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Abstract

Network quantization is an essential procedure in deep

learning for development of efficient fixed-point inference

models on mobile or edge platforms. However, as datasets

grow larger and privacy regulations become stricter, data

sharing for model compression gets more difficult and re-

stricted. In this paper, we consider data-free network quan-

tization with synthetic data. The synthetic data are gen-

erated from a generator, while no data are used in train-

ing the generator and in quantization. To this end, we

propose data-free adversarial knowledge distillation, which

minimizes the maximum distance between the outputs of

the teacher and the (quantized) student for any adversarial

samples from a generator. To generate adversarial samples

similar to the original data, we additionally propose match-

ing statistics from the batch normalization layers for gen-

erated data and the original data in the teacher. Further-

more, we show the gain of producing diverse adversarial

samples by using multiple generators and multiple students.

Our experiments show the state-of-the-art data-free model

compression and quantization results for (wide) residual

networks and MobileNet on SVHN, CIFAR-10, CIFAR-100,

and Tiny-ImageNet datasets. The accuracy losses compared

to using the original datasets are shown to be very minimal.

1. Introduction

Deep learning is now leading many performance break-

throughs in various computer vision tasks [1]. The state-

of-the-art performance of deep learning came with over-

parameterized deep neural networks, which enable extract-

ing useful representations (features) of the data automati-

cally for a target task, when trained on a very large dataset.

The optimization framework of deep neural networks with

stochastic gradient descent has become very fast and effi-

cient recently with the backpropagation technique [2, Sec-

tion 6.5], using hardware units specialized for matrix/tensor

computations such as graphical processing units (GPUs).
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Figure 1: Data-free adversarial knowledge distillation. We

minimize the maximum of the Kullback-Leibler (KL) diver-

gence between the teacher and student outputs. In the maxi-

mization step for training the generator to produce adversar-

ial images, the generator is constrained to produce synthetic

images similar to the original data by matching the statistics

from the batch normalization layers of the teacher.

The benefit of over-parameterization is empirically shown

to be the key factor of the great success of deep learning,

but once we find a well-trained high-accuracy model, its

deployment on various inference platforms faces different

requirements and challenges [3, 4]. In particular, to deploy

pre-trained models on resource-limited platforms such as

mobile or edge devices, computational costs and memory

requirements are the critical factors that need to be consid-

ered carefully for efficient inference. Hence, model com-

pression, also called network compression, is an important

procedure for development of efficient inference models.

Model compression includes various methods such as (1)

weight pruning, (2) network quantization, and (3) distilla-

tion to a network with a more efficient architecture. Weight

pruning and network quantization reduce the computational

cost as well as the storage/memory size, without altering the

network architecture. Weight pruning compresses a model

by removing redundant weights completely from it, i.e., by

setting them to be zero, so we can skip computation as

well as memorization for the pruned weights [5–12]. Net-



work quantization reduces the memory footprint for weights

and activations by quantization and is usually followed by

lossless source coding for compression [13–18]. Moreover,

the convolutional and fully-connected layers can be imple-

mented with low-precision fixed-point operations, e.g., 8-

bit fixed-point operations, to lower latency and to increase

power efficiency [19–25]. On the other hand, the network

architecture can be modified to be simpler and easier to im-

plement on a target platform. For example, the number of

layers and/or the number of channels in each layer can be

curtailed. Conventional spatial-domain convolution can be

replaced with more efficient depth-wise separable convolu-

tion as in MobileNet [26].

Knowledge distillation (KD) is a well-known knowledge

transfer framework to train a small “student” network un-

der a guidance of a large pre-trained “teacher” model. The

original idea from Hinton et al. in [27] utilizes the soft deci-

sion output of a well-trained classification model in order to

help to train another small-size network. This original idea

was further refined and advanced mostly (1) by introduc-

ing losses of matching the outputs from intermediate layers

of the teacher and student [28–30], and (2) by using more

sophisticate distance metrics, for example, mutual relations

for multiple samples [31, 32].

One issue with existing model compression approaches

(including KD) is that they are developed under a strong as-

sumption that the original training data is accessible during

the compression procedure. As datasets get larger, the dis-

tribution of datasets becomes more expensive and more dif-

ficult. Additionally, data privacy and security have emerged

as one of primary concerns in deep learning. Consequently,

regulations and compliance requirements around security

and privacy complicate both data sharing by the original

model trainer and data collection by the model compres-

sor, for example, in the case of medical and bio-metric data.

