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Abstract

Previous state-of-the-art real-time object detectors have

been reported on GPUs which are extremely expensive for

processing massive data and in resource-restricted scenar-

ios. Therefore, high efficiency object detectors on CPU-only

devices are urgently-needed in industry. The floating-point

operations (FLOPs1) of networks are not strictly propor-

tional to the running speed on CPU devices, which inspires

the design of an exactly “fast” and “accurate” object de-

tector. After investigating the concern gaps between clas-

sification networks and detection backbones, and follow-

ing the design principles of efficient networks, we propose

a lightweight residual-like backbone with large receptive

fields and wide dimensions for low-level features, which

are crucial for detection tasks. Correspondingly, we al-

so design a light-head detection part to match the back-

bone capability. Furthermore, by analyzing the drawbacks

of current one-stage detector training strategies, we also

propose three orthogonal training strategies—IOU-guided

loss, classes-aware weighting method and balanced multi-

task training approach. Without bells and whistles, our

proposed RefineDetLite achieves 26.8 mAP on the MSCO-

CO benchmark at a speed of 130 ms/pic on a single-thread

CPU. The detection accuracy can be further increased to

29.6 mAP by integrating all the proposed training strate-

gies, without apparent speed drop.

1. Introduction

Object detection is a fundamental technology in the com-

puter vision society and is also a crucial component for

many high-level artificial intelligence tasks, e.g., objec-

t tracking [59], vision-language transferring [9, 13], surveil-

lance, autonomous driving [58] and robotics. Benefited

from the rapid development of deep learning, the accura-

cy of object detection has been greatly improved. How-

ever, with the explosive growth of social media informa-

1Here, FLOPs means the number of multiply-adds following [41].

tion, the high computational complexity seriously hinders

the wide applications of object detection algorithms. There-

fore, much attention has been paid to the study of how to

make trade-off between detection accuracy and implemen-

tation complexity. Thanks to the powerful parallel process-

ing ability of GPUs, many researchers claimed they have

achieved real-time detection. However, GPUs are still ex-

tremely high cost in terms of dealing with massive data.

Consequently, research into fast object detection pipelines

on computationally constrained devices (e.g., CPU-only

computers and mobile devices) is extremely urgent.

Inspired by the pioneering deep-learning-based R-CNN

serials ([20, 19, 47]), most state-of-the-art detectors are in-

clined to exploit classical classification networks [22, 53]

as the backbone part. Obviously, the computational com-

plexity of backbone networks is the important bottleneck

that affects the running efficiency of the whole detector,

and hence many lightweight algorithms employ famous ef-

ficient convolution networks [25, 49, 24, 62, 41, 27, 18])

instead. However, as pointed out in [35], there exists gaps

between the design principles of classification and detec-

tion networks. For instance, the larger receptive fields and

wider feature vectors of early stages are crucial for improv-

ing localization ability, while classification networks care

only about the feature representation ability of the last lay-

er. Therefore, directly employing classification networks

as the backbones maybe not the optimal strategy. Addi-

tionally, another important issue that must be recognized is

that the number of FLOPs is not strictly proportional to the

running time since many other factors (e.g., memory access

cost and degree of parallelism) impact the practical network

latency [41]. Therefore, how to design an actually “fast”

detection backbone network running on a CPU is a critical

demand in industrial practice.

Typically, CNN-based object detectors are categorized

into either two-stage detectors or one-stage detectors based

on different processings of the detection part. Two-

stage [47] detectors usually contain a region proposal net-

work (RPN), a RoI warping module and a localization

and classification subnet. More elegantly, one-stage de-
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tectors [44, 45, 46, 40] directly output bounding boxes

and classification probabilities through only once network

forward pass. In general, two-stage detectors are usual-

ly considered to be more accurate on detection because

of the bounding boxes “refinement” operation during the

second stage, but are more time-consuming as compared

to one-stage detectors. Intuitively, in the past few years,

the majority of researchers have been dedicated to study-

ing lightweight detection structures of one-stage detec-

tors [2, 56, 32, 49, 58]. But, the low detection accuracy can-

not satisfy the practical requirements because of the coarse

localization and classification through only single stage pre-

diction. Therefore, other works were encouraged to develop

or even automatically search lightweight detection architec-

tures based on two-stage detectors [34, 43, 17], which have

achieved a relatively higher detection accuracy under low

computational complexity.

