
Ternary MobileNets via Per-Layer Hybrid Filter Banks

Dibakar Gope, Jesse Beu, Urmish Thakker, and Matthew Mattina

Arm ML Research Lab

{dibakar.gope, jesse.beu, urmish.thakker, matthew.mattina}@arm.com

Abstract

MobileNets family of computer vision neural networks

have fueled tremendous progress in the design and orga-

nization of resource-efficient architectures in recent years.

New applications with stringent real-time requirements on

highly constrained devices require further compression of

MobileNets-like compute-efficient networks. Model quanti-

zation is a widely used technique to compress and acceler-

ate neural network inference and prior works have quan-

tized MobileNets to 4 − 6 bits, albeit with a modest to sig-

nificant drop in accuracy. While quantization to sub-byte

values (i.e. precision ≤ 8 bits) has been valuable, even fur-

ther quantization of MobileNets to binary or ternary val-

ues is necessary to realize significant energy savings and

possibly runtime speedups on specialized hardware, such as

ASICs and FPGAs. Under the key observation that convo-

lutional filters at each layer of a deep neural network may

respond differently to ternary quantization, we propose a

novel quantization method that generates per-layer hybrid

filter banks consisting of full-precision and ternary weight

filters for MobileNets. Using this proposed quantization

method, we quantize a substantial portion of weight filters

of MobileNets to ternary values resulting in a 27.98% sav-

ings in energy, and a 51.07% reduction in the model size,

while achieving comparable accuracy and no degradation

in throughput on specialized hardware in comparison to the

baseline full-precision MobileNets. Finally, we demonstrate

the generalizability and effectiveness of hybrid filter banks

to other neural network architectures.

1. Introduction

Deeper and wider convolutional neural networks (CNNs)

has led to outstanding predictive performance in many

machine learning tasks, such as image classification, ob-

ject detection, and semantic segmentation. However, the

large model size and corresponding computational ineffi-

ciency of these networks often make it infeasible to run

many real-time machine learning applications on resource-

constrained mobile and embedded hardware, such as smart-

phones, AR/VR devices, etc. To enable this computation

and size compression of CNN models, one particularly ef-

fective approach has been the use of resource-efficient Mo-

bileNets architecture. MobileNets introduces depthwise-

separable (DS) convolution as an efficient alternative to the

standard 3-D convolution operation.While MobileNets ar-

chitecture has been transformative, even further compres-

sion of MobileNets is valuable in order to meet the stringent

real-time requirements of new applications on highly con-

strained devices or to make a wider range of applications

available on them [14].

Model quantization has been a popular technique to fa-

cilitate that. Quantizing the weights of MobileNets to bi-

nary (−1,1) or ternary (−1,0,1) values in particular has

the potential to achieve significant improvement in energy

savings and possibly overall throughput especially on cus-

tom hardware, such as ASICs and FPGAs while reducing

the resultant model size considerably. This is attributed to

the replacement of multiplications by additions in binary-

and ternary-weight networks. Multipliers occupy consid-

erably more area on chip than adders [27], and consume

significantly more energy than addition operations [21, 3].

Specialized hardware can therefore trade off multiplica-

tions against additions and potentially accommodate con-

siderably more adders than multipliers to achieve high

throughput and significant savings in energy for binary- and

ternary-weight networks.

However, prior approaches to binary and ternary quan-

tization [33, 2, 27, 40] incur significant drop in predic-

tion accuracy for MobileNets. Recent work on Strassen-

Nets [40] shows the potential to approximate matrix mul-

tiplication (and, in turn, convolutions) of a network using

mostly ternary weights and a few full-precision weights

without dropping its predictive performance. For every

DNN layer, StrassenNets essentially casts the (matrix) mul-

tiplication of weight matrix with activations as a 2-layer

sum-product network (SPN). The number of hidden units

in the SPNs determines the addition and multiplication bud-

get of the corresponding DNN layers and in turn decides the

approximation error of the corresponding matrix multiplica-

tion operations. While the results in [40] using StrassenNets

show no loss in predictive performance for a few networks

in comparison to their full-precision models, the effective-

ness of StrassenNets varies considerably, however, depend-

ing on the architecture of a neural network. Our observa-

tions are, for example, that while strassenifying DS convo-

lutional layers reduces the model size and the number of

multiplication operations significantly, this might come at

the cost of a prohibitive increase in the number of addition

operations. This in turn may degrade the throughput and en-

ergy efficiency of neural network inference using Strassen-

Nets.

