decomposed.

Code is available at: https://github.com/

chatzikon/DNN-COMPRESSION.

4.3. Experimental evaluation

4.3.1 Evaluation of pruning criteria

The main goal of the first set of the conducted experiments

is to assess the efficiency of the six proposed filter selec-

tion criteria, namely the HOS metrics introduced in Section

3.3. Furthermore, the HOS metrics are compared with sim-

ple criteria, such as L1-norm and random filter selection.

Extensive experimental evaluation is performed and the ob-

tained results on CIFAR-10 dataset are summarized in Table

1. For all cases, the difference of the obtained classification

accuracy of the compressed DNN is compared with the one

of the original DNN.

In order to evaluate the efficiency of the introduced HOS

metrics for filter selection, the proposed pruning strategy is

used employing the Shapiro-Wilk normality test. Based on

the experimental results in Table 1, it can be seen that k3,

k4 and their product perform better than γ1, γ2 and their

product for the evaluated DNNs. The latter implies that the

central moments ms are more efficient in detecting convo-

lutional filters that bear less discriminative power compared

to the respective µp central moments. Additionally, it can be

seen that the product k3 × k4 leads to improved recognition

performance compared to that when using k3 or k4 alone.

This indicates the merits of comparing different HOS met-

rics for pruning DNN filters.

4.3.2 Evaluation of pruning strategies

In this section, the proposed DNN pruning strategy (de-

scribed in Section 3.4) is evaluated. More specifically, the

normality test used in P1 pruning strategy is Shapiro-Wilk,

while Jarque-Bera test [16] is used in P2 pruning strategy.

On the other hand, in P3 the k3 × k4 metric is used instead

of a normality test. In P4 pruning strategy, a global prun-

ing threshold is used, whereas in P5 the pruning strategy

proposed in Li et al. [23] is employed. Quantitative eval-

uation results are given for each pruning strategy and for

different DNN architectures. From the experimental results

in Table 1, it can be seen that the proposed pruning strategy

Metric Parameters

pruned (%)

Recognition

accuracy (%) (Top-1)

ResNet56 (Baseline accuracy: 92.64%)

k3 29.58 −0.99
k4 29.58 −0.99

k3xk4 29.58 −0.91
γ1 29.58 −1.09
γ2 29.58 −1.10

γ1xγ2 29.58 −0.95
L1 29.58 −1.02

Random 29.58 −1.21

ResNet110 (Baseline accuracy: 93.22%)

k3 32.64 −0.40
k4 32.64 −0.29

k3xk4 32.64 −0.15
γ1 32.64 −0.37
γ2 32.64 −0.59

γ1xγ2 32.64 −0.54
L1 32.64 −0.49

Random 32.64 −0.55

Table 1. Evaluation of different pruning metrics on CIFAR-10

dataset (L1 is the L1-norm and Random is the random filter se-

lection).

Pruning

strategy (%)

HOS

metric

Parameters

pruned

Recognition

accuracy (%) (Top-1)

ResNet56 (Baseline accuracy: 92.64)

P1 k3xk4 29.58 −0.91
P2 k3xk4 29.59 −0.95
P3 k3xk4 29.59 −0.95
P4 k3xk4 29.62 −1.45
P5 k3xk4 29.62 −0.98

ResNet110 (Baseline accuracy: 93.22)

P1 k3xk4 32.64 −0.15
P2 k3xk4 32.3 −0.47
P3 k3xk4 32.5 −0.52
P4 k3xk4 32.19 −0.67
P5 k3xk4 32.4 −0.17

Table 2. Evaluation of different pruning strategies on CIFAR-10

dataset.

(P1) outperforms all other approaches both in ResNet56 and

ResNet110 networks.

4.3.3 Evaluation of different compression approaches

In this section, we evaluate three different compression ap-

proaches. More specifically, in the first approach (A1) only

the filter-level pruning method is applied to the network,

whereas in A2 approach, the network is compressed using

exclusively the low-rank approximation (i.e., filter pruning



Compression

approach (%)

Parameters

pruned (%)

Parameters

removed

Recognition

accuracy (%) (Top-1)

ResNet56 (Baseline accuracy: 92.64)

A1 70.97 70.97 −2.35
A2 − 70.69 −1.71
A3 29.58 70.37 −1.58

ResNet110 (Baseline accuracy: 93.22)

A1 61.39 61.39 −1.34
A2 − 62.09 −1.02
A3 32.64 61.36 −0.83

Table 3. Evaluation of different compression approaches on

CIFAR-10 dataset.

is not applied in this case). The A3 approach is a combina-

tion of A1 and A2 in which the network is initially pruned

and then it is further compressed using the HOOI algorithm.