To inherit the merits of both two-stage (high accuracy)

and one-stage (high efficiency) detectors, Zhang et al. pro-

posed a single-stage refinement network (RefineDet [61]),

which can be viewed as a pseudo two-stage detector. By

adding a lightweight FPN-like feature refinement stage, Re-

fineDet simulates the anchor refining process during the

second stage of the two-stage detector. Since RefineDet op-

timizes the anchor refinement loss and the object detection

loss simultaneously, it can achieve high detection accura-

cy and efficiency at the same time. Inspired by this effec-

tive architecture and following the design principles of fast

convolution networks suitable for detection, we propose a

lightweight version of RefineDet, named RefineDetLite.

Besides the network architecture design, we further ana-

lyze the drawbacks of current one-stage detectors. With the

aim of improving the detection accuracy without increasing

any inference computational load, we concentrate on opti-

mizing the loss functions and training strategies. First, we

focus on the training data imbalance problem among differ-

ent classes. Second, we propose an intersection-over-union

(IOU)-guided loss to overcome the inconsistency between

localization and classification confidences during training.

Finally, going deep into the essence of object detection, we

classify it as a multi-task training problem. In order to keep

the balance of localization and detection losses during train-

ing, we introduce some trainable balancing coefficients and

derive the final loss formulation in detail following the the-

oretical guidance of [28].

In summary, the main contributions of our proposed ef-

ficient object detection framework are as follows:

• Based on the RefineDet, analyzing the design key

points of efficient convolutional networks, we propose

a lightweight backbone and detection head specifical-

ly designed for the detection task. We call the entire

network structure RefineDetLite.

• Without introducing any extra computational cost dur-

ing inference, we propose some general training strate-

gies (IOU-guided loss, classes-weighted loss and bal-

anced multi-task training) to further improve the de-

tection accuracy.

• RefineDetLite surpasses many state-of-the-art

lightweight one-stage and two-stage detectors with

faster running speed on CPUs and higher detection

accuracy on the MSCOCO benchmark. It can achieve

29.6 mAP on MSCOCO online test-dev at a

running speed of 131 ms/pic on a single thread CPU2.

2. Related Works

2.1. Deeplearningbased object detectors

The well known R-CNN [20] is the pioneer of the deep-

learning-based object detectors, which creatively utilizes

convolutional networks to predict object regions and class

labels based on a sparse set of pre-extracted candidate re-

gion proposals. Encouraged by the R-CNN prototype, nu-

merous successors boosted the performance of CNN-based

detectors by optimizing candidate extracting approach-

es [19, 47, 30], feature fusion methods [37, 12, 52], training

strategies [42, 51, 55] and contextual reasoning [10, 14, 26].

In addition to the complex two-stage diagram, another

fast-growing pipeline is the one-stage detectors, which di-

rectly predict object bounding boxes and category probabil-

ities through a single forward pass and end-to-end training.

Considered to be more straightforward and efficient, in the

past few years, following YOLO [44, 45, 46] and SSD [40],

a large number of researches have paid more attention to

bridging the detection accuracy gap between two-stage and

one-stage detectors. DSSD [15], FSSD [36] and DSOD [50]

exploit different feature fusion methods to ameliorate the

weak representation ability of low-level feature. Taking a

step further, RefineDet [61] introduces an extra loss refine-

ment stage to considerably improve small-object detection

accuracy without significantly increasing the complexity.

2.2. Efficient object detection

Although many stat-of-the-art object detectors claim that

they have achieved real-time detection speed, most of them

were experimented on GPUs, which are still a heavy bur-

den for personal users or industrial massive-data scenarios.

Therefore, research on lightweight detection frameworks

are prevalent in the object detection community. Noting

the advantages described above, ideas about how to simpli-

fy one-stage detection architectures are overwhelming. SS-

DLite [49], Tiny-SSD [57] and Tiny-YOLO [2] intuitively

employ lightweight backbones and detection heads to re-

place original components of YOLO or SSD. To improve

2The CPU type is Intel i7-6700@3.40GHz



Figure 1. The overall framework of our proposed RefineDetLite.

such naive thoughts, Tiny-DSOD [33] and Pelee [54] pro-

pose more effective network simplification schemes based

on advanced versions of SSD. However, even achieved

speed boost, they perform poorly in detection accuracy.

Alternatively, another group of researchers attempted to

improve the detection efficiency by re-designing network

structures manually [43] or through neural architecture

searching (NAS) [17] based on two-stage paradigms.