The exorbitant increase in additions primarily stems

from the use of wide hidden layers for closely approximat-

ing each convolutional filter in a network layer. While this

might be required for some of the convolutional filters in

a layer, our observations indicate that not all filters require

wide strassenified hidden layers. As different filters in a

network layer tend to capture different features, some be-

ing more complicated than others, they respond differently

to ternary quantization, and, in turn, to strassenified convo-

lution at varied hidden layer widths. Furthermore, due to

the hiddent unit reuse in the strassenified network, a group

of filters with sub-filter similarities at a layer may respond

more favorably to ternary quantization than outlier filters

within the same layer extracting significantly different fea-

tures.

Guided by these insights, we propose a layer-wise hy-

brid filter banks for the MobileNets architecture capable of

giving start-of-the-art accuracy while requiring a fraction

of the model size and considerably fewer MAC and mul-

tiplication operations per inference. The end-to-end learn-

ing of hybrid filter banks makes this possible by keeping

precision critical convolutional filters in full-precision val-

ues and only strassenifying quantization tolerant filters to

ternary values. The filters that are most sensitive to quan-

tization errors perform traditional convolutions with input

feature maps, whereas ternary quantization tolerant filters

can perform strassenified convolutions using narrow hid-

den layers. We apply this proposed quantization scheme to

the MobileNets-V1 architecture. The hybrid filter banks for

MobileNets achieves a 46.4%, and a 51.07% reduction in

multiplications and model size respectively while incurring

modest increase in additions. This translates into a 27.98%
savings in energy required per inference while ensuring no

degradation in throughput on a DNN hardware accelerator

consisting of both MAC and adders when compared to the

execution of baseline MobileNets on a MAC-only hardware

accelerator. The hybrid filter banks accomplishes this with a

very minimal loss in accuracy of 0.51%. Hybrid filter banks

applied to ResNet yields consistently better accuracy results

than StrassenNets on CIFAR-10 dataset, demonstrating its

generalizability to other neural network architectures. To

the best of our knowledge, the hybrid filter banks proposed

in this work is a first step towards quantizing the already

compute-efficient MobileNets architecture to ternary values

on a large-scale dataset, such as ImageNet.

The remainder of the paper is organized as follows. Sec-

tion 2 elaborates on the incentives behind the development

of per-layer hybrid filter banks. Section 3 describes our

hybrid filter banks. Section 4 presents results. Section 5

compares hybrid filter banks against prior works. Section 6

concludes the paper.

2. Model Quantization Limitations for Mo-

bileNets

This section briefly reviews the important existing works

on ternary quantization, which we focus on in this paper,

and illustrates their limitations to motivate the development

of per-layer hybrid filter banks.

2.1. Ternary Quantization of Weights

In order to observe the impact of ternary quantiza-

tion [10, 33, 28, 5, 27, 50, 49], we apply the ternary

weight quantization method from [27] over the base-

line MobileNets-V1 architecture. It approximates a full-

precision weight W fp by a ternary-valued W t and a scaling

factor such that W fp ≈ scaling factor ∗W t. Ternary quan-

tization of the weights of MobileNets achieves substantial

reduction in model size but at the cost of significant drop (by

9.66%, see Table 1) in predictive performance when com-

pared to the full-precision model. Any increase in the size

of the MobileNets architecture to recover the accuracy loss

while using ternary quantization will lead to a significant

increase in the number of addition operations. Recent work

on StrassenNets [40], which we describe next, has shown

the potential to achieve near state-of-the-art accuracy for

a number of deep CNNs while maintaining acceptable in-

crease in addition operations.

2.2. StrassenNets

Given two 2× 2 square matrices, Strassen’s matrix mul-

tiplication algorithm requires 7 multiplications to compute

the product matrix instead of the 8 required with a naı̈ve

implementation of matrix multiplication. It essentially casts

the matrix multiplication as a 2-layer SPN computation.

vec(C) = Wc[(Wbvec(B))⊙ (Wavec(A))] (1)

Wa, Wb ∈ Kr×n2

and Wc ∈ Kn2
×r represent ternary

matrices with K ∈ {−1, 0, 1}. The Wavec(A) and

Wbvec(B) of the SPN combine the elements of A and B

through additions, and/or subtractions by using the two as-

sociated ternary matrices Wa and Wb respectively to gener-

ate r intermediate terms each. The two generated r-length

intermediate terms are then elementwise multiplied to com-

pute the r-length (Wbvec(B)) ⊙ (Wavec(A)) vector. The

outmost ternary matrix Wc later combines these intermedi-

ate r terms through additions, and/or subtractions to pro-

duce vec(C). Hence, the number of multiplications and ad-

ditions required for the Strassen’s algorithm are decided by

the width of the hidden layer of the SPN, r. Given two

2× 2 matrices, for example, ternary matrices Wa, Wb, and

Wc with sizes of 7 × 4, 7 × 4, and 4 × 7 respectively can

multiply them using 7 multiplications instead of 8.