The experimental results with the three different pruning

strategies are presented in Table 3. The third column of

the table reports the total removed parameters of the DNN

due to either the filter-pruning or the low-rank approxima-

tion or both. In all experimental results presented in Table

3, the best performing pruning metric, i.e., k3 × k4 is used,

while pruning strategy P1 is adopted in the case of A1 and

A3 compression approaches.

From the experimental results presented in Table 3, it

can be seen that A1 compression approach suffers from

the largest recognition accuracy drop (compared with the

recognition accuracy of the original DNN), i.e., -2.35 and

-1.34 in the case of ResNet56 and ResNet110, respectively.

On the other hand, low rank approximation approach, i.e.,

A2, provides better recognition accuracy with a drop of -

1.71 and -1.02 in ResNet56 and ResNet110, respectively.

However, the combination of filter-level pruning and low-

rank approximation (i.e., A3 compression approach) im-

proves the experimental results in terms of compression (pa-

rameters removed) and recognition accuracy in both net-

works revealing the great potential of the proposed com-

pression approach.

4.3.4 Evaluation of the auxiliary MSE losses

The current section examines the effect of the auxiliary

MSE losses during fine-tuning. Three different hyperpa-

rameters are tuned: the R factor of the Eq. 12, the number

of the intermediate auxiliary MSE losses and the value of ν
(Eq. 14). The best combinations of the above parameters

are presented in Table 4, along with the achieved recog-

nition accuracy. In all experiments, the metric k3xk4, the

pruning strategy P1 and the compression approach A3 are

used. From the experimental results in Table 4, it can be

easily seen that the use of MSE losses during fine-tuning

phase improves significantly the recognition accuracy of the

network. In both cases, i.e., ResNet56 and ResNet110, the

Network Factor

R

No of

intermediate

MSE losses

Decay

rate ν
Recognition

accuracy (%)

(Top-1)

ResNet56 (Baseline accuracy: 92.64)

DNN without MSE - - - −1.58
DNN with MSE 5 2 3 +0.08

ResNet110 (Baseline accuracy: 93.22)

DNN without MSE - - - −0.83
DNN with MSE 2 2 4 +0.31

Table 4. Experiments using the auxiliary MSE losses and the

ResNet architecture on CIFAR-10 dataset.

recognition accuracy of the compressed network is higher

than that of the baseline network.

4.3.5 Comparison against state-of-the-art literature

approaches

The proposed method is also comparatively evaluated

against state-of-the-art filter-level DNN pruning methods.

In particular, the currently best performing methods in the

literature [7, 8, 13, 25, 41, 42, 45] are included in this study.

The obtained comparative evaluation results on CIFAR-10,

CIFAR-100 and ILSCVR-12 datasets are presented in Ta-

bles 5, 6 and 7, respectively. It needs to be noted that for

the proposed approach the best performing pruning metric

(namely k3xk4), and pruning strategy (P1) are used, as ex-

perimentally verified in previous sections. From the pre-

sented results, it can be seen that the proposed approach

achieves superior performance. The latter demonstates the

added value of coupling the use of HOS metrics for filter se-

lection with the introduced statistical analysis-based prun-

ing strategy and the HOOI algorithm.

More specifically, the proposed method increases the

Top-1 recognition accuracy, compared with the one of the

baseline DNN, on CIFAR-10 dataset (Table 5) by 0.08,

0.31, 0.56 and 0.82 in the cases of ResNet56, ResNet110,

MobileNetV1 and MobileNetV2, respectively. Moreover,

concerning the CIFAR-100 dataset (Table 6), the Top-1

recognition accuracy of ResNet56 is slightly decreased by

0.01, whereas the Top-1 recognition accuracy of ResNet110

is increased by 0.12. Finally, we can see in Table 7 that the

Top-1 and Top-5 recognition accuracies of MobileNetV2 on

ILSCVR-12 dataset are decreased by 5.68 and 2.87, respec-

tively.