2.3. Training and inference strategy optimization

In addition to making great efforts to optimize the net-

work structure, many researchers have been dedicated to

distilling some general training or inference strategies to

further improve the detection accuracy for existing detec-

tors, with little increasing of computational complexity.

Inheriting the standard non-maximum suppression (NM-

S), soft-nms [11] slightly modifies this process to achieve a

remarkable mAP increase. Taking this a step further, softer-

nms [23] adds a small portion of parameters during train-

ing and inference by taking into account the uncertainty of

bounding box regression. Goldman et al. [21] further pro-

posed a soft IOU layer and EM-Merger unit to reduce the

bounding box prediction uncertainty.

To alleviate the well-known imbalance problem between

positive and negative samples for one-stage detectors, on-

line hard example mining (OHEM [51]), focal loss [38]

and the gradient harmonizing mechanism (GHM) have been

successively proposed.

Additionally, Yu et al. [60] noticed a long-time neglected

misalignment problem—minimizing bounding box offsets

does not strictly equal to maximizing IOU, the evaluation

metric for regression accuracy. Hence, an IOU loss was

invented to be directly used as a regression loss. Succes-

sively, GIOU [48], DIOU and CIOU [63] were proposed to

further improve the IOU-based evaluation metrics. Another

easily overlooked misalignment phenomenon for one-stage

detectors is the inconsistency between the training hypothe-

sis and inference configurations. Kong et al. [29] proposed

a consistent optimization strategy to bridge the gap.

3. RefineDetLite

In this section, we present in detail the RefineDetLite

network architecture. Following the design principles of ef-

ficient convolutional networks on CPUs, our proposed de-

tection network keeps the balance between efficiency and

accuracy to the maximum degree.

3.1. Overall framework

Fig. 1 elaborately illustrates the overall framework of

RefineDetLite, which inherits the design idea of RefineDe-

t [61]. It first extracts pyramidal features to predict coarse

bounding boxes and decides whether the anchor is fore-

ground or background, which is called the anchor refine-

ment module (ARM). Then, the skillfully contrived object

detection module (ODM) fuses the pyramidal features re-

versely and employs the refined anchors to further predict

precise bounding boxes and exact object classes. Since the

network outputs box regions and class probabilities through

only one forward pass, it is still a one-stage object detector.

However, the ingenious structure achieves high efficiency

and detection accuracy simultaneously.

As demonstrated in [43], the input resolution should

match the capability of the backbone network, so we fixed

the input resolution as 320 × 320 for the high efficiency

backbone. Then, two groups of pyramidal features with the

resolutions {20 × 20, 10 × 10, 5 × 5, 3 × 3} are used to

calculate coarse losses and refined losses, respectively.



Table 1. Overview of Res2NetLite architecture

Stage Layer Output Size

input 224×224×3

Stage0

BatchNorm 224×224×3

Convolution 3×3, stride=2 112×112×32

Maxpooling 3×3, stride=2 56×56×32

Stage1
Downsample Bottleneck 28×28×4c

Feature enhancement Res2Blocks×3 28×28×4c

Stage2
Downsample Bottleneck 14×14×8c

Feature enhancement Res2Blocks×7 14×14×8c

Stage3
Downsample Bottleneck 7×7×16c

Feature enhancement Res2Blocks×3 7×7×16c

Stage4
Average pooling 7×7, stride=1 1×1×16c

Convolution 1×1, stride=1 1000-d

Since the original RefineDet is not concerned about the

network efficiency on CPUs, we are enlightened to improve

this structure by introducing a new efficient backbone, re-

designing a light-head detection part and a lightweight fea-

ture fusion module.

3.2. Backbone

High efficiency with strong feature representation ability

is fundamental to lightweight accurate object detectors. As

mentioned in the introduction, although many state-of-the-

art algorithms borrow classification networks transferred di-

rectly from ImageNet pre-trained models as the backbone,

there are obvious gaps between classification networks and

the detection backbone. To avoid resulting in suboptimal

architectures, we propose a new ResNet-like lightweight

backbone network based on design principles for detection

networks. Table 1 lists in detail the structure of our pro-

posed backbone, Res2NetLite.