While Strasssen’s algorithm requires a hidden layer

with 7 units here to compute the exact product matrix,

the StrassenNets work [40] instead realizes approximate

matrix multiplications in DNN layers1 using fewer hid-

den layer units. The learned ternary matrices can then

use significantly fewer multiplications than Strassen’s al-

gorithm. This approximation can have impact on predic-

tive performance of the DNN architecture. The signifi-

cant compression achieved by StrassenNets for 3 × 3 con-

volutions [40] and increasing visibility of DS convolution

layers in compute-efficient networks [23, 34, 48, 8] moti-

vated us to apply StrassenNets over MobileNets architec-

ture dominated with DS layers to reduce its computational

complexity and model size even further. Among the vari-

ous MobileNets architectures [23, 34, 22], in this work we

extensively study the quantization of MobileNets-V1 [23].

MobileNets-V1 stacks one 3 × 3 and 13 DS convolutional

layers. A DS convolution first convolves each channel in

the input feature map with a separate 2-D filter (depthwise

convolution) and then uses 1× 1 pointwise convolutions to

combine the outputs in the depth dimension.

2.2.1 StrassenNets for MobileNets

We observe that while strassenifying MobileNets is ef-

fective in reducing the number of multiplications and the

model size significantly, it increases additions prohibitively

to preserve the predictive performance of the baseline Mo-

bileNets with 16-bit floating-point weights. Table 1 cap-

tures our observation. The strassenified MobileNets with

the r = 2cout configuration achieves a comparable accu-

racy to that of the full-precision MobileNets while reduc-

ing multiplications by 97.91% but increasing additions by

317.59% (149.49M MACs of MobileNets vs. 3.11M mul-

tiplications and 624.27M additions of ST-MobileNets with

r = 2cout). This in turn offers modest savings in energy

required per inference but causes significant degradation in

throughput (see Section 4 for details). The use of fewer hid-

1A convolutional operation in DNN layers can be reduced to a general

matrix multiplication (GEMM). In the context of strassenified matrix mul-

tiplications of a network layer, A is associated with the weights or filters of

the layer and B is associated with the corresponding activations or feature

maps. As a result, after training, Wa and vec(A) can be collapsed into a

vector â = Wavec(A), as they are both fixed during inference.

Table 1: Performance of MobileNets-V1 and strassenified

MobileNets-V1 (ST-MobileNets) with the width multiplier

of 0.5 on ImageNet dataset. r is the hidden layer width of a

strassenified convolution layer, cout is the number of output

channels of the corresponding convolution layer. MAC =

multiply-accumulate operation, E = Energy/inference (nor-

malized), TP = Throughput (normalized).

Network Acc. Muls, Adds MACs Model E TP

(%) (M) (M) size (KB)

MobileNets 65.2 - 149.49 2590.07 1 1

(float16)

MobileNets 55.54 -, 149.49 - 323.75 0.2 2

(TWN)

ST-MobileNets 48.92 0.77, 158.54 8.69 522.33 0.27 1.69

(r = 0.5cout)

ST-MobileNets 56.95 1.16, 236.16 8.69 631.76 0.37 1.17

(r = 0.75cout)

ST-MobileNets 61.8 1.55, 313.78 8.69 741.19 0.48 0.9

(r = cout)

ST-MobileNets 65.14 3.11, 624.27 8.69 1178.92 0.9 0.46

(r = 2cout)

3x3 conv using

ternary 𝐖𝑏
𝑾𝑎𝑣𝑒𝑐(𝑨)StrassenNets

1x1 conv
using

ternary𝐖𝑐

𝑾𝑎𝑣𝑒𝑐(𝑨)StrassenNets

Traditional 3x3 convolution

using full-precision weights

Increase in ADDS

=
#𝐴𝐷𝐷𝑠 𝑜𝑓 (3x3 𝑐𝑜𝑛𝑣 + 1x1 𝑐𝑜𝑛𝑣)#𝑀𝐴𝐶𝑠 𝑜𝑓 3x3 𝑡𝑟𝑎𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑐𝑜𝑛𝑣

=
109

Traditional 1x1

convolution using full-

precision weights

1x1 conv
using

ternary𝐖𝑏
1x1 conv
using

ternary𝐖𝑐

Increase in ADDS

=
#𝐴𝐷𝐷𝑠 𝑜𝑓 (1x1 𝑐𝑜𝑛𝑣 + 1x1 𝑐𝑜𝑛𝑣)#𝑀𝐴𝐶𝑠 𝑜𝑓 1𝑥1 𝑡𝑟𝑎𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑐𝑜𝑛𝑣

=
21

Figure 1: Application of StrassenNets to 3 x 3 and 1 x 1

convolution. The cost of elementwise multiplication with

intermediate Wavec(A) is comparably negligible and hence

is ignored in estimating the increase in additions.

den units (r) (e.g. r = cout) incurs a significant accuracy

loss of 3.4%.