4.3.6 Reduction of the model size

In this section, the reduction rate of the parameters removed

from the initial DNN is compared to the reduction of the

model size of the pruned networks in order to find out the

storage benefit of the proposed method. The results can be

seen in Table 8. The models compressed in the previous



Method Parameters

removed (%)

FLOPs

removed (%)

Recognition

accuracy (%) (Top-1)

ResNet56

Yu et al. [42] 43.61 42.6 −0.03
Lin et al. [25] 65.9 60.2 −1.68
Dong et al. [8] − 52.7 −0.77
He et al. [13] − 52.6 −0.10
Ding et al. [7] − 60.85 +0.05

Zhuang et al. [45] 70.33 47.09 +0.01
You et al. [41] 66.7 70.3 −0.03

Proposed 70.37 69.72 +0.08

ResNet110

Lin et al. [25] 44.8 48.5 −0.76
Dong et al. [8] − 53 −0.64
He et al. [13] − 52.3 +0.17
Ding et al. [7] − 60.89 +0.06

Proposed 61.36 61.04 +0.31

MobilenetV1

Zhuang et al. [45] 30.07 42.86 +0.41
Proposed 30.55 38.89 +0.56

MobilenetV2

Zhuang et al. [45] 23.66 26.47 +0.22
Proposed 23.69 26.82 +0.82

Table 5. Comparative evaluation results using the CIFAR-10

dataset.

Method Parameters

removed (%)

FLOPs

removed (%)

Recognition

accuracy (%) (Top-1)

ResNet56

Dong et al. [8] − 51.3 −0.93
Proposed 50.32 51.54 −0.01

ResNet110

Dong et al. [8] − 52.6 −1.9
Proposed 54.36 53.87 +0.12

Table 6. Comparative evaluation results using the CIFAR-100

dataset.

Method Parameters

pruned (%)

FLOPs

removed (%)

Recognition accuracy

(%) (Top-1/Top-5)

Zhuang et al. [45] 25.93 44.75 −5.89/− 3.77
Proposed 27.13 43.65 −5.68/−2.87

Table 7. Comparative evaluation results using the ILSCVR-12

dataset (and MobileNetV2).

Network Parameters

removed (%)

Model size

reduction (%)

ResNet56 70.37 68.57
ResNet110 61.36 59.15

MobileNetV1 30.55 30.5
MobileNetV2 23.69 23.41

Table 8. Comparison between the reduction rate of the model pa-

rameters and the model size reduction on CIFAR-10 dataset

sections are examined and the size reduction of the models

trained using CIFAR-10 dataset is presented. Based on the

results of Table 8, it can be concluded that the reduction rate

of the model parameters is very similar to the model size

reduction, especially in the case of the MobileNet networks.

Network FLOPs

removed (%)

Inference

time (s)

Inference

memory (MB)

FPS at a

smart device

MobileNetV2 0 138 2561 7
Compressed

MobileNetV2

43.65 138 1961 8

Table 9. Comparison between the inference memory and the infer-

ence time required at a desktop computer and the FPS required at

a smart device by the compressed model and the baseline one

4.3.7 Integration to a mobile device

In this section, the inference memory and the inference time

required by the MobileNetV2, trained on ILSCVR-12, is

examined. Initially, the inference time and the inference

memory of the baseline and the compressed model are ex-

amined at a desktop computer, using a NVIDIA GeForce

GTX 1070 GPU. As shown in Table 9, there is no differ-

ence in the execution time during inference, however the

compressed model requires 23.43% less inference memory.

Moreover, the baseline and the compressed model are inte-

grated to a mobile device (MLS MX Pro) using the Pytorch

demo app [18]. The compressed model achieves 12.5%

speedup in terms of FPS according to the results presented

in Table 9.

5. Conclusions

In this paper, the problem of filter-level pruning for re-

alizing DNN compression was investigated. A novel fil-

ter selection methodology was proposed, which is based on

the use of higher order statistics (HOS), where filters with

low cumulant value (i.e., not deviating significantly from

the Gaussian distribution) are discarded. A new parame-

ter pruning strategy was introduced, which makes use of

the Shapiro-Wilk normality test to decide on the pruning

ratio of each individual layer. Furthermore, the Tucker de-

composition is used for further compression as well as aux-

iliary MSE losses are employed in intermediate network

layers in order to improve the performance of the pruned

network. Extensive experimentation as well as compara-

tive evaluation with similar literature approaches, involving

well-known public datasets (CIFAR-10, CIFAR-100 and

ILSCVR-12) and multiple network architectures, demon-

strated the efficiency of the proposed approach.

Future work includes the investigation of additional al-

ternative DNN pruning methods, which will focus not only

on the statistical analysis of the DNN properties, but will

also take into account the semantic information that is con-

veyed by the different parts of the DNN.

Acknowledgement

This work was supported by the Greek General Secre-

tariat of Research and Technology under contract T1EK-

02469 EPIKOINONO.



References

[1] M. Abramowitz and I. Stegun. Handbook of mathematical

functions. Dover Publications Inc., 1970.