In “Stage0”, Res2NetLite first quickly down-samples the

input resolution to 1/4 × 1/4 and expands the feature di-

mension to 32 through a simple batchnorm-convolution-

maxpooling combination. Then, three stages are concate-

nated to form the main part of the network. In each stage,

following one bottleneck module (Fig. 2(a)), several repeat-

ed Res2Blocks [16] (3, 7 and 3 for Stage 1, 2 and 3, respec-

tively) enhance the feature representation ability gradual-

ly. After each stage, the feature resolution is halved but the

dimension is doubled. The c is a feature dimension hyper-

parameter to control the trade-off between network efficien-

cy and accuracy. Finally, “Stage4” is just a conventional

global pooling together with a 1× 1 convolution layer.

Suitable for detection. Different from classification net-

works, who are only concerned about the feature represen-

tation ability of the last convolution layer, pyramidal feature

detection backbones care more about that of early stage fea-

tures. So based on the basic consensus, we broaden the di-

mensions of low-level features deliberately as much as pos-

sible. For instance, in terms of Res2NetLite72 (c=72), the

dimensions of the four pyramidal features used for anchor

(a) Bottleneck (b) Res2Block
Figure 2. The detailed structures of Bottleneck and Res2Block

used in Res2NetLite.

refinement in Fig. 1 are {576, 1152, 512, 512} (the last con-

volution layers of “Stage2” and “Stage3”, as well as two

extra bottleneck modules as shown in Fig. 2(a)). Anoth-

er important issue is that detection backbones require large

receptive fields to capture sufficient contextual information

for effective localization and classification of large objects

in the early stage. Therefore, based on the above two con-

siderations, the key point of our proposed backbone is the

exploitation of Res2Block [16]. As depicted in Fig. 2(b),

Res2Block splits features into several groups and construct-

s hierarchical feature connection in a single residual block.

Compared with the well-known ResBlock [22], Res2Block

achieves multi-scale feature fusion and receptive field ex-

pansion but has less computational complexity.

High efficiency. In [41], Ma et al. derived several prac-

tical guidelines for an effective network architecture. In ad-

dition to the computational complexity of the network, two

other factors—memory access cost (MAC) and degree of

parallelism play the crucial role in affecting the exact run-

ning speed, especially on CPUs. Following the guidance,

we strictly ensure the input and output channels are the

same for Res2Blocks, which minimizes the MAC. On the

other hand, we employ maximal g = 2 (as shown in Fig. 2)

for all group convolutions in Bottlenecks and Res2Blocks

since deep-wise convolutions are still not well optimized in

CPU devices. Finally, we do not add any fragment struc-

ture, like inception or squeeze-and-excitation modules, in

Res2NetLite. Generally speaking, our proposed backbone

is a kind of straightforward and elegant network without any

bypass branches. We enhance the feature representation a-

bility simply by broadening feature dimensions and fusing

multi-scale features inside each single block.

3.3. Lightweight detection head and feature fusion

To match the backbone capability, we propose the cor-

responding lightweight detection head and feature fusion

module as illustrated in Fig. 3. The key component is the

residual-like Light-head module as shown in Fig. 3(a). In-



(a) Light-head detection part (b) Light-head feature fusion
Figure 3. lightweight detection head for coarse losses and refined

losses modules. The key component is the Light-head module.

stead of original plain 3 × 3 convolution layers, the Light-

head module further fuses high-level features with different

receptive fields in a multi-scale two-pass way (a bottleneck

structure and a 1× 1 convolution layer). Then, this module

also enables us to utilize only 1× 1 convolutions to directly

output location and class predictions.

4. Training strategy improvements

4.1. Loss function

The overall loss L of RefineDetLite consists of four

parts: location and classification losses for both the ARM

(coarse losses) and ODM (refined losses), as shown in E-

q. 1.

L = λarm
loc Larm

loc + λarm
cls Larm

cls + λodm
loc Lodm

loc + λodm
cls Lodm

cls ,
(1)

where the λs are the weighted coefficients and typically

fixed to 1, empirically. In most state-of-the-art papers, the

location loss is approximated by the smooth L1 loss. But

recently, Rezatofighi et al. proved that directly optimizing

IOU metric is a better approach and accordingly proposed

a GIOU loss [48]. In terms of the classification loss, cross

entropy loss is the most widely used method. In this paper,

we propose to adopt a weighted KL-divergence loss as the

classification loss for ODM as follows:

Lodm
cls (X,Y) =

1

N

N−1
∑

j=0

ηj · Lcls(xj ,yj)

=
1

N

N−1
∑

j=0

ηj ·

(

K
∑

i=0

wi ·yji ·log
yji

softmax(xji)

)

,

(2)

where N is the mini-batch size, j is the index of the an-

chor in the mini-batch, xj is the network output predictions,

yj = (yj0, yj1, · · · , yji, · · · , yjK) is the soft ground-truth

label for anchor j, K is the number of classes (K − 1 fore-

ground classes together with one background class), wi is

the class weight for class i and ηj is the anchor sample

weight.

