This CVPR 2020 workshop paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

Ternary MobileNets via Per-Layer Hybrid Filter Banks

Dibakar Gope, Jesse Beu, Urmish Thakker, and Matthew Mattina
Arm ML Research Lab

{dibakar.gope, jesse.beu, urmish.thakker, matthew.mattina}@arm.com

Abstract

MobileNets family of computer vision neural networks
have fueled tremendous progress in the design and orga-
nization of resource-efficient architectures in recent years.
New applications with stringent real-time requirements on
highly constrained devices require further compression of
MobileNets-like compute-efficient networks. Model quanti-
zation is a widely used technique to compress and acceler-
ate neural network inference and prior works have quan-
tized MobileNets to 4 — 6 bits, albeit with a modest to sig-
nificant drop in accuracy. While quantization to sub-byte
values (i.e. precision < 8 bits) has been valuable, even fur-
ther quantization of MobileNets to binary or ternary val-
ues is necessary to realize significant energy savings and
possibly runtime speedups on specialized hardware, such as
ASICs and FPGAs. Under the key observation that convo-
lutional filters at each layer of a deep neural network may
respond differently to ternary quantization, we propose a
novel quantization method that generates per-layer hybrid
filter banks consisting of full-precision and ternary weight
filters for MobileNets. Using this proposed quantization
method, we quantize a substantial portion of weight filters
of MobileNets to ternary values resulting in a 27.98% sav-
ings in energy, and a 51.07% reduction in the model size,
while achieving comparable accuracy and no degradation
in throughput on specialized hardware in comparison to the
baseline full-precision MobileNets. Finally, we demonstrate
the generalizability and effectiveness of hybrid filter banks
to other neural network architectures.

1. Introduction

Deeper and wider convolutional neural networks (CNNs)
has led to outstanding predictive performance in many
machine learning tasks, such as image classification, ob-
ject detection, and semantic segmentation. However, the
large model size and corresponding computational ineffi-
ciency of these networks often make it infeasible to run
many real-time machine learning applications on resource-
constrained mobile and embedded hardware, such as smart-

phones, AR/VR devices, etc. To enable this computation
and size compression of CNN models, one particularly ef-
fective approach has been the use of resource-efficient Mo-
bileNets architecture. MobileNets introduces depthwise-
separable (DS) convolution as an efficient alternative to the
standard 3-D convolution operation.While MobileNets ar-
chitecture has been transformative, even further compres-
sion of MobileNets is valuable in order to meet the stringent
real-time requirements of new applications on highly con-
strained devices or to make a wider range of applications
available on them [14].

Model quantization has been a popular technique to fa-
cilitate that. Quantizing the weights of MobileNets to bi-
nary (—1,1) or ternary (—1,0,1) values in particular has
the potential to achieve significant improvement in energy
savings and possibly overall throughput especially on cus-
tom hardware, such as ASICs and FPGAs while reducing
the resultant model size considerably. This is attributed to
the replacement of multiplications by additions in binary-
and ternary-weight networks. Multipliers occupy consid-
erably more area on chip than adders [27], and consume
significantly more energy than addition operations [21, 3].
Specialized hardware can therefore trade off multiplica-
tions against additions and potentially accommodate con-
siderably more adders than multipliers to achieve high
throughput and significant savings in energy for binary- and
ternary-weight networks.

However, prior approaches to binary and ternary quan-
tization [33, 2, 27, 40] incur significant drop in predic-
tion accuracy for MobileNets. Recent work on Strassen-
Nets [40] shows the potential to approximate matrix mul-
tiplication (and, in turn, convolutions) of a network using
mostly ternary weights and a few full-precision weights
without dropping its predictive performance. For every
DNN layer, StrassenNets essentially casts the (matrix) mul-
tiplication of weight matrix with activations as a 2-layer
sum-product network (SPN). The number of hidden units
in the SPNs determines the addition and multiplication bud-
get of the corresponding DNN layers and in turn decides the
approximation error of the corresponding matrix multiplica-
tion operations. While the results in [40] using StrassenNets

show no loss in predictive performance for a few networks
in comparison to their full-precision models, the effective-
ness of StrassenNets varies considerably, however, depend-
ing on the architecture of a neural network. Our observa-
tions are, for example, that while strassenifying DS convo-
lutional layers reduces the model size and the number of
multiplication operations significantly, this might come at
the cost of a prohibitive increase in the number of addition
operations. This in turn may degrade the throughput and en-
ergy efficiency of neural network inference using Strassen-
Nets.

The exorbitant increase in additions primarily stems
from the use of wide hidden layers for closely approximat-
ing each convolutional filter in a network layer. While this
might be required for some of the convolutional filters in
a layer, our observations indicate that not all filters require
wide strassenified hidden layers. As different filters in a
network layer tend to capture different features, some be-
ing more complicated than others, they respond differently
to ternary quantization, and, in turn, to strassenified convo-
lution at varied hidden layer widths. Furthermore, due to
the hiddent unit reuse in the strassenified network, a group
of filters with sub-filter similarities at a layer may respond
more favorably to ternary quantization than outlier filters
within the same layer extracting significantly different fea-
tures.

Guided by these insights, we propose a layer-wise hy-
brid filter banks for the MobileNets architecture capable of
giving start-of-the-art accuracy while requiring a fraction
of the model size and considerably fewer MAC and mul-
tiplication operations per inference. The end-to-end learn-
ing of hybrid filter banks makes this possible by keeping
precision critical convolutional filters in full-precision val-
ues and only strassenifying quantization tolerant filters to
ternary values. The filters that are most sensitive to quan-
tization errors perform traditional convolutions with input
feature maps, whereas ternary quantization tolerant filters
can perform strassenified convolutions using narrow hid-
den layers. We apply this proposed quantization scheme to
the MobileNets-V1 architecture. The hybrid filter banks for
MobileNets achieves a 46.4%, and a 51.07% reduction in
multiplications and model size respectively while incurring
modest increase in additions. This translates into a 27.98%
savings in energy required per inference while ensuring no
degradation in throughput on a DNN hardware accelerator
consisting of both MAC and adders when compared to the
execution of baseline MobileNets on a MAC-only hardware
accelerator. The hybrid filter banks accomplishes this with a
very minimal loss in accuracy of 0.51%. Hybrid filter banks
applied to ResNet yields consistently better accuracy results
than StrassenNets on CIFAR-10 dataset, demonstrating its
generalizability to other neural network architectures. To
the best of our knowledge, the hybrid filter banks proposed

in this work is a first step towards quantizing the already
compute-efficient MobileNets architecture to ternary values
on a large-scale dataset, such as ImageNet.