Thus, there is a strong need to compress a pre-trained model

without access to the original or even alternative datasets.

There have been some attempts to address the problem

of data sharing in model compression [33–36]. They aim

to perform KD without the original datasets. The early at-

tempts in [33, 34] circumvent this issue by assuming that

some form of compressed and/or partial information on the

original training data is provided instead, called meta-data,

to protect the privacy and to reduce the size of the data to

share. Given a pre-trained model with meta-data, for ex-

ample, statistics of activation outputs (feature maps) at any

intermediate layers, the input is inferred in a backward man-

ner so it matches the statistics in the meta-data. On the other

hand, in [35, 36], generators are introduced to produce syn-

thetic samples for KD. Chen et al. [35] proposed training

a generator by using the pre-trained teacher as a fixed dis-

criminator. Micaelli et al. [36] used the mismatch between

the teacher and the student as an adversarial loss for training

a generator to produce adversarial examples for KD. The

previous generator-based KD framework in [35] is rather

heuristic, relying on ad-hoc losses. In [36], adversarial ex-

amples can be any images far different from the original

data, which degrade the KD performance.

In this paper, we propose an adversarial knowledge dis-

tillation framework, which minimizes the possible loss for

a worst case (maximum loss) via adversarial learning, when

the loss with the original training data is not accessible. The

key difference from [36] lies in the fact that given any meta-

data, we utilize them to constrain a generator in the adver-

sarial learning framework. To avoid additional efforts to

craft new meta-data to share, we use the statistics stored

in batch normalization layers to constrain a generator to

produce synthetic samples that mimic the original training

data. Furthermore, we propose producing diverse synthetic

samples by using multiple generators. We also empirically

show that performing adversarial KD concurrently for mul-

tiple students yields better results. The proposed data-free

adversarial KD framework is summarized in Figure 1.

For model compression, we perform experiments on two

scenarios, (1) data-free KD and (2) data-free network quan-

tization. The proposed scheme shows the state-of-the-art

data-free KD performance on residual networks [37] and

wide residual networks [38] for SVHN [39], CIFAR-10,

CIFAR-100 [40], and Tiny-ImageNet1, compared to the

previous work [35, 36, 41]. Data-free network quantization

(data-free quantization-aware training) has not been inves-

tigated before to the best of our knowledge. We use Tensor-

Flow’s quantization-aware training [24, 42] as the baseline

scheme, and we evaluate the performance on residual net-

works, wide residual networks, and MobileNet trained on

various datasets, when quantization-aware training is per-

formed with the synthetic data generated from our data-free

KD framework. The experimental results show marginal

performance loss from the proposed data-free framework,

compared to the case of using the original training datasets.

2. Related work

Data-free KD and quantization. Data-free KD attracts

the interest with the need to compress pre-trained models

for deployment on resource-limited mobile or edge plat-

forms, while sharing original training data is often restricted

due to privacy and license issues.

Some of early attempts to address this issue suggest us-

ing meta-data that are the statistics of intermediate features

collected from a pre-trained model in [33,34]. For example,

the mean and variance of activation outputs for selected in-

termediate layers are proposed to be collected and assumed

to be provided, instead of the original dataset. Given any

meta-data, they find samples that help to train student net-

1https://tiny-imagenet.herokuapp.com



Table 1: Comparison of data-free KD and network quan-

tization schemes based on (1) how they generate synthetic

data and (2) whether they rely on meta-data or not.

Synthetic data Meta-data Data-free

Not used N/A [45]*

Inferred in the image domain [33], [34] [43], [41]*

Generated from generators N/A [35], [36], Ours*

* Used the statistics stored in batch normalization layers.

works by directly inferring them in the image domain such

that they produce similar statistics as the meta-data when

fed to the teacher. Recent approaches, however, aim to solve

this problem without meta-data specifically designed for the

data-free KD task. In [43], class similarities are computed

from the weights of the last fully-connected layer, and they

are used instead of meta-data. Very recently, it is proposed

to use the statistics stored in batch normalization layers with

no additional costs instead of crafting new meta-data [41].