4.2. IOUguided loss

Apparently, if the ground-truth label yj is the traditional

one-hot vector, Eq. 2 is exactly the weighted sum of bina-

ry cross entropy losses. So what we concerned with is to

reform the soft ground-truth label yj to improve the final

network detection accuracy.

In almost all one-stage detectors, an anchor will be as-

signed a hard label with the probability 1 if the maximal

IOU between the anchor and a ground-truth box is above

a threshold (0.5 for instance). But unfortunately, the de-

tector cannot always optimize the candidate anchor perfect-

ly, which means the final IOU can not be exactly equal to

1 in most situations. So, this easily-neglected discrepan-

cy may cause inconsistency when jointly optimizing local-

ization and classification losses. Finally, it will lead to a

phenomenon that some badly localized bounding boxes are

classified as foreground objects with very high confidence.

To alleviate this inconsistency, we propose a so-called

IOU-guided loss. Based on the above analysis, we are mo-

tivated to replace the one-hot vector yj with soft labels. De-

note the hard label for anchor j as tj (tj = {0, 1, · · · ,K}
(assuming that tj = 0 means negative sample). The key

item yjtj in vector yj is calculated as a function of ÎOUj as

yjtj =

{

1− α(1− ÎOUj), tj > 0 (positive sample)

1− αÎOUj , tj = 0 (negative sample)
,

(3)

where α is a hyper-parameter. After adding the predicted

offsets onto the pre-defined anchor j, we can re-calculate a

new IOU value (ÎOUj) between the refined anchor j and the

pre-assigned ground-truth box. Notice that ÎOUj ∈ [0, 1],
based on the bounding box prediction accuracy. Therefore,

for a positive sample, if the post-calculated ÎOUj is small,

the ground-truth label value yjtj decreases accordingly.

To normalize the soft label yj , the other items except

yjtj are formulated as yji =
1−yjtj

K−1
. We also weight the

anchor samples according to ÎOUj as

ηj =
1

1 + β(ÎOUj − 1) · 1(tj > 0)
, (4)

where β is another hyper-parameter. The physical mean-

ing of Eq. 4 is that harder positive samples (lower post-

calculated IOU value) will be assigned higher weights.

4.3. Datasetaware classesweighted loss

In the past few years, many researchers focused on solv-

ing the imbalance problem between positive and negative



samples for one-stage detectors [38, 31], but few works

dealt with the imbalance problem among different classes in

training data. Consequently, we propose a classes-weighted

loss based on the statistics of the training dataset. Assum-

ing the number of labeled boxes for class i is Mi, the maxi-

mal and minimal number are Mmax and Mmin, respective-

ly. Therefore, the loss weight for class i is computed as

wi =







W − 1

rγmax − 1
· (rγi − 1) + 1, i > 0 (forground)

1, i = 0 (background)

,

(5)

where ri = Mmax

Mi
, rmax = Mmax

Mmin
, and γ and W are two

hyper-parameters. Obviously, the loss weight for the most

frequent class is 1 while the most rare class is W .

4.4. Balanced multitask learning

As derived in Eq. 1, the overall loss is actually a weight-

ed sum of different parts, but how to determine the optimal

weighted coefficients is a challenge.

In [28], Kendall et al. proposed to form a multi-task

learning paradigm by considering homoscedastic uncertain-

ty to automatically train loss weights for different computer

vision tasks. Inspired by this idea, we can also view the

object detection training process as a multi-task learning

problem—regression and classification tasks. The advanced

version of final loss function3 is approximated as

L =
1

2σ2

1

Larm
loc +

log σ2

1

2
+

1

σ2

2

Larm
cls +

log σ2

2

2

+
1

2σ2

3

Lodm
loc +

log σ2

3

2
+

1

σ2

4

Lodm
cls +

log σ2

4

2
,

(6)

where {σ2

1
, σ2

2
, σ2

3
, σ2

4
} are the trainable uncertainty param-

eters. In practice, for the steady of overall loss during train-

ing, the trainable parameters consist of network parameters

φ and logarithmic form of the four uncertainty parameters.