The remainder of the paper is organized as follows. Sec-
tion 2 elaborates on the incentives behind the development
of per-layer hybrid filter banks. Section 3 describes our
hybrid filter banks. Section 4 presents results. Section 5
compares hybrid filter banks against prior works. Section 6
concludes the paper.

2. Model Quantization Limitations for Mo-
bileNets

This section briefly reviews the important existing works
on ternary quantization, which we focus on in this paper,
and illustrates their limitations to motivate the development
of per-layer hybrid filter banks.

2.1. Ternary Quantization of Weights

In order to observe the impact of ternary quantiza-
tion [10, 33, 28, 5, 27, 50, 49], we apply the ternary
weight quantization method from [27] over the base-
line MobileNets-V1 architecture. It approximates a full-
precision weight W /? by a ternary-valued T and a scaling
factor such that W /P ~ scaling factor * W?. Ternary quan-
tization of the weights of MobileNets achieves substantial
reduction in model size but at the cost of significant drop (by
9.66%, see Table 1) in predictive performance when com-
pared to the full-precision model. Any increase in the size
of the MobileNets architecture to recover the accuracy loss
while using ternary quantization will lead to a significant
increase in the number of addition operations. Recent work
on StrassenNets [40], which we describe next, has shown
the potential to achieve near state-of-the-art accuracy for
a number of deep CNNs while maintaining acceptable in-
crease in addition operations.

2.2. StrassenNets

Given two 2 X 2 square matrices, Strassen’s matrix mul-
tiplication algorithm requires 7 multiplications to compute
the product matrix instead of the 8 required with a naive
implementation of matrix multiplication. It essentially casts
the matrix multiplication as a 2-layer SPN computation.

vec(C) = W [(Wyvee(B)) © (Wavec(A))] (1)

Wa, Wy € K 7<% and W. e K n?xr represent ternary
matrices with K € {-1,0,1}. The Wyvec(A4) and
Wyvec(B) of the SPN combine the elements of A and B
through additions, and/or subtractions by using the two as-
sociated ternary matrices W, and W}, respectively to gener-
ate r intermediate terms each. The two generated r-length

intermediate terms are then elementwise multiplied to com-
pute the r-length (Wyvec(B)) © (Wyvec(A)) vector. The
outmost ternary matrix W, later combines these intermedi-
ate r terms through additions, and/or subtractions to pro-
duce vec(C). Hence, the number of multiplications and ad-
ditions required for the Strassen’s algorithm are decided by
the width of the hidden layer of the SPN, r. Given two
2 x 2 matrices, for example, ternary matrices W,, W3, and
W, with sizes of 7 x 4, 7 x 4, and 4 X 7 respectively can
multiply them using 7 multiplications instead of 8.

While Strasssen’s algorithm requires a hidden layer
with 7 units here to compute the exact product matrix,
the StrassenNets work [40] instead realizes approximate
matrix multiplications in DNN layers' using fewer hid-
den layer units. The learned ternary matrices can then
use significantly fewer multiplications than Strassen’s al-
gorithm. This approximation can have impact on predic-
tive performance of the DNN architecture. The signifi-
cant compression achieved by StrassenNets for 3 x 3 con-
volutions [40] and increasing visibility of DS convolution
layers in compute-efficient networks [23, 34, 48, 8] moti-
vated us to apply StrassenNets over MobileNets architec-
ture dominated with DS layers to reduce its computational
complexity and model size even further. Among the vari-
ous MobileNets architectures [23, 34, 22], in this work we
extensively study the quantization of MobileNets-V1 [23].
MobileNets-V1 stacks one 3 x 3 and 13 DS convolutional
layers. A DS convolution first convolves each channel in
the input feature map with a separate 2-D filter (depthwise
convolution) and then uses 1 X 1 pointwise convolutions to
combine the outputs in the depth dimension.

2.2.1 StrassenNets for MobileNets

We observe that while strassenifying MobileNets is ef-
fective in reducing the number of multiplications and the
model size significantly, it increases additions prohibitively
to preserve the predictive performance of the baseline Mo-
bileNets with 16-bit floating-point weights. Table 1 cap-
tures our observation. The strassenified MobileNets with
the r = 2c,,; configuration achieves a comparable accu-
racy to that of the full-precision MobileNets while reduc-
ing multiplications by 97.91% but increasing additions by
317.59% (149.49M MACs of MobileNets vs. 3.11M mul-
tiplications and 624.27M additions of ST-MobileNets with
r = 2coyut). This in turn offers modest savings in energy
required per inference but causes significant degradation in
throughput (see Section 4 for details). The use of fewer hid-

A convolutional operation in DNN layers can be reduced to a general
matrix multiplication (GEMM). In the context of strassenified matrix mul-
tiplications of a network layer, A is associated with the weights or filters of
the layer and B is associated with the corresponding activations or feature
maps. As a result, after training, W, and vec(A) can be collapsed into a
vector & = Wavec(A), as they are both fixed during inference.

Table 1: Performance of MobileNets-V1 and strassenified
MobileNets-V1 (ST-MobileNets) with the width multiplier
of 0.5 on ImageNet dataset. r is the hidden layer width of a
strassenified convolution layer, ¢, is the number of output
channels of the corresponding convolution layer. MAC =
multiply-accumulate operation, E = Energy/inference (nor-
malized), TP = Throughput (normalized).

Network Acc. Muls, Adds MACs Model E
(%) M) ™M) size (KB)
MobileNets 65.2 - 149.49 2590.07 1
(float16)
MobileNets 55.54 -, 149.49 - 323.75 0.2
(TWN)
ST-MobileNets 48.92 0.77, 158.54 8.69 522.33 0.27 1.69
(r = 0.5¢cout)
ST-MobileNets 56.95 1.16, 236.16 8.69 631.76 0.37 1.17
(r = 0.75¢cout)
ST-MobileNets 61.8 1.55,313.78 8.69 741.19 0.48 0.9
(r = cout)
ST-MobileNets 65.14 3.11, 624.27 8.69 1178.92 0.9 0.46
(r = 2cout)
3x3 conv using
ternary W),
StrassenNets

Wqvec(4) Increase in ADDS

_ #ADDs of (3x3 conv + 1x1_conv)

X n -
XL conv [= s of 3x3 traditional conv
using 10

Traditional 3x3 convolution ternary W, 5
using full-precision weights

1x1 conv
using
ernary W Increase in ADDS

#ADDs of (1x1 conv + 1x1 conv
W, vec(A) = #4DDs of (1x1 con + 1x1 conv)

#MACs of 1x1 traditional conv

StrassenNets

2
1x1 conv ==

. 1
using
ternary W,

Traditional 1x1
convolution using full-
precision weights

Figure 1: Application of StrassenNets to 3 x 3 and 1 x 1
convolution. The cost of elementwise multiplication with
intermediate W,vec(A) is comparably negligible and hence
is ignored in estimating the increase in additions.

den units (r) (e.g. 7 = coy¢) incurs a significant accuracy
loss of 3.4%.