On the other hand, some of the previous approaches in-

troduce another network, called generator, that yields syn-

thetic samples for training student networks [35, 36, 44].

They basically propose optimizing a generator so that the

generator output produces high accuracy when fed to a pre-

trained teacher. Adversarial learning was introduced to pro-

duce dynamic samples for which the teacher and the student

poorly matched in their classification output and to perform

KD on those adversarial samples [36].

To our knowledge, there are few works on data-free net-

work quantization. Weight equalization and bias correction

are proposed for data-free weight quantization in [45], but

data-free activation quantization is not considered. Weight

equalization is a procedure to transform a pre-trained model

into a quantization-friendly model by re-distributing (equal-

izing) its weights across layers so they have smaller de-

viation in each layer and smaller quantization errors. The

biases introduced in activations owing to weight quantiza-

tion are calculated and corrected with no data but based on

the statistics stored in batch normalization layers. We note

that no synthetic data are produced in [45], and no data-free

quantization-aware training is considered in [45]. We com-

pare data-free KD and quantization schemes in Table 1.

Robust optimization. Robust optimization is a sub-field

of optimization that addresses data uncertainty in optimiza-

tion problems (e.g., see [46,47]). Under this framework, the

objective and constraint functions are assumed to belong to

certain sets, called “uncertainty sets.” The goal is to make a

decision that is feasible no matter what the constraints turn

out to be, and optimal for the worst-case objective func-

tion. With no data provided, we formulate the problem of

data-free KD into a robust optimization problem, while the

uncertainty sets are decided based on the pre-trained teacher

using the statistics at its batch normalization layers.

Adversarial attacks. Generating synthetic data that fool

a pre-trained model is closely related to the problem of ad-

versarial attacks (e.g., see [48]). Although their purpose is

completely different from ours, the way of generating syn-

thetic data (or adversarial samples) follows a similar proce-

dure. In adversarial attacks, there are also two approaches,

i.e., (1) generating adversarial images directly in the image

domain [49–51] and (2) using generators to produce adver-

sarial images [52–54].

Deep image prior. We also note that generator networks

consisting of a series of convolutional layers can be used as

a good regularizer that we can impose for image generation

as prior [55]. Hence, we adopt generators, instead of adding

any prior regularization [56] that is employed in [41] to ob-

tain synthetic images without generators.

Generative adversarial networks (GANs). Adversar-

ial learning is also well-known in GANs [57]. GANs are of

great interest in deep learning for image synthesis problems.

Mode collapse is one of well-known issues in GANs (e.g.,

see [58]). A straightforward but effective way to overcome

mode collapse is to introduce multiple generators and/or

multiple discriminators [59–62]. We also found that using

multiple generators and/or multiple students (a student acts

as a discriminator in our case) helps to produce diverse sam-

ples and avoid over-fitting in our data-free KD framework.

3. Data-free model compression

3.1. Knowledge distillation (KD)

Let tθ be a general non-linear neural network for classi-

fication, which is designed to yield a categorical probability

distribution Pθ(y|x) for the label y of input x over the label

set C, i.e., tθ(x) = [Pθ(y|x)]y∈C . Let y be the one-hot en-

coded ground-truth label y over the set C for input x. The

network tθ is pre-trained with a labeled dataset, called train-

ing dataset, of probability distribution p(x,y), as below:

θ∗ = argmin
θ

Ep(x,y)[D(y, tθ(x))],

where Ep(x,y) is, in practice, an empirical expectation over

the training dataset, and D stands for Kullback-Leibler (KL)

divergence (e.g., see [63, Section 2.3]); note that the mini-

mization of KL divergence is equivalent to the minimization

of cross-entropy, given the distribution p(x,y).
Suppose that we want to train another neural network sφ,

called “student”, possibly smaller and less complex than the

pre-trained network tθ∗ , called “teacher.” The student also

produces its estimate of the categorical probability distribu-

tion for input x such that sφ(x) = [Qφ(y|x)]y∈C . Knowl-

edge distillation [27] suggests to optimize the student by

min
φ

Ep(x,y) [D(y, sφ(x)) + λD(tθ∗(x), sφ(x))] , (1)

where λ ≥ 0; note that we omitted the temperature param-

eter for simplicity, which can be applied before softmax for

tθ∗ and sφ in the second KL divergence term of (1).