5. Experiments

In this section, we elaborately present the experimen-

tal results and ablation studies on the MSCOCO [39]

dataset to demonstrate the effectiveness of our proposed Re-

fineDetLite and training strategies.

5.1. Training and inference details

Basic configuration. To demonstrate the effectiveness

of our network architecture, we set a basic configuration for

fair comparisons with other state-of-the-art networks. All

experiments are conducted on 4 Nvidia P40 GPUs with a

batchsize of 128. We choose SGD with a weight decay of

0.0005 and momentum of 0.9 as our optimizer. We set the

3For detailed derivation, please refer to [28].

learning rate to 4 × 10−3 for the first 150 epochs, and de-

cay it to 4× 10−4 and 4× 10−5 for training another 50 and

50 epochs, respectively. RefineDetLite72 is adopted as our

backbone. For data augmentation, we strictly follow the in-

struction of SSD [40]. The loss functions for regression and

classification are smooth L1 loss and cross-entropy loss, re-

spectively. The weighted coefficients in Eq. 1 are all fixed to

1. We choose OHEM with a conventional positive-negative

ratio of 1 : 3 as our training strategy. During inference, we

post-process the network outputs by normal nms.

Advanced configuration. The advanced configuration

is set to evaluate the training strategies proposed in Sec. 4

and improve the detection accuracy without apparent ex-

tra time-consumption as far as possible. GIOU loss [48]

is chosen as the regression loss function. On the other

hand, we adopt the classification loss functions and multi-

task training strategies proposed in Sec. 4. Specifically, the

hyper-parameters α, β, γ and W are set to 0.25, 0.90, 3/4
and 10 experimentally. Correspondingly, the learning rate

is adjusted as {10−2, 10−3, 10−4} for the same epochs de-

scribed in the basic configuration. Finally, soft-nms [11] is

employed as the post-processing approach. The data aug-

mentation and optimizer are kept the same as with the ba-

sic configuration. Controlled experiments are presented in

Sec. 5.3 to evaluate the effectiveness of each component.

5.2. Results on MSCOCO

MSCOCO [39] is the most widely-used object detection

evaluation dataset, which consists of 118,287 training sam-

ples (trainval35k), 5,000 validation samples (val5k)

and 40,670 test samples (test-dev) in its 2017 version.

We trained all networks on trainval35k and evaluated

on test-dev for fair comparisons.

All models are trained on Pytorch [4] and inferred on

Caffe2 converted by ONNX[3]. As discussed in the intro-

duction, since network FLOPs are not proportional to the

exact speed due to many factors, the network efficiency

measured by FLOPs is not an accurate criterion. What peo-

ple are really concerned with is the actual network running

speed on CPU devices. Therefore, we re-implement some

state-of-the-art algorithms and test their time efficiency (m-

s/pic) by averaging the total running time of 100 images on

a single-thread Intel i7-6700@3.40GHz GPU for fair com-

parisons. Additionally, we also show the speed claimed by

the authors tested on different platforms as references. The

detailed comparisons are listed in Table 2.

Without any bells and whistles, our proposed Re-

fineDetLite trained on the basic configuration achieves 26.8
mAP at a speed of 130 ms/pic, which surpasses state-

of-the-art one-shot lightweight detectors (SSD [40], SS-

DLite [49], Pelee [54] and Tiny-DSOD [33]). Specifical-

ly, RefineDetLite achieves SSDLite-MobileNet level speed

with a significant 4.6 mAP improvement. In addition, it out-



Table 2. Detection result comparisons on MSCOCO online test-dev server, where time@CPU1 means running time tested by us based

on open-source codes (All SSD and RefineDet-based networks [5], Tiny-DSOS [7], ThunderNet [6], Pelee [1], YOLOV3 [8]) on Intel

i7-6700@3.40GHz and time@CPU2 means running time claimed by the original authors on different platforms. Bold fonts indicate our

proposed algorithms. RefineDetLite++ means the model trained on the advanced configuration.
Algorithms input size Backbone AP AP50 AP75 APS APM APL time@CPU1 time@CPU2

one-stage lightweight:

SSD [40] 300×300 MobileNet 19.3 - - - - - 128ms -

SSDLite [49] 320×320 MobileNet 22.2 - - - - - 125ms 270ms (Pixel 1)