[2] Amir H Ashouri, Tarek S Abdelrahman and Alwyn

Dos Remedios. Retraining-free methods for fast on-the-fly

pruning of convolutional neural networks. Neurocomputing,

370:56–69, 2019.

[3] Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle

and John Guttag. What is the state of neural network prun-

ing? arXiv preprint arXiv:2003.03033, 2020.

[4] C. Blundell, J. Cornebise, K. Kavukcuoglu and D. Wier-

stra. Weight uncertainty in neural network. In Proceedings

of the 32nd International Conference on Machine Learning,

volume 37 of Proceedings of Machine Learning Research,

pages 1613–1622. PMLR, 07–09 Jul 2015.

[5] Jian Cheng, Pei-song Wang, Gang Li, Qing-hao Hu and Han-

qing Lu. Recent advances in efficient computation of deep

convolutional neural networks. Frontiers of Information

Technology & Electronic Engineering, 19(1):64–77, 2018.

[6] Yin-Wong. Cheung and Kon S. Lai. Power of the augmented

dickey-fuller test with information-based lag selection. Jour-

nal of Statistical Computation and Simulation, 60(1):57–65,

1998.

[7] Xiaohan Ding, Guiguang Ding, Yuchen Guo and Jungong

Han. Centripetal sgd for pruning very deep convolutional

networks with complicated structure. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 4943–4953, 2019.

[8] Xuanyi Dong and Yi Yang. Network pruning via trans-

formable architecture search. In Advances in Neural Infor-

mation Processing Systems, pages 759–770, 2019.

[9] Yong Guo, Mingkui Tan, Qingyao Wu, Jian Chen, Anton

Van Den Hengel and Qinfeng Shi. The shallow end: Empow-

ering shallower deep-convolutional networks through auxil-

iary outputs. arXiv preprint arXiv:1611.01773, 2016.

[10] Julia Gusak, Maksym Kholiavchenko, Evgeny Ponomarev,

Larisa Markeeva, Philip Blagoveschensky, Andrzej Cichocki

and Ivan Oseledets. Automated multi-stage compression

of neural networks. In Proceedings of the IEEE Interna-

tional Conference on Computer Vision Workshops, pages 0–

0, 2019.

[11] Song Han, Huizi Mao and William J Dally. Deep com-

pression: Compressing deep neural networks with pruning,

trained quantization and huffman coding. In International

Conference on Learning Representations (ICLR), 2016.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016.

[13] Yang He, Ping Liu, Ziwei Wang, Zhilan Hu and Yi Yang. Fil-

ter pruning via geometric median for deep convolutional neu-

ral networks acceleration. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

4340–4349, 2019.

[14] Yihui He, Xiangyu Zhang and Jian Sun. Channel pruning

for accelerating very deep neural networks. In Proceedings

of the IEEE International Conference on Computer Vision,

pages 1389–1397, 2017.

[15] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-

dreetto and Hartwig Adam. Mobilenets: Efficient convolu-

tional neural networks for mobile vision applications. arXiv

preprint arXiv:1704.04861, 2017.

[16] Carlos M Jarque and Anil K Bera. Efficient tests for normal-

ity, homoscedasticity and serial independence of regression

residuals. Economics letters, 6(3):255–259, 1980.

[17] J. F. Kenney and E. S. Keeping. Mathematics of statistics,

Part 1. Van Nostrand, 1939.

[18] Ivan Kobzarev. Pytorch android examples.

https://github.com/pytorch/android-demo-app.

[19] Tamara G Kolda and Brett W Bader. Tensor decompositions

and applications. SIAM review, 51(3):455–500, 2009.

[20] A. Krizhevsky and G. Hinton. Learning multiple layers of

features from tiny images. Technical Report 4, University of

Toronto, 2009.

[21] Yann LeCun, Yoshua Bengio and Geoffrey Hinton. Deep

learning. volume 521, pages 436–444. Nature Publishing

Group, 2015.

[22] Yann LeCun, Koray Kavukcuoglu and Clément Farabet.

Convolutional networks and applications in vision. In Pro-

ceedings of 2010 IEEE international symposium on circuits

and systems, pages 253–256. IEEE, 2010.

[23] H. Li, A. Kadav, I. Durdanovic, H. Samet and H. P. Graf.

Pruning filters for efficient convnets. In International Con-

ference on Learning Representations, 2017.

[24] Min Lin, Qiang Chen and Shuicheng Yan. Network in net-

work. 2013.