3.2. Data­free adversarial KD

As shown in (1), the original KD is developed under the

assumption that a training dataset is given for the expec-

tation over p(x,y). However, sharing a large dataset is ex-

pensive and sometimes not even possible due to privacy and

security concerns. Hence, it is of interest to devise a method

of KD in the situation where the training dataset is not ac-

cessible, but only a pre-trained teacher is given.

Robust optimization (e.g. see [46]) suggests minimizing

the possible loss for a worst case scenario (maximum loss)

with adversarial learning under data uncertainty, which is

similar to the situation we encounter when we are not given

a training dataset for optimization. To adopt the robust min-

imax optimization (also known as adversarial learning) in

KD, we first introduce a generator network gψ , which is

used to produce synthetic adversarial data for the input to

KD. Then, using the minimax approach, we propose data-

free adversarial KD, which is given by

min
φ

max
ψ

{Ep(z)[D(tθ∗(gψ(z)), sφ(gψ(z)))]−αLψ}, (2)

for α ≥ 0, where Lψ is an additional loss that a pre-trained

teacher can provide for the generator based on the generator

output. We defer our proposed terms in Lψ to Section 3.3.

Remark 1. Comparing (2) to the original KD in (1), we omit

the first KL divergence term related to ground truth labels:

min
φ

Ep(x)[D(tθ∗(x), sφ(x))]. (3)

If we have a generator gψ∗ optimized to mimic the training

data exactly such that p(x) =
∫

p(z)δ(x−gψ∗(z))dz, then

(3) reduces to

min
φ

Ep(z)[D(tθ∗(gψ∗(z)), sφ(gψ∗(z)))].

However, we do not have access to the original training data

and cannot find the optimal generator gψ∗ . Instead, we min-

imize the upper bound of Ep(z)[D(tθ∗ , sφ)] by solving the

minimax problem in (2), while we give the generator some

constraints with the auxiliary loss Lψ for the generator to

produce similar data as the original training data.

3.3. Generator constraints

We consider the following three auxiliary loss terms for

the generator in the maximization step of (2) to make the

generator produce “good” adversarial samples similar to the

original data as much as possible based on the teacher.

(a) Batch normalization statistics. Batch normalization

layers contain the mean and variance of layer inputs,

which we can utilize as a proxy to confirm that the

generator output is similar to the original training data.

We propose using the KL divergence of two Gaussian

distributions to match the mean and variance stored in

batch normalization layers (which are obtained from

the original data) and the empirical statistics obtained

with the generator output.

(b) Instance categorical entropy. If the teacher is trained

well enough for accurate classification, the generator

output is of interest only when the categorical distribu-

tion output, i.e., softmax output, of the teacher yields

small entropy (the probability for one category should

be high); the entropy is minimized to zero if one cate-

gory has probability 1. That is, we need small entropy

for tθ∗(gψ(z)) on each sampled z.

(c) Batch categorical entropy. Assuming that each class

appears in the dataset with similar probability, the cat-

egorical probability distribution averaged for any batch

should tend to uniform distribution where the entropy

is maximized to log2 |C|. That is, we need high entropy

for Ep(z)[tθ∗(gψ(z))].
Let µ(l, c) and σ2(l, c) be the mean and the variance

stored in batch normalization layer l for channel c, which

is learned from the original training data. Let µ̂ψ(l, c) and

σ̂2
ψ(l, c) be the corresponding mean and variance computed

for the synthetic samples from the generator gψ . The auxil-

iary loss Lψ for the generator in (2) is given by

Lψ =
∑

l,c

DN ((µ̂ψ(l, c), σ̂
2
ψ(l, c)), (µ(l, c), σ

2(l, c)))

+ Ep(z)[H(tθ∗(gψ(z)))]−H(Ep(z)[tθ∗(gψ(z))]), (4)

where H denotes entropy (e.g., see [63, Section 2.1]), and

DN ((µ̂, σ̂2), (µ, σ2)) is the KL divergence of two Gaussian

distributions, which can be represented as

DN ((µ̂, σ̂2), (µ, σ2)) =
(µ̂− µ)2 + σ̂2

2σ2
− log

σ̂

σ
−

1

2
. (5)

Remark 2. If α = 0 in (2), the proposed scheme reduces to

the adversarial belief matching presented in [36]. Adding

the auxiliary loss Lψ , we constrain the generator so it pro-

duces synthetic images that yield similar statistics in the

teacher as the original data, which helps the minimax op-

timization avoid any adversarial samples that are very dif-

ferent from the original data and leads to better distillation

performance (basically we reduce the loss due to fitting the

model for “bad” examples not close to the original dataset).