2.2.2 Compute inefficiency of StrassenNets for Mo-
bileNets

Note that while strassenifying traditional 3 X 3 or 5 X
5 convolutional layers increases the addition operations
marginally as observed in StrassenNets [40], that trend does
not hold true when StrassenNets is applied over MobileNets
dominated with DS layers. This is attributed to the fact
that the computational cost of a neural network with DS
layers is dominated by 1 x 1 pointwise convolutions [23]

and strassenifying a 1 x 1 convolution requires executing
two equal-sized (for r = cout) 1 X 1 convolutions with
ternary weights along with few elementwise multiplications
in place of the standard 1 x 1 convolution, as shown in Fig-
ure 1. This in turn causes a significant increase (2 : 1 or
100%) in additions when compared to the execution of the
standard 1 x 1 pointwise convolution. On the other hand, as
Figure | illustrates, a 3 x 3 strassenified convolution with
T = Coyut instead requires executing a 3 X 3 convolution
and a 1 x 1 convolution with ternary weights in conjunction
with few elementwise multiplications. This in turn results
in a marginal increase (10 : 9 or 11.1%) in additions in
comparison to the execution of the standard 3 x 3 convo-
lution. This overhead of addition operations with applying
StrassenNets to DS convolution layers goes up in propor-
tion to the width of the hidden layers, i.e. to the size of the
ternary convolution operations, as observed in Table 1, re-
ducing the throughput and energy-efficiency of neural net-
work inference.

This also indicates that DS convolutions, being more ef-
ficient, are more prone to quantization error and this man-
ifests when StrassenNets is applied. Considering the fact
that MAC operations typically consume about five times
more energy than addition operations for 16-bit floating-
point values [21, 3], an about 317.59% increase in additions
in place of about 98% saving on multiplications will result
in diminishing or no returns in terms of energy savings and
runtime speedups even on specialized hardware dominated
with adders. The increase in computational costs of Mo-
bileNets with applying StrassenNets along with the high
accuracy and stringent real-time requirements of new appli-
cations on highly constrained devices necessitate a model
architecture exploration that can exploit the compute effi-
ciency of DS layers and the model size reduction ability of
StrassenNets while maintaining acceptable or no increase in
additions.

2.2.3 Variance in the sensitivity of convolutional filters
to ternary quantization

Although a strassenified MobileNets with r = 2¢,,,; recov-
ers the accuracy loss of 7 = c,y¢, it makes a strong as-
sumption that all filters require wider strassenified hidden
layers to quantize to ternary values to preserve the represen-
tational power of the baseline full-precision network. While
this might be true for some of the convolutional filters, not
all filters need to be quantized using the r = 2c¢,,+ con-
figuration. This observation stems from the following two
reasons:

(a) Different sensitivity of individual filters to
StrassenNets. Different convolutional filters tend to ex-
tract different type of features, ranging from simple features
(e.g. edge detection) to more complicated higher-level (e.g.

024 029 -023 4 2 a |L2doss with

2 hidden units: 0.02,
4 hidden units: 0.0
8 hidden units: 0.0
Vertical lines detector

-0.12 -0.40 0.78| % -1 2 -1

-0.88 092 -0.45 -1 2 -1

Feature map

L2-loss with

2 hidden units: 0.09
4 hidden units: 0.09,
0.88 092 -045 0 -1 0 Ighidden units: 0.01

Feature map

024 029 -0.23 0 -1 0

-0.12 -0.40 0.78| % -1 5 -1

Sharpen filter

Figure 2: Variance in the sensitivity of individual convolu-
tional filters to quantization.

facial shapes) or object specific features. As a result, differ-
ent filters may respond differently to ternary quantization.
That implies there are filters that are easy to quantize to
ternary values using narrower hidden layers while still en-
suring low L2 reconstruction error in output feature maps,
and vice versa.

Given a feature map, Figure 2 presents a scenario where
a strassenified vertical lines detector with fewer hidden
layer units can closely approximate the output map (with
low L2 reconstruction loss) produced otherwise using its
full-precision counterpart. However a convolutional filter
that sharpen images requires a wider hidden layer to ensure
a low L2 loss (see Appendix for more details). Note that
we only consider 2D filters for illustration purpose, whereas
this difference in complexity should exist in 3D filters com-
mon to CNNS.

(b) Different sensitivity of group of filters to Strassen-
Nets. Furthermore, there exists convolutional filters at
each layer that tend to extract different features but can
have numerical-structural similarities (e.g., a 3 x 3 vertical
lines detector and a horizontal lines detector sharing com-
mon values at all the corners and at the center, see Appendix
for details). In addition to that, there exists filters that tend
to extract fairly similar features with slightly different ori-
entations (e.g. two filters attempting to detect edges rotated
by few degrees). As a result, when these groups of convolu-
tional filters are quantized to ternary values using Strassen-
Nets, they may share many hidden layer elements. These
groups of convolutional filters with similar value structure
in turn are more amenable to quantization using fewer hid-
den layer units than filters with no common value structure.
Given a constrained hidden layer budget for StrassenNets
(e.g. 7 = cout), these groups of convolutional filters may
together respond well to ternary quantization while other
dissimilar filters struggle to be strassenified alongside them
with low quantization error, due to the restricted hidden
layer bandwidth.

Figure 3(a) specifies a set of weight matrices that can
perform exact convolution of the 2 x 2 filter bank compris-
ing f; and f;, with the feature map using 7 multiplications.
Note that the two filters f; and fj do not have any common
values. However, owing to the presence of common value

Convolutional
filters

Feature map

f}- a b e f 10
% 0 1

1 0

fe| ¢ d g h | We= o o
1 0

101

00

\»'—-oo»-o.auj

7 x 4 ternary weight matrix

oOr Oh OR R,
N)
orooroo
RO RO ko R
s orko
~rhr oo
cork
oroh
~ ooo
\ o ocowr)

7 x 4 ternary weight matrix 4 x 7 ternary weight matrix

(a) Strassen’s matrix multiplication for two filters f;
anf f;. having unique values.

il a b e f 100 1
* 01 0 1
1 0 0 O

W, A =
fe| a c g h a 0 0 0 1
Convolutional F 1010
voluti eature map 0 0 1 -1

filters

6 x 4 ternary weight matrix

1 0 0 1
10 0 0

W, = 0 0 1 -1 10 0 1 -1 1
1 1 0 0 W, = 01 0 1 0 0
00 0 1 001 0 10
01 0 1 1 -1 1 0 0 O

6 x 4 ternary weight matrix 4 x 6 ternary weight matrix

(b) Strassen’s matrix multiplication for two filters f;
anf f;. having some common values.