SSDLite [49] 320×320 MobileNetV2 22.1 - - - - - 120ms 200ms (Pixel 1)

Pelee [54] 304×304 PeleeNet 22.4 38.3 22.9 - - - 140ms 149ms (intel i7)

Tiny-DSOD [33] 300×300 DDB-Net+D-FPN 23.2 40.4 22.8 - - - 180ms -

RefineDet-based lightweight:

RefineDet [61] 320×320 MobileNet 24.3 43.0 24.4 7.6 26.5 38.7 168ms -

RefineDet [61] 320×320 MobileNetV2 24.8 42.9 25.4 7.6 26.5 40.4 163ms -

RefineDet [61] 320×320 MobileNetV3 22.1 40.1 23.3 6.5 23.6 35.7 150ms -

RefineDet [61] 320×320 ShuffleNetV2 21.1 38.3 21.5 5.8 22.8 34.3 129ms -

two-stage lightweight:

FPNLite (@ 64) [17] 320×320 MobileNetV2 22.7 - - - - - - 192ms (Pixel 1)

FPNLite (@ 128) [17] 320×320 MobileNetV2 24.3 - - - - - - 264ms (Pixel 1)

NAS-FPNLite (3 @ 48) [17] 320×320 MobileNetV2 24.2 - - - - - - 210ms (Pixel 1)

NAS-FPNLite (7 @ 64) [17] 320×320 MobileNetV2 25.7 - - - - - - 285ms (Pixel 1)

ThunderNet [43] 320×320 SNet535 28.0 46.2 29.5 - - - 146ms 172ms (Snapdragon 845)

one-stage classical:

SSD [40] 300×300 VGG 25.1 43.1 25.8 6.6 25.9 41.4 1250ms -

SSD [40] 321×321 ResNet101 28.0 45.4 29.3 6.2 28.3 49.3 1000ms -

YOLOV3 [46] 320×320 DarkNet53 28.2 51.5 - - - - 1300ms -

RefineDetLite 320×320 Res2NetLite72 26.8 46.6 27.4 7.4 27.7 42.4 130ms -

RefineDetLite++ 320×320 Res2NetLite72 29.6 47.4 31.0 9.1 30.8 45.5 131ms -

performs Pelee and Tiny-DSOD in both accuracy and speed.

We also conducted comparison experiments on some

state-of-the-art two-stage lightweight detection algorithms.

The most competitive approach is the elaborately designed

ThunderNet-SNet535 [43], which achieves 28.0 mAP

(which surpasses our basic version 26.8, but is less than the

advanced version 29.6). Since no official code was released

by the authors, we did the speed comparison experiments

based on a third-party re-implementation [6]. Besides this,

NAS-FPNLites and FPNLites [17] are lightweight version

of two-stage detectors based on NAS-FPN and FPN [37],

respectively, but the accuracies are still lower than Re-

fineDetLite. Since no open-released code can be referenced

to do speed comparisons, we can only perform indirectly

reasoning according to the speed of SSDLites and NAS-

FPNLites both on a Pixel 1 CPU.

For further study of the effectiveness of our proposed

backbone and light-head structures, we implemented Re-

fineDet with other lightweight backbones (MobileNets se-

rials [25, 49, 24] and ShuffleNetV2 [41]). The statistics in

Table 2 reveal that RefineDetLite surpasses all MobileNet-

based RefineDet in both accuracy and efficiency. Addition-

ally, at the same running speed level, it beats RefineDet-

ShuffleNetV2 by a huge 5.7 mAP gain.

Finally, by adding training and inference strategies (soft-

nms, GIOU and the three new strategies proposed in Sec. 4),

we can further improve the RefineDetLite detection accura-

cy from 26.8 to 29.6 with little extra time consumption. One

issue that deserves to be mentioned is that RefineDetLite

can achieve similar detection accuracy level of some clas-

sical one-stage detectors (SSD-VGG, SSD-ResNet101 and

YOLOV3) with an 8–10 times speed increase.

Additionally, we visualize the comparison result-

s among different models—SSDLite+MobileNet, Re-

fineDet+ShuffleNetV2, SSD+VGG, RefineDetLite and Re-

fineDetLite++ as in Fig. 4. The visualization results clearly

show that the RefineDetLite can detect much more small

objects (e.g., carrots, bottles and birds) compared with SS-

DLite+MobileNet and RefineDet+ShuffleNetV2 at almost

the same running speed (130 ms/pic). It also outperforms

SSD+VGG with a considerable 10 times of speed increase.