For (b) and (c), we found that similar entropy loss terms

are already proposed in [35]. Batch normalization statistics

are used in [41, 45]. Yin et al. [41] find synthetic samples

directly in the image domain with no generators by opti-

mizing an input batch such that it produces similar batch

normalization statistics in a pre-trained model. In contrast,

we utilize batch normalization statistics to constrain gener-

ators. Furthermore, to match the mean and variance, the

squared L2 distance is used in [41], while we propose using

the KL divergence of two Gaussian distributions, which is



a distance measure normalized by scale (i.e., standard de-

viation σ in (5)). In [45], batch normalization statistics are

used to calculate any quantization biases for correction. No

synthetic images are produced in [45].

3.4. Multiple generators and multiple students

Using mixture of generators has been proposed to avoid

the mode collapse issue and to yield diverse samples that

cover the whole support of a target dataset [62]. Similarly

we propose training multiple generators in our data-free KD

framework to increase the diversity of generated samples.

Moreover, using multiple discriminators has been also pro-

posed to reduce the mode collapse problem in GANs [59].

A similar idea can be adopted in our framework, since we

utilize the KL divergence of the student and teacher outputs

as the discriminator output. The average KL divergence be-

tween the teacher and the students are maximized in min-

imax optimization. Intuitively, taking average not only re-

duces the noise in minimax optimization using stochastic

gradient descent, but also steers a generator to produce bet-

ter adversarial samples that are poorly matched to every stu-

dent in average. The final objective with multiple generators

and multiple students is given by

min
φi,1≤i≤S

max
ψj ,1≤j≤G

G
∑

j=1

(

1

S

S
∑

i=1

Dφi,ψj
− αLψj

)

,

Dφi,ψj
, Ep(z)[D(tθ∗(gψj

(z)), sφi
(gψj

(z)))],

where sφi
is the i-th student and gψj

is the j-th generator

for 1 ≤ i ≤ S and 1 ≤ j ≤ G.

3.5. Implementation

We summarize the proposed data-free adversarial KD

scheme in Algorithm 1. Let zB1 be the random input batch

of size B to generators, and let Dφi,ψj
(zB1 ) and Lψj

(zB1 ) be

the losses computed and averaged over batch zB1 . We sug-

gest “warm-up” training of generators, optionally, before

the main adversarial KD. In the warm-up stage, we train

generators only to minimize the auxiliary loss Lψ so its out-

put matches batch normalization statistics and entropy con-

straints when fed to the teacher. This pre-training procedure

reduces generation of unreliable samples in the early steps

of data-free KD. Furthermore, updating students more fre-

quently than generators reduces the chances of falling into

any local maximum in the minimax optimization. In the

minimization step, one can additionally match intermediate

layer outputs as proposed in [28–30]. Finally, data-free net-

work quantization is implemented by letting the student be

a quantized version of the teacher (see Section 4.2).

4. Experiments

We evaluate the proposed data-free adversarial KD algo-

rithm on two model compression tasks: (1) data-free KD to

Algorithm 1 Data-free adversarial knowledge distillation.

Generator update interval: m ≥ 1
Warm-up training for generators (optional)

for n : 1 to Nwarm-up do

for j : 1 to G do

z
B
1 ← [N (0, I)]B1
ψj ← ψj − η∇ψj

Lψj
(zB1 )

end for

end for

Adversarial knowledge distillation

for n : 1 to N do

Maximization

if n ≡ 0 mod m then

for j : 1 to G do

z
B
1 ← [N (0, I)]B1

for i : 1 to S do

Dφi,ψj
(zB1 )← D(tθ∗(gψj

(zB1 )), sφi
(gψj

(zB1 )))
end for

ψj ← ψj+η∇ψj
( 1
S

∑S

i=1Dφi,ψj
(zB1 )−αLψj

(zB1 ))
end for

end if

Minimization

b← ⌊B/G⌋
for j : 1 to G do

z
b
1 ← [N (0, I)]b1

x
bj
1 ← concatenate(x

b(j−1)
1 ,gψj

(zb1))
end for

for i : 1 to S do

φi ← φi − η∇φi
D(tθ∗(x

bG
1 ), sφi

(xbG1 ))
end for

end for

smaller networks and (2) data-free network quantization.