Figure 3: Understanding the sensitivity of group of filters to
ternary quantization.

of a between f; and fj, filters in Figure 3(b), Strassen’s al-
gorithm now can compute the exact product matrix using
only 6 multiplications instead of the 7 required otherwise
for unique filters lacking common value structure in Fig-
ure 3(a). A set of ternary weight matrices with fewer hid-
den units implementing an exact convolution in this case is
shown in Figure 3(b).

Motivated by these observations, we propose per-layer
hybrid filter banks.

3. Per-Layer Hybrid Filter Banks

The per-layer hybrid filter banks can quantize a substan-
tial fraction of convolutional filters to ternary values at each
layer while relying on few remaining full-precision filters
to preserve the representational power of the original full-
precision network. As easy-to-quantize filters are quantized
only using StrassenNets leaving the difficult-to-quantize fil-
ters in full-precision values, this should in turn require nar-
row hidden layers for quantizing them thus restricting the
increase in additions and resulting in an overall reduction
in multiplications, MAC operations and memory footprint
while ensuring no loss in accuracy.

Architecture. The proposed quantization method con-
volves the same input feature map with full precision weight
filters and ternary weight filters in parallel, concatenating
the feature maps from each convolutions into a unified fea-
ture map. This concatenated feature map is fed as input
to the next network layer. At each layer, the combina-
tion of the two convolutions from full-precision and ternary
filters ensures that they combine to form a output feature
map of identical shape as in the baseline full-precision net-
work. For instance, given an input feature map with ¢;,
channels, the quantization technique applies traditional con-
volution with k full-precision weight filters W, of shape
Cin, X Wy X hi and strassen convolution with ¢, — k
ternary weight filters W, to produce a feature map of total
Cout channels for a layer. Here c,,,; is the number of chan-
nels in the output volume of the corresponding convolution
layer in the baseline full-precision network, and wy, hy, are
the kernel size. The fraction of channels generated in an
output feature map from the full-precision weight filters, a
(or in others words the channels generated from the ternary
weight filters, 1 — «) is a hyperparameter in our quantiza-
tion technique and it decides the representational power and
computational costs of MobileNets with hybrid filter banks.
Figure 4 shows the organization of the hybrid filter bank
for a MobileNets layer. The depthwise convolutions of the
depthwise-separable layers are not quantized using either
StrassenNets or our hybrid filter banks. This is primarily
due to the following reasons: (a) they do not dominate the
compute bandwidth of MobileNets [23], (b) as per our ob-
servations, quantizing those to ternary values hurt the accu-
racy significantly without offering any significant savings
in either model size or computational costs. The strasseni-
fied convolutions portion of hybrid filter banks at each layer
are quantized using a number of r values, where r is the
hidden layer width of a strassenified convolution layer. The
r << 2Coyut configuration in conjunction with an optimal
non-zero « should offer substantial savings in model size
and addition operations without compromising accuracy in
comparison to a fully strassenified MobileNets architecture
with v = 2cy+ configuration. The presented quantization
technique can also be applied to the fully-connected layer
parameters, however, we only focus on convolution layers
in this work. We compress the last fully-connected layer of
MobileNets uniformly using StrassenNets.

End-to-end training. The full-precision filters along
with the strassenified weight filters for each layer are trained
jointly using a gradient-descent (GD) based training al-
gorithm so as to maximize accuracy. Before the train-
ing begins, depending on the value of «, the top « * Cout
channels of a feature map are configured to generate from
full-precision traditional convolutions, and the remaining
1 — « * ¢yt channels are forced to generate from ternary
strassenified convolutions. Note that the order of the chan-

Previous Depthwise
convolutional layer

. Wy
Traditional 1x1 Strassen 1x1

convolution using convolution using | Wavec(4)
full-precision weights ternary weights w,
e

\ Ael
concatenation

Figure 4: A MobileNets pointwise layer with hybrid filter
bank.

nels generated in the output feature volume by either full-
precision filters or ternary filters is not important, as the
output feature map comprising all the channels generated
forms the input of the subsequent layer and the weights in
the subsequent layer can adjust to accommodate that. Dur-
ing the end-to-end training process, the organization of hy-
brid filter banks tend to influence the difficult-to-quantize
filters (that require full-precision filters to extract features)
to be trained using full-precision values, and the filters that
are less susceptible to ternary quantizationto be trained us-
ing ternary values from strassenified convolutions. Further-
more, in order to recover any accuracy loss of the hybrid
MobileNets compressed with strassenified matrix computa-
tions, we use knowledge distillation, as exploited in [40],
during training. Knowledge distillation allows an uncom-
pressed teacher network to transfer its prediction ability to a
compressed student network by navigating its training. We
use the uncompressed MobileNets with per-layer hybrid fil-
ter banks as the teacher network and the compressed net-
work with ternary weight matrices as the student network.

4. Experiments and Results

Datasets and experimental setup. We evaluate the
MobileNets-V1 architecture comprising proposed per-layer
hybrid filter banks (Hybrid MobileNets) on the ImageNet
(ILSVRC2012) dataset and compare it against the state-of-
the-art MobileNets [23] with 16-bit floating-point weights.
The baseline and other network architectures presented here
use a width multiplier of 0.5 to stress more the impact
quantization. We use MXNet [6] based GluonCV toolkit?
to train the networks. In this work, the baseline MobileNets
and the full-precision filters of the hybrid filter banks use
16-bit floating-point weights. We quantize the activations
of the baseline and proposed architectures to 16-bit floating-
point values. A 8-bit representation of weights and activa-
tions should not alter the conclusions made in this work.
At the time of writing this paper, GluonCV toolkit does not
support training with 8-bit weights and activations.

2Using a width multiplier of 0.5 halves the number of channels used in
each layer of the original MobileNets architecture [23].

3GluonCV: a Deep Learning Toolkit for Computer Vision,
https://gluon-cv.mxnet.io/index.html

Hybrid MobileNets architecture training. @ We use
the Nesterov accelerated gradient (NAG) optimization al-
gorithm and follow the other training hyperparameters de-
scribed in the GluonCV framework for training the base-
line full-precision MobileNets, strassenified MobileNets
and our proposed Hybrid MobileNets. We begin by train-
ing the Hybrid MobileNets with full-precision strassen ma-
trices (W,, Wp, and W) for 200 epochs. With a mini-
batch size per GPU of 128 on a 4 GPU system, the learning
rate is initially chosen as 0.2, and later gradually reduced
to zero following a cosine decay function as used in the
GluonCV framework for training the baseline full-precision
MobileNets (see Appendix for more details). We then acti-
vate quantization for these strassen matrices and the training
continues for another 75 epochs with initial learning rate of
0.02 and progressively smaller learning rates. Quantization
converts a full-precision strassen matrix to a ternary-valued
matrix along with a scaling factor (e.g., W}, = scaling factor
*Wh.