Furthermore, by adding the proposed training strategies, the

detection accuracy and recall of RefineDetLite++ surpasses

RefineDetLite significantly.

5.3. Ablation study

Network architectures. First, we evaluate the effective-

ness the two key components (Res2Block and Light-head)

of our proposed RefineDetLite architectures. We set up a

baseline architecture, just simply replacing all Res2Blocks

in the backbone Res2NetLite by the classical ResBlock-

s [22] and replacing all Light-head modules in the detection

part and feature fusion by simple 3×3 convolutions. Exper-

imental results in rows (a)–(c) of Table 3 show that the two

components achieve 1.0 and 1.1 mAP improvements, sepa-

rately. Simultaneously, they save the running time 10ms and

10ms, separately. Therefore, we can draw the conclusion

that Res2Block and Light-head make great contributions to



(a) SSDLite+MobileNet (b) RefineDet+ShuffleNetV2 (c) SSD+VGG (d) RefineDetLite (e) RefineDetLite++
Figure 4. Visualization comparisons among different models.

Table 3. Ablation studies on proposed detection modules and training strategies. Bold fonts indicate our proposed modules.
models Res2Block Light-head soft-nms GIOU classes weights IOU guided Multi-task AP AP50 AP75 time@CPU1

(a) Baseline 24.7 43.0 25.1 150ms

(b) X 25.7 43.9 26.7 140ms

(c) RefineDetLite X X 26.8 46.6 27.4 130ms

(d) X X X 27.2 46.0 28.4 131ms

(e) X X X X 27.4 46.2 28.8 131ms

(f) X X X X 27.5 46.2 28.9 131ms

(g) X X X X 27.7 46.5 29.0 131ms

(h) X X X X 28.2 46.4 29.4 131ms

(i) X X X X X 28.5 46.8 29.8 131ms

(j) X X X X X 28.6 46.8 29.9 131ms

(k) X X X X X 28.7 47.0 30.2 131ms

(l) X X X X X X 29.0 47.3 30.1 131ms

(m) X X X X X X 29.3 47.4 30.5 131ms

(n) X X X X X X 29.2 47.4 30.4 131ms

(o) RefineDetLite++ X X X X X X X 29.6 47.4 31.0 131ms

improving both the accuracy and efficiency of the detector.

Training and inference strategies. Based on the Re-

fineDetLite architecture trained on the basic configuration,

we further conducted more controlled experiments to evalu-

ate the effectiveness of each training and inference strategy,

including the three strategies proposed in Sec. 4—classes-

weighted loss, IOU-guided loss and multi-task training and

two orthogonal approaches proposed by other researchers:

soft-nms and GIOU loss.

Rows (d) and (h) in Table 3 demonstrate the consis-

tent improvement of the well-known soft-nms and GIOU

loss, which will be exploited as standard components for

future experiments. Rows (e)–(g) reveal that the three pro-

posed strategies—classes-weighted loss, IOU guided loss

and multi-task training achieve 0.2, 0.3 and 0.5 mAP gains,

respectively, after using soft-nms. Furthermore, after em-

ploying GIOU loss, the three components still achieve 0.3,

0.4 and 0.5 mAP improvements (rows (i)–(k)).

Statistics in rows (l)–(o) demonstrate the orthogonality

of the three proposed strategies. Experiments show steady

accuracy increasing after combinations of any components.

Finally, when integrating all strategies together, we can

achieve a 29.6 mAP, which is a state-of-the-art detection

accuracy at the 150 ms/pic running speed level.

6. Conclusion

In this paper, we proposed a lightweight efficient and

accurate one-shot object detection framework. After an-

alyzing the gaps between classification networks and de-

tection backbones, and following the design principles of

efficient networks, we designed a residual-like lightweight

backbone—Res2NetLite, enlarging the receptive fields and

feature dimensions of early stages, together with a cor-

responding light-head detection parts. In addition, we

investigate the weaknesses of current one-stage training

process, hence develop three improved training strategies:

IOU-guided loss, classes-weighted loss and balanced multi-

task training method. Without any bells and whistles, our

proposed RefineDetLite achieves 26.8 mAP on MSCOCO

test-dev at a speed of 130 ms/pic. By adding the or-

thogonal training and inference strategies, the advanced

version—RefineDetLite++ can further achieve 29.6 mAP

with little extra time consumption.
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