Generator architecture. Let conv3-k denote a convo-

lutional layer with k 3×3 filters and stride 1×1. Let fc-k

be a fully-connected layer with k units. Let upsampling

be a 2×2 nearest-neighbor upsampling layer. The generator

input z is of size 512 and is sampled from the standard nor-

mal distribution. Given that the image size of the original

data is (W,H,3), we build a generator as below:

fc-8WH, reshape-(W/8,H/8,512)

upsampling, conv3-256, batchnorm, ReLU

upsampling, conv3-128, batchnorm, ReLU

upsampling, conv3-64, batchnorm, ReLU

conv3-3, tanh, batchnorm

Training. For training generators in maximization, we

use Adam optimizer [64] with momentum 0.5 and learning

rate 10−3. On the other hand, for training students in min-

imization, we use Nesterov accelerated gradient [65] with

momentum 0.9 and learning rate 0.1. The learning rates are

annealed by cosine decaying [66]. We adopt the vanilla KD

for data-free KD from WRN40-2 to WRN16-1 on CIFAR-

10. We use 50 epochs in the warm-up stage and 200 epochs

for the main adversarial KD, where each epoch consists of

400 batches of batch size 256. In the other cases, we adopt



Figure 2: Example synthetic images generated in data-free

KD from WRN40-2 to WRN16-1 for SVHN. Just for bet-

ter presentation, we classify the synthetic images using the

teacher and show 4 samples from 0 to 9 in each column.

Figure 3: Example synthetic images generated in data-free

KD from WRN40-2 to WRN16-1 for CIFAR-10. Similar to

Figure 2, we classify the synthetic images using the teacher

and show 4 samples for each class of CIFAR-10 (airplane,

automobile, bird, cat, deer, dog, frog, horse, ship, and truck)

in each column.

variational information distillation (VID) [30] to match in-

termediate layer outputs, where we reduce the number of

batches per epoch to 200; VID is one of the state-of-the-art

KD variants, and it yields better student accuracy with faster

convergence. For the weighting factor α in (2), we perform

experiments on α ∈ {10−3, 10−2, 10−1, 1, 10} and choose

the best results. The generator update interval m is set to be

10 for wide residual networks and 1 for the others. Except

the results in Table 3, we use one generator and one student

in our data-free KD, i.e., G = S = 1 in Algorithm 1.

4.1. Data­free model compression

We evaluate the performance of the proposed data-free

model compression scheme on SVHN, CIFAR-10, CIFAR-

100, and Tiny-ImageNet datasets for KD of residual net-

works (ResNets) and wide residual networks (WRNs). We

summarize the main results in Table 2. We compare our

scheme to the previous data-free KD methods in [35,36,41]

and show that we achieve the state-of-the-art data-free KD

performance in all evaluation cases. We also obtain the stu-

dent accuracy when students are trained with the original

datasets from scratch and by using variational information

distillation (VID) in [30]. Table 2 shows that the accuracy

losses of our data-free KD method are marginal, compared

to the cases of using the original datasets.

Example synthetic images. We show example synthetic

Figure 4: Example synthetic images generated in data-free

KD from ResNet-34 to ResNet-18 for CIFAR-100.

images obtained from generators trained with teachers pre-

trained for SVHN, CIFAR-10, and CIFAR-100 datasets, re-

spectively, in Figure 2, Figure 3, and Figure 4. The figures

show that the generators regularized with pre-trained teach-

ers produce samples that are similar to the original datasets.

Ablation study. For ablation study, we evaluate the pro-

posed data-free KD scheme with and without each term of

the auxiliary loss Lψ for the generator in (4), and the results

are summarized in Figure 5. The bar graph shows that the

major contribution comes from (a), which is to match batch

normalization statistics (see Section 3.3). In Figure 6, we

present the impact of the weighting factor α in (2) on KD

performance. Moreover, to visually show the impact of α on

the generation of synthetic data, we collect synthetic images

for α = 10 and α = 0.1 and show them at different epochs

in Figure 7. The figures show that smaller α yields more di-

verse adversarial images, since the generator is constrained

less. As α gets larger, the generated images collapse to one

mode for each class, which leads to over-fitting.