To evaluate our hypothesis that some full-precision fil-
ters are changing significantly to recover features lost due
to quantization, we measured the L2 distance between their
pre- and post-quantization weight vectors. We found the
L2 distances fit a normal distribution: most filters experi-
ence low-to-moderate changes to their weight vectors while
a few exceptional filters saw very significant movement.
This supports our claim that the full-precision filters are
preserving the overall representational power of the net-
work. Finally, we fix the strassen matrices of the hybrid fil-
ter banks to their learned ternary values and continue train-
ing for another 25 epochs with initial learning rate of 0.002
and progressively smaller learning rates to ensure that the
scaling factors associated with the ternary matrices can be
absorbed by full-precision vec(A) portion of strassenified
matrix multiplication.

Energy and throughput modeling for hybrid filter
banks. The proposed per-layer hybrid filter banks for
MobileNets can be executed by existing DNN hardware
accelerators, such as DaDianNao [7] and TPU [25] con-
sisting of only MAC units. However, in order to achieve
an energy- and runtime- efficient execution of hybrid fil-
ter banks dominated with additions, we propose a custom
hardware accelerator, where a fraction of MAC units are re-
placed by low-cost adders within the same silicon area. A
16-bit floating-point MAC unit takes about twice the area of
a 16-bit floating-point adder [31]. Given a fixed silicon area
and a model configuration for Hybrid MobileNets, the ratio
of MAC units to adders in the proposed hardware acceler-
ator is decided in such a way that the maximum possible
throughput can be achieved for the configuration. We use
the energy consumption numbers of adder and MAC units
reported in [21] to estimate the energy required per infer-
ence of baseline and proposed models.

Table 2: Top-1 accuracy along with the computational costs, model size, and energy per inference for baseline MobileNets-
V1, ST-MobileNets, and Hybrid MobileNets on ImageNet dataset. « is the fraction of channels generated by the full-
precision weight filters at each layer, c,,; is the number of remaining channels generated by the ternary strassen filters at
the corresponding convolutional layer, 7 is the hidden layer width of the strassenified convolutions. The last column shows
the throughput of proposed models on an area-equivalent hardware accelerator comprising both MAC and adder units when
compared to the throughput of baseline MobileNets with 16-bit floating-point weights on a MAC-only accelerator.

Network Alpha T Acc. Muls, Adds MACs Model Energy/inference Throughput
(o) (%) size (normalized) (normalized)
MobileNets 65.2 149.49M 2590.07KB 1 1
(float16)
ST-MobileNets 0 2Cout 65.14 3.11M, 624.27M 8.69M 1178.92KB 0.9 0.46
MobileNets Cout 63.62 1.16M, 204.63M 43.76M 1004.67KB 0.56 1.02
(Hybrid 0.25 1.33¢cout 63.47 1.55M, 270.95M 43.76M 1097.07KB 0.65 0.83
filter banks) 2Cout 64.84 2.33M, 405.59M 43.76M 1284.65KB 0.84 0.6
MobileNets Cout 64.13 0.97M, 157.84M 61.3M 1131.43KB 0.62 1.06
(Hybrid 0.375 1.6¢cout 64.17 1.55M, 250.34M 61.3M 1260.44KB 0.74 0.8
filter banks) 2Cout 65.2 1.94M, 312.01M 61.3M 1346.45KB 0.83 0.68
MobileNets 0.5 Cout 64.69 1.28M, 142.37TM 78.83M 1267.13KB 0.72 1
(Hybrid 2Cout 65.17 1.55M, 228.68M 78.83M 1327.88KB 0.83 0.77
filter banks)
Hybrid MobileNets architecture evaluation. One of Cout < T < 2¢oyt configurations with the o of 0.25 and

the main focus of our evaluation is the study of how « im-
pacts on the performance of our models. This parameter,
that can be independently set for each convolutional layer in
the network, is directly proportional to the number of learn-
able parameters in a given layer. In this work, we use iden-
tical value of « for all the layers of Hybrid MobileNets. We
believe use of different values for different layers may result
in better cost accuracy trade-offs. We leave this exploration
for future work. Ideally small values of a and r are desired
to achieve significant reduction in MAC along with addition
operations while preserving the baseline accuracy.

We search the model hyperparameters space systemati-
cally to develop Hybrid MobileNets. Table 2 captures the
top-1 accuracy of the Hybrid MobileNets for various con-
figurations of « and hidden layer width r, along with their
impact on computational costs, model size, energy required
per inference, and throughput and and compares that against
baseline full-precision MobileNets, and ST-MobileNets. As
shown in Table 2, the ST-MobileNets and various configu-
rations of Hybrid MobileNets offer comparable reduction
(about 50%) in model size over the baseline full-precision
Mobilenets. While the r = 2c¢,,; configurations for dif-
ferent values of « (0.25, 0.375, and 0.5) can preserve the
baseline top-1 accuracy of 65.2% and offer modest sav-
ings in energy required per inference, that comes at the cost
of large increase in additions. This in turn causes signif-
icant degradation in throughput on the proposed hardware
accelerator when compared to the throughput of the base-
line full-precision MobileNets on an existing DNN acceler-
ator consisting of only MAC units. On the other end, the

0.375 incur modest to significant drop in top-1 accuracy
possibly owing to lack of enough full-precision weights fil-
ters at each hybrid filter bank to preserve the representa-
tional ability of the overall network. The r < ¢yt con-
figurations for different values of « leads to large drop in
prediction accuracy and hence is not shown in Table 2.

The Hybrid MobileNets with the « = 0.5 and r =
cout configuration strikes an optimal balance between ac-
curacy, computational costs, energy, and throughput. It
achieves comparable accuracy to that of the baseline Mo-
bileNets, strassenified and Hybrid MobileNets with the
r = 2cuy¢ configuration while reducing the number of
MACs, and multiplications by 47.26%, and 46.4% respec-
tively and requiring a modest (45.51%) increase in addi-
tions over the baseline MobileNets architecture. Of par-
ticular note is that it reduces the number of additions to
about 142.37M when compared to 624.27M additions of
ST-MobileNets described in Section 2. The significant re-
duction in MAC operations and modest increase in addi-
tions over the baseline full-precision MobileNets in turn
translates into 27.98% savings in energy required per infer-
ence while ensuring no degradation in throughput in com-
parison to the execution of baseline MobileNets on a MAC-
only hardware accelerator. This reduction in additions is
primarily attributed to strassenifying easy-to-quantize fil-
ters using fewer hidden units (r = c,,¢) While relying on
full-precision filters to generate 50% channels at each layer
and preserve the representational ability of the overall Mo-
bileNets architecture. Owing to the substantial presence of
ternary weights matrices, the Hybrid MobileNets with the

a = 0.5 and r = ¢, configuration reduces the model size
to 1267.13KB when compared to 2590.07KB of the base-
line MobileNets network thus enabling a 51.07% savings in
model size.