[25] Shaohui Lin, Rongrong Ji, Chenqian Yan, Baochang Zhang,

Liujuan Cao, Qixiang Ye, Feiyue Huang and David Doer-

mann. Towards optimal structured cnn pruning via genera-

tive adversarial learning. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

2790–2799, 2019.

[26] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang,

Shoumeng Yan and Changshui Zhang. Learning efficient

convolutional networks through network slimming. In Pro-

ceedings of the IEEE International Conference on Computer

Vision, pages 2736–2744, 2017.

[27] Jian-Hao Luo, Jianxin Wu and Weiyao Lin. Thinet: A filter

level pruning method for deep neural network compression.

In Proceedings of the IEEE international conference on com-

puter vision, pages 5058–5066, 2017.

[28] J. M. Mendel. Tutorial on higher-order statistics (spectra) in

signal processing and system theory: theoretical results and

some applications. Proceedings of the IEEE, 79(3):278–305,

March 1991.

[29] R. M. Neal. Bayesian Learning for Neural Networks.

Springer-Verlag, 1996.

[30] R. Pascanu, T. Mikolov and Y. Bengio. On the difficulty of

training recurrent neural networks. In Proceedings of the

30th International Conference on Machine Learning, vol-

ume 28 of ICML’13, pages III–1310–III–1318. JMLR.org,

2013.



[31] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z.

DeVito, Z. Lin, A. Desmaison, L. Antiga and A. Lerer. Au-

tomatic differentiation in pytorch. In NIPS-W, 2017.

[32] Nornadiah Mohd Razali, Yap Bee Wah et al. Power com-

parisons of shapiro-wilk, kolmogorov-smirnov, lilliefors and

anderson-darling tests. Journal of statistical modeling and

analytics, 2(1):21–33, 2011.

[33] J. Rennie. On l2-norm regularization and the gaussian prior,

2003.

[34] H. Robbins and S. Monro. A stochastic approximation

method. The Annals of Mathematical Statistics, 22(3):400–

407, September 1951.

[35] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S.

Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C.

Berg, and L. Fei-Fei. Imagenet large scale visual recogni-

tion challenge. International Journal of Computer Vision,

115(3):211–252, Dec 2015.

[36] M. Sanaullah. A review of higher order statistics and spec-

tra in communication systems. Global Journal of Science

Frontier Research, 13(4), June 2013.

[37] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-

moginov and Liang-Chieh Chen. Mobilenetv2: Inverted

residuals and linear bottlenecks. In Proceedings of the

IEEE conference on computer vision and pattern recogni-

tion, pages 4510–4520, 2018.

[38] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-

moginov and Liang-Chieh Chen. Mobilenetv2: Inverted

residuals and linear bottlenecks. In Proceedings of the

IEEE conference on computer vision and pattern recogni-

tion, pages 4510–4520, 2018.

[39] S. S. Shapiro and M. B. Wilk. An analysis of variance test

for normality (complete samples). Biometrika, 52(3/4):591–

611, 1965.

[40] I. Sutskever, J. Martens, G. Dahl and G. Hinton. On the im-

portance of initialization and momentum in deep learning.

In Proceedings of the 30th International Conference on Ma-

chine Learning, volume 28 of ICML’13, pages III–1139–III–

1147. JMLR.org, 2013.

[41] Zhonghui You, Kun Yan, Jinmian Ye, Meng Ma and Ping

Wang. Gate decorator: Global filter pruning method for

accelerating deep convolutional neural networks. In Ad-

vances in Neural Information Processing Systems, pages

2130–2141, 2019.

[42] R. Yu, A. Li, C. F. Chen, J. H. Lai, V. I. Morariu, X. Han,

M. Gao, C. Y. Lin and L. S. Davis. Nisp: Pruning net-

works using neuron importance score propagation. In The

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), June 2018.

[43] Sergey Zagoruyko and Nikos Komodakis. Paying more at-

tention to attention: Improving the performance of convolu-

tional neural networks via attention transfer. 2016.

[44] Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye and Gang

Hua. Lq-nets: Learned quantization for highly accurate and

compact deep neural networks. In Proceedings of the Eu-

ropean conference on computer vision (ECCV), pages 365–

382, 2018.

[45] Zhuangwei Zhuang, Mingkui Tan, Bohan Zhuang, Jing Liu,

Yong Guo, Qingyao Wu, Junzhou Huang and Jinhui Zhu.

Discrimination-aware channel pruning for deep neural net-

works. In Advances in Neural Information Processing Sys-

tems, pages 875–886. 2018.