Multiple generators and multiple students. We show

the gain of using multiple generators and/or multiple stu-

dents in Table 3. We compare the cases of using two gener-

ators and/or two students. For the second generator, we re-

place one middle convolutional layer with a residual block.

For KD to two students, we use identical students with dif-

ferent initialization. Table 3 shows that increasing the num-

ber of generators and/or the number of students results in

better student accuracy in data-free KD.

4.2. Data­free network quantization

In this subsection, we present the experimental results of

the proposed data-free adversarial KD scheme on network

quantization. For the baseline quantization scheme, we use

TensorFlow’s quantization framework. In particular, we im-

plement our data-free KD scheme in the quantization-aware

training framework [24, 42] of TensorFlow2.

TensorFlow’s quantization-aware training performs per-

layer asymmetric quantization of weights and activations.

2https://github.com/tensorflow/tensorflow/tree/

r1.15/tensorflow/contrib/quantize



Table 2: Comparison of the proposed data-free adversarial KD scheme to the previous works.

Original

dataset

Teacher (# params) Student (# params) Teacher
accuracy

(%)

Student accuracy (%)

Data-free KD methods Training

from scratch*

VID [30]*

Ours [36] [35] [41]

SVHN WRN40-2 (2.2M) WRN16-1 (0.2M) 98.04 96.48 94.06 N/A N/A 97.67 97.60

CIFAR-10

WRN40-2 (2.2M)

WRN16-1 (0.2M)

94.77

86.14 83.69 N/A N/A 90.97 91.78

WRN40-1 (0.6M) 91.69 86.60 N/A N/A 93.35 93.67

WRN16-2 (0.7M) 92.01 89.71 N/A N/A 93.72 94.06

VGG-11 (9.2M) ResNet-18 (11.2M) 92.37 90.84 N/A N/A 90.36 94.56 91.47

ResNet-34 (21.3M) ResNet-18 (11.2M) 95.11 94.61 N/A 92.22 93.26 94.56 94.90

CIFAR-100 ResNet-34 (21.3M) ResNet-18 (11.2M) 78.34 77.01 N/A 74.47 N/A 77.32 77.77

Tiny-ImageNet ResNet-34 (21.4M) ResNet-18 (11.3M) 66.34 63.73 N/A N/A N/A 64.87 66.01

* Used the original datasets.
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Figure 5: Ablation study on the three terms in the auxiliary loss Lψ of (4), i.e., (a) batch normalization statistics, (b) instance

categorical entropy, and (c) batch categorical entropy (see Section 3.3).
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Figure 6: Training KL divegence and student test accuracy

of data-free KD for different values of α in (2). The student

over-fits to the generator output when the weighting factor α

is too large (α ∈ {10, 102}).

Table 3: Comparison of the student accuracy (%) when us-

ing multiple generators and/or multiple students in our data-

free KD from WRN40-2 to WRN16-1 on CIFAR-10.

# students (S)

# generators (G)
1 2

1 86.14 86.67

2 86.44 87.04

For quantization only, no data are needed for weight quan-

tization, but quantization of activations requires represen-

tative data, which are used to collect the range (the mini-

mum and the maximum) of activations and to determine the

quantization bin size based on the range. In our data-free

quantization, we use synthetic data from a generator as the

representative data. To this end, we train a generator with

no adversarial loss as in the warm-up stage of Algorithm 1

(see DF-Q in Table 4). For our data-free quantization-aware

training, we utilize the proposed adversarial KD on top of

Tensorflow’s quantization-aware framework, where a quan-

tized network is set as the student and a pre-trained floating-

point model is given as the teacher, which is denoted by

DF-QAT-KD in Table 4.

We follow the training hyperparameters as described in

Section 4.1, while we set the initial learning rate for KD to

be 10−3. We use 200 epochs for the warm-up stage and 50
epochs for quantization-aware training with data-free KD.

We adopt the vanilla KD with no intermediate layer output

matching terms. We summarize the results in Table 4.