In summary, the Hybrid MobileNets reduces model size
by 51.07% and energy required per inference by 27.98%
while incurring a negligible loss in accuracy and no degra-
dation in throughput when compared to the baseline full-
precision MobileNets. Note that because of the large sav-
ings in model size, our Hybrid MobileNets will have sig-
nificantly fewer accesses to the energy- and power-hungry
DRAM. This in conjunction with skipping ineffectual com-
putations of zero-valued weights in our proposed hardware
accelerator (as exploited by [47]), owing to about 40 — 50%
of sparsity in the ternary weight matrices of strassenified
layers as we observe, will improve the energy savings and
run-time performance even further. Our current energy and
throughput modeling does not take this into account. We
leave this exploration for future work.

Generalizability of hybrid filter banks to other net-
work architectures. We evaluate the ResNet-20 archi-
tecture comprising hybrid filter banks (Hybrid ResNet-20)
on the CIFAR-10 dataset to demonstrate the efficacy of hy-
brid filter banks over other state-of-the-art ternary quantiza-
tion techniques and its generalizability to other neural net-
work architectures, especially to architectures dominated
with 3 x 3 convolutional layers. ResNet-20 has 19 3 x 3
convolutional layers. The Hybrid ResNet-20 consistently
achieves a better accuracy for different hidden layer widths
in comparison to StrassenNets. For example, the Hybrid
ResNet-20 with the o = 0.25 and the » = 0.75¢,,¢ con-
figuration achieves an accuracy of 91.55% when compared
to the accuracy of 90.62% observed by StrassenNets with
r = 0.75¢out. The accuracy of full-precision ResNet-20
is 92.1%. All other configurations consistently outperform
the state-of-the-art StrassenNets (see Appendix), demon-
strating the generalizability and effectiveness of hybrid filter
banks to 3 x 3 convolutional layers.

Furthermore, we evaluate MobileNets-V2 [34] with hy-
brid filter banks on the ImageNet dataset. The initial per-
formance results for MobileNets-V2 is promising, incur-
ring very marginal loss (about 2%) in accuracy compared
to the uncompressed MobilNets-V2 with only the first set
of hyperparameters we chose. We believe the small accu-
racy drop can be bridged with more model hyperparameters
exploration (e.g., appropriate division of output channels to
be generated from either full-precision or ternary weight fil-
ters at each layer, appropriate value of hidden layer width
for ternary weight filters, etc.) associated with hybrid filter
banks approach and knowledge distillation (as exploited by
StrasseNets baseline and MobileNets-V1 with hybrid filter
banks and mentioned in Section 3). Knowledge distillation
historically improves accuracy by another 1 — 2%.

5. Comparison against Prior Work

In recent years, numerous research efforts have been de-
voted to quantizing ResNet architecture to ternary values
while preserving the accuracy of full-precision model [40,

,44, 11,26, 53,52, 35, 46, 17]. However, none of the re-
cent works on binary and ternary quantization demonstrate
their potential to quantize MobileNets on ImageNet or other
datasets. There are recent works [4 1, 4, 9] that can quantize
MobileNets with 4-6-bit weights (see Appendix and Table
21in [29] for more details). To the best of our knowledge,
the hybrid filter banks proposed is a first step towards quan-
tizing the already compute-efficient MobileNets to ternary
values on a large-scale dataset, such as ImageNet. The hy-
brid filter banks quantizes a significant fraction of weight
filters of MobileNets to ternary values while achieving com-
parable accuracy to that of baseline full-precision model on
ImageNet. Nevertheless, the hybrid filter banks [12, 13]
can benefit further by adopting these prior proposals. Fur-
thermore, several approaches have been proposed in recent
years on developing compressed neural networks through
the use of weight pruning, tensor decomposition, compact
network architecture design, etc.

Weight pruning. Recent work on channel prun-
ing [19] demonstrates negligible drop in accuracy for Mo-
bileNets while achieving significant reduction in computa-
tional costs. As different channel pruning [19, 54, 20] and
filter pruning techniques [18, 32, 51, 16, 1, 42, 30, 45, 15]
are orthogonal to our compression scheme, they can be used
in conjunction with hybrid filter banks to further reduce
model size and computational complexity.

Tensor decomposition. Tensor decomposition tech-
niques [24, 36,43, 39, 37, 38] exploit parameter redundancy
to obtain low-rank approximations of weight matrices. Full-
precision weights filters and Strassen matrices of hybrid fil-
ter banks can adopt these prior proposals to further reduce
model size and computational complexity.

Compact network architectures. While we show
promising results for MobileNets-V1 and ResNet-20 here,
the benefits of hybrid filter banks should scale when
extended to other popular resource-efficient architectures
dominated with either DS convolutions, such as Shuf-
fleNet [48], and Xception [8] or 3 X 3 convolutions.

6. Conclusion and Future Work

We use per-layer hybrid filter banks to quantize already
highly optimized CNNs, especially MobileNets to ternary
weights. We use 16-bit to represent intermediate activations
and traditional weight filters of hybrid filter banks. In fu-
ture, we plan to explore the impact of quantizing them to
8-bit or less. In addition, it will be interesting to see how
channel pruning [19, 54] assists in reducing the computa-
tional complexity of strassenified MobileNets.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(1]

(12]

Alireza Aghasi, Afshin Abdi, Nam Nguyen, and Justin
Romberg. Net-trim: Convex pruning of deep neural net-
works with performance guarantee. In Advances in Neural
Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, 4-9 December
2017, Long Beach, CA, USA, pages 3180-3189, 2017. 8
Hande Alemdar, Nicholas Caldwell, Vincent Leroy, Adrien
Prost-Boucle, and Frédéric Pétrot. Ternary neural net-
works for resource-efficient Al applications. CoRR,
abs/1609.00222, 2016. 1

R. Andri, L. Cavigelli, D. Rossi, and L. Benini. Yodann:
An architecture for ultralow power binary-weight cnn accel-
eration. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 37(1):48-60, Jan 2018. 1, 4
Ron Banner, Yury Nahshan, Elad Hoffer, and Daniel Soudry.
Post-training 4-bit quantization of convolution networks for
rapid-deployment. CoRR, abs/1810.05723, 2018. 8
Zhaowei Cai, Xiaodong He, Jian Sun, and Nuno Vasconce-
los. Deep learning with low precision by half-wave gaussian
quantization. In 2017 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2017, Honolulu, HI, USA,
July 21-26, 2017, pages 5406-5414, 2017. 2

Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang,
Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang, and
Zheng Zhang. Mxnet: A flexible and efficient machine learn-
ing library for heterogeneous distributed systems. CoRR,
abs/1512.01274, 2015. 6

Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Ligiang He,
Jia Wang, Ling Li, Tianshi Chen, Zhiwei Xu, Ninghui Sun,
and Olivier Temam. Dadiannao: A machine-learning super-
computer. In Proceedings of the 47th Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO-47,
pages 609-622, Washington, DC, USA, 2014. IEEE Com-
puter Society. 6

Francois Chollet. Xception: Deep learning with depthwise
separable convolutions. In The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), July 2017. 3,
8

Yoni Choukroun, Eli Kravchik, and Pavel Kisilev. Low-
bit quantization of neural networks for efficient inference.
CoRR, abs/1902.06822, 2019. 8

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre
David. Binaryconnect: Training deep neural networks with
binary weights during propagations. In Advances in Neu-
ral Information Processing Systems 28: Annual Conference
on Neural Information Processing Systems 2015, December
7-12, 2015, Montreal, Quebec, Canada, pages 3123-3131,
2015. 2

Ruihao Gong, Xianglong Liu, Shenghu Jiang, Tianxiang Li,
Peng Hu, Jiazhen Lin, Fengwei Yu, and Junjie Yan. Differen-
tiable soft quantization: Bridging full-precision and low-bit
neural networks. In The IEEE International Conference on
Computer Vision (ICCV), October 2019. 8

Dibakar Gope, Jesse G. Beu, Urmish Thakker, and Matthew
Mattina. Ternary mobilenets via per-layer hybrid filter banks.
CoRR, abs/1911.01028, 2019. 8

[13]

[14]

(15]

(16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

[25]

Dibakar Gope, Jesse G. Beu, Urmish Thakker, and Matthew
Mattina. Aggressive compression of mobilenets using hybrid
ternary layers. tinyML Summit, 2020. 8

Dibakar Gope, Ganesh Dasika, and Matthew Mattina.
Ternary hybrid neural-tree networks for highly constrained
iot applications. CoRR, abs/1903.01531, 2019. 1

Ariel Gordon, Elad Eban, Ofir Nachum, Bo Chen, Hao Wu,
Tien-Ju Yang, and Edward Choi. Morphnet: Fast & sim-
ple resource-constrained structure learning of deep networks.
In 2018 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-
22, 2018, pages 1586-1595, 2018. 8

Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic net-
work surgery for efficient dnns. In Proceedings of the 30th
International Conference on Neural Information Processing
Systems, NIPS’16, pages 1387-1395, USA, 2016. Curran
Associates Inc. 8

Yiwen Guo, Anbang Yao, Hao Zhao, and Yurong Chen. Net-
work sketching: Exploiting binary structure in deep cnns.
In 2017 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26,
2017, pages 4040-4048, 2017. 8

Song Han, Huizi Mao, and William J. Dally. Deep com-
pression: Compressing deep neural network with prun-
ing, trained quantization and huffman coding. CoRR,
abs/1510.00149, 2015. 8

Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and
Song Han. AMC: automl for model compression and accel-
eration on mobile devices. In Computer Vision - ECCV 2018
- 15th European Conference, Munich, Germany, September
8-14, 2018, Proceedings, Part VII, pages 815-832, 2018. 8
Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning
for accelerating very deep neural networks. In IEEE Interna-
tional Conference on Computer Vision, ICCV 2017, Venice,
Italy, October 22-29, 2017, pages 1398-1406, 2017. 8

M. Horowitz. Computing’s energy problem (and what we
can do about it). In 2014 IEEE International Solid-State Cir-
cuits Conference Digest of Technical Papers (ISSCC), pages
10-14, Feb 2014. 1,4, 6

Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh
Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,
Ruoming Pang, Vijay Vasudevan, Quoc V. Le, and Hartwig
Adam. Searching for mobilenetv3. CoRR, abs/1905.02244,
2019. 3

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications. CoRR,
abs/1704.04861, 2017. 3,5,6

Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman.
Speeding up convolutional neural networks with low rank
expansions. In British Machine Vision Conference, BMVC
2014, Nottingham, UK, September 1-5, 2014, 2014. 8
Norman P. Jouppi, Cliff Young, Nishant Patil, David Patter-
son, Gaurav Agrawal, Raminder Bajwa, Sarah Bates, Suresh
Bhatia, Nan Boden, Al Borchers, Rick Boyle, Pierre-luc
Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

Daley, Matt Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaem-
maghami, Rajendra Gottipati, William Gulland, Robert Hag-
mann, C. Richard Ho, Doug Hogberg, John Hu, Robert
Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Ja-
worski, Alexander Kaplan, Harshit Khaitan, Daniel Kille-
brew, Andy Koch, Naveen Kumar, Steve Lacy, James
Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan
Liu, Kyle Lucke, Alan Lundin, Gordon MacKean, Adriana
Maggiore, Maire Mahony, Kieran Miller, Rahul Nagarajan,
Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Nor-
rie, Mark Omernick, Narayana Penukonda, Andy Phelps,
Jonathan Ross, Matt Ross, Amir Salek, Emad Samadi-
ani, Chris Severn, Gregory Sizikov, Matthew Snelham, Jed
Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gre-
gory Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay Va-
sudevan, Richard Walter, Walter Wang, Eric Wilcox, and
Doe Hyun Yoon. In-datacenter performance analysis of a
tensor processing unit. In Proceedings of the 44th Annual
International Symposium on Computer Architecture, ISCA
17, pages 1-12, New York, NY, USA, 2017. ACM. 6

Sangil Jung, Changyong Son, Seohyung Lee, Jinwoo Son,
Jae-Joon Han, Youngjun Kwak, Sung Ju Hwang, and
Changkyu Choi. Learning to quantize deep networks by op-
timizing quantization intervals with task loss. In The IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), June 2019. 8

Fengfu Li and Bin Liu. Ternary weight networks. CoRR,
abs/1605.04711, 2016. 1,2

Xiaofan Lin, Cong Zhao, and Wei Pan. Towards accurate
binary convolutional neural network. In Advances in Neural
Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, 4-9 December
2017, Long Beach, CA, USA, pages 344-352, 2017. 2

Christos Louizos, Matthias Reisser, Tijmen Blankevoort, Ef-
stratios Gavves, and Max Welling. Relaxed quantization for
discretized neural networks. In 7th International Conference
on Learning Representations, ICLR 2019, New Orleans, LA,
USA, May 6-9, 2019, 2019. 8

Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A fil-
ter level pruning method for deep neural network compres-
sion. In IEEE International Conference on Computer Vision,
ICCV 2017, Venice, Italy, October 22-29, 2017, pages 5068—
5076, 2017. 8

David R. Lutz. Arm floating point 2019: Latency, area,
power. In IEEE Symposium on Computer Arithmetic, 2019.
6

Sharan Narang, Gregory F. Diamos, Shubho Sengupta, and
Erich Elsen. Exploring sparsity in recurrent neural networks.
CoRR, abs/1704.05119, 2017. 8

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon,
and Ali Farhadi. Xnor-net: Imagenet classification using bi-
nary convolutional neural networks. In Computer Vision -
ECCV 2016 - 14th European Conference, Amsterdam, The
Netherlands, October 11-14, 2016, Proceedings, Part IV,
pages 525-542, 2016. 1,2

Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey
Zhmoginov, and Liang-Chieh Chen. Inverted residuals and

(35]

(36]

(37]

(38]

(39]

[40]

(41]

(42]

[43]

[44]

(45]

linear bottlenecks: Mobile networks for classification, detec-
tion and segmentation. CoRR, abs/1801.04381, 2018. 3, 8
Qigong Sun, Fanhua Shang, Kang Yang, Xiufang Li, Yan
Ren, and Licheng Jiao. Multi-precision quantized neu-
ral networks via encoding decomposition of {-1, +1}. In
The Thirty-Third AAAI Conference on Artificial Intelligence,
AAAI 2019, The Thirty-First Innovative Applications of Arti-
ficial Intelligence Conference, IAAI 2019, The Ninth AAAI
Symposium on Educational Advances in Artificial Intelli-
gence, EAAI 2019, Honolulu, Hawaii, USA, January 27 -
February 1, 2019., pages 5024-5032, 2019. 8

Cheng Tai, Tong Xiao, Xiaogang Wang, and Weinan E.
Convolutional neural networks with low-rank regularization.
CoRR, abs/1511.06067, 2015. 8

Urmish Thakker, Jesse G. Beu, Dibakar Gope, Ganesh
Dasika, and Matthew Mattina. Run-time efficient RNN
compression for inference on edge devices. CoRR,
abs/1906.04886, 2019. 8

Urmish Thakker, Jesse G. Beu, Dibakar Gope, Chu Zhou,
Igor Fedorov, Ganesh Dasika, and Matthew Mattina. Com-
pressing rnns for iot devices by 15-38x using kronecker prod-
ucts. CoRR, abs/1906.02876, 2019. 8

Urmish Thakker, Igor Fedorov, Jesse Beu, Dibakar Gope,
Chu Zhou, Ganesh Dasika, and Matthew Mattina. Pushing
the limits of rnn compression. CoRR, abs/1910.02558, 2019.
8

Michael Tschannen, Aran Khanna, and Animashree Anand-
kumar. StrassenNets: Deep learning with a multiplication
budget. In Jennifer Dy and Andreas Krause, editors, Pro-
ceedings of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learning
Research, pages 4985-4994, Stockholmsmaéssan, Stockholm
Sweden, 10-15 Jul 2018. PMLR. 1, 2, 3, 6, 8

Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han.
Haq: Hardware-aware automated quantization with mixed
precision. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2019. 8

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and
Hai Li. Learning structured sparsity in deep neural networks.
In Proceedings of the 30th International Conference on Neu-
ral Information Processing Systems, NIPS’16, pages 2082—
2090, USA, 2016. Curran Associates Inc. 8

Wei Wen, Cong Xu, Chunpeng Wu, Yandan Wang, Yiran
Chen, and Hai Li. Coordinating filters for faster deep neural
networks. In IEEE International Conference on Computer
Vision, ICCV 2017, Venice, Italy, October 22-29, 2017, pages
658-666, 2017. 8

Jiwei Yang, Xu Shen, Jun Xing, Xinmei Tian, Houqgiang Li,
Bing Deng, Jianqiang Huang, and Xian-sheng Hua. Quan-
tization networks. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2019. 8
Tien-Ju Yang, Andrew G. Howard, Bo Chen, Xiao Zhang,
Alec Go, Mark Sandler, Vivienne Sze, and Hartwig Adam.
Netadapt: Platform-aware neural network adaptation for mo-
bile applications. In Computer Vision - ECCV 2018 - 15th
European Conference, Munich, Germany, September 8-14,
2018, Proceedings, Part X, pages 289-304, 2018. 8

[40]

[47]

(48]

(49]

(50]

(51]

(52]

(53]

[54]

Dongqing Zhang, Jiaolong Yang, Dongqgiangzi Ye, and Gang
Hua. Lg-nets: Learned quantization for highly accurate
and compact deep neural networks. In Computer Vision -
ECCV 2018 - 15th European Conference, Munich, Germany,
September 8-14, 2018, Proceedings, Part VIII, pages 373—
390, 2018. 8

Shijin Zhang, Zidong Du, Lei Zhang, Huiying Lan, Shaoli
Liu, Ling Li, Qi Guo, Tianshi Chen, and Yunji Chen.
Cambricon-x: An accelerator for sparse neural networks.
In The 49th Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO-49, pages 20:1-20:12, Piscat-
away, NJ, USA, 2016. IEEE Press. 8

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun.
Shufflenet: An extremely efficient convolutional neural net-
work for mobile devices. In The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), June 2018. 3,
8

Shuchang Zhou, Zekun Ni, Xinyu Zhou, He Wen, Yuxin Wu,
and Yuheng Zou. Dorefa-net: Training low bitwidth convo-
lutional neural networks with low bitwidth gradients. CoRR,
abs/1606.06160, 2016. 2

Chenzhuo Zhu, Song Han, Huizi Mao, and William J. Dally.
Trained ternary quantization. CoRR, abs/1612.01064, 2016.
2

Michael Zhu and Suyog Gupta. To prune, or not to prune:
exploring the efficacy of pruning for model compression.
CoRR, abs/1710.01878, 2017. 8

Shilin Zhu, Xin Dong, and Hao Su. Binary ensemble neural
network: More bits per network or more networks per bit?
In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2019. 8

Bohan Zhuang, Chunhua Shen, Mingkui Tan, Lingqiao Liu,
and lan Reid. Structured binary neural networks for accu-
rate image classification and semantic segmentation. In The
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), June 2019. 8

Zhuangwei Zhuang, Mingkui Tan, Bohan Zhuang, Jing Liu,
Yong Guo, Qingyao Wu, Junzhou Huang, and Jin-Hui Zhu.
Discrimination-aware channel pruning for deep neural net-
works. In Advances in Neural Information Processing Sys-
tems 31: Annual Conference on Neural Information Pro-
cessing Systems 2018, NeurIPS 2018, 3-8 December 2018,
Montréal, Canada., pages 883-894, 2018. 8