For comparison, we evaluate three conventional data-

dependent quantization schemes using the original train-

ing datasets, i.e., quantization only (Q), quantization-aware

training (QAT), and quantization-aware training with KD

(QAT-KD). As presented in Table 4, our data-free quantiza-

tion shows very marginal accuracy losses less than 2% for

4-bit/8-bit weight and 8-bit activation quantization in all the

evaluated cases, compared to using the original datasets.

Finally, we compare our data-free quantization to using

alternative datasets. We consider two cases (1) when a sim-



Epochs Automobile Bird Horse Automobile Bird Horse
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50

100

200

(a) α = 10 (b) α = 0.1

Figure 7: Example synthetic images generated for CIFAR-10 automobile, bird, and horse classes in different training epochs.

We compare two cases with α = 10 and α = 0.1 to show the impact of the weighting factor α in (2) on the generator output.

Table 4: Results of network quantization with the proposed data-free adversarial KD scheme. For our data-free quantization,

we show the results for data-free quantization only (DF-Q) and data-free quantization-aware training with data-free KD (DF-

QAT-KD). For conventional data-dependent quantization [24], we show the results for quantization only (Q), quantization-

aware training (QAT), and quantization-aware training with KD (QAT-KD).

Original

dataset
Pre-trained model

(accuracy %)
Quantization bit-width

for weights / activations
Quantized model accuracy (%)

Ours (data-free) Data-dependent [24]*

DF-Q DF-QAT-KD Q QAT QAT-KD

SVHN WRN16-1 (97.67)
8 / 8 97.67 97.74 97.70 97.71 97.78

4 / 8 91.92 97.53 93.83 97.66 97.70

CIFAR-10

WRN16-1 (90.97)
8 / 8 90.51 90.90 90.95 91.21 91.16

4 / 8 86.29 88.91 86.74 90.92 90.71

WRN40-2 (94.77)
8 / 8 94.47 94.76 94.75 94.91 95.02

4 / 8 93.14 94.22 93.56 94.73 94.42

CIFAR-100 ResNet-18 (77.32)
8 / 8 76.68 77.30 77.43 77.84 77.73

4 / 8 71.02 75.15 69.63 75.52 75.62

Tiny-ImageNet MobileNet v1 (64.34) 8 / 8 51.76 63.11 54.48 61.94 64.53

* Used the original datasets.

Table 5: Impact of using different datasets for 4-bit weight

and 8-bit activation quantization.

Dataset used
in KD

Quantized model accuracy (%)

before / after fine-tuning with KD

WRN16-1
(SVHN)

WRN40-2
(CIFAR-10)

ResNet-18
(CIFAR-100)

SVHN 93.83 / 97.70 71.89 / 92.08 13.41 / 65.07

CIFAR-10 93.50 / 97.24 93.56 / 94.42 67.50 / 75.62

CIFAR-100 94.11 / 97.26 92.18 / 94.10 69.63 / 75.62

Ours (data-free) 91.92 / 97.53 93.14 / 94.22 71.02 / 75.15

ilar dataset is used (e.g., CIFAR-100 instead of CIFAR-10)

and (2) when a mismatched dataset is used (e.g., SVHN in-

stead of CIFAR-10). The results in Table 5 show that using a

mismatched dataset degrades the performance considerably.

Using a similar dataset achieves comparable performance

to our data-free scheme, which shows small accuracy losses

less than 0.5% compared to using the original datasets. We

note that even alternative data, which are safe from privacy

and regulatory concerns, are hard to collect in usual cases.

5. Conclusion

In this paper, we proposed data-free adversarial KD for

network quantization and compression. No original data

are used in the proposed framework, while we train a gen-

erator to produce synthetic data adversarial to KD. In par-

ticular, we propose matching batch normalization statistics

in the teacher to additionally constrain the generator to pro-

duce samples similar to the original training data. We used

the proposed data-free KD scheme for compression of vari-

ous models trained on SVHN, CIFAR-10, CIFAR-100, and

Tiny-ImageNet datasets. In our experiments, we achieved

the state-of-the-art data-free KD performance over the ex-

isting data-free KD schemes. For network quantization, we

obtained quantized models that achieve comparable accu-

racy to the models quantized and fine-tuned with the origi-

nal training datasets. The proposed framework shows great

potential to keep data privacy in model compression.
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