2.2.2 Compute inefficiency of StrassenNets for Mo-

bileNets

Note that while strassenifying traditional 3 × 3 or 5 ×
5 convolutional layers increases the addition operations

marginally as observed in StrassenNets [40], that trend does

not hold true when StrassenNets is applied over MobileNets

dominated with DS layers. This is attributed to the fact

that the computational cost of a neural network with DS

layers is dominated by 1 × 1 pointwise convolutions [23]

and strassenifying a 1 × 1 convolution requires executing

two equal-sized (for r = cout) 1 × 1 convolutions with

ternary weights along with few elementwise multiplications

in place of the standard 1× 1 convolution, as shown in Fig-

ure 1. This in turn causes a significant increase (2 : 1 or

100%) in additions when compared to the execution of the

standard 1×1 pointwise convolution. On the other hand, as

Figure 1 illustrates, a 3 × 3 strassenified convolution with

r = cout instead requires executing a 3 × 3 convolution

and a 1×1 convolution with ternary weights in conjunction

with few elementwise multiplications. This in turn results

in a marginal increase (10 : 9 or 11.1%) in additions in

comparison to the execution of the standard 3 × 3 convo-

lution. This overhead of addition operations with applying

StrassenNets to DS convolution layers goes up in propor-

tion to the width of the hidden layers, i.e. to the size of the

ternary convolution operations, as observed in Table 1, re-

ducing the throughput and energy-efficiency of neural net-

work inference.

This also indicates that DS convolutions, being more ef-

ficient, are more prone to quantization error and this man-

ifests when StrassenNets is applied. Considering the fact

that MAC operations typically consume about five times

more energy than addition operations for 16-bit floating-

point values [21, 3], an about 317.59% increase in additions

in place of about 98% saving on multiplications will result

in diminishing or no returns in terms of energy savings and

runtime speedups even on specialized hardware dominated

with adders. The increase in computational costs of Mo-

bileNets with applying StrassenNets along with the high

accuracy and stringent real-time requirements of new appli-

cations on highly constrained devices necessitate a model

architecture exploration that can exploit the compute effi-

ciency of DS layers and the model size reduction ability of

StrassenNets while maintaining acceptable or no increase in

additions.

2.2.3 Variance in the sensitivity of convolutional filters

to ternary quantization

Although a strassenified MobileNets with r = 2cout recov-

ers the accuracy loss of r = cout, it makes a strong as-

sumption that all filters require wider strassenified hidden

layers to quantize to ternary values to preserve the represen-

tational power of the baseline full-precision network. While

this might be true for some of the convolutional filters, not

all filters need to be quantized using the r = 2cout con-

figuration. This observation stems from the following two

reasons:

(a) Different sensitivity of individual filters to

StrassenNets. Different convolutional filters tend to ex-

tract different type of features, ranging from simple features

(e.g. edge detection) to more complicated higher-level (e.g.

L2-loss with

2 hidden units: 0.02,

4 hidden units: 0.0

8 hidden units: 0.0-0.88 0.92 -0.45

Feature map

*
-0.12 -0.40 0.78

0.24 0.29 -0.23

-1 2 -1

-1 2 -1

-1 2 -1

Vertical lines detector

-0.88 0.92 -0.45

Feature map

*
-0.12 -0.40 0.78

0.24 0.29 -0.23

0 -1 0

-1 5 -1

0 -1 0

Sharpen filter

L2-loss with

2 hidden units: 0.09

4 hidden units: 0.09,

8 hidden units: 0.01

Figure 2: Variance in the sensitivity of individual convolu-

tional filters to quantization.

facial shapes) or object specific features. As a result, differ-

ent filters may respond differently to ternary quantization.

That implies there are filters that are easy to quantize to

ternary values using narrower hidden layers while still en-

suring low L2 reconstruction error in output feature maps,

and vice versa.

Given a feature map, Figure 2 presents a scenario where

a strassenified vertical lines detector with fewer hidden

layer units can closely approximate the output map (with

low L2 reconstruction loss) produced otherwise using its

full-precision counterpart. However a convolutional filter

that sharpen images requires a wider hidden layer to ensure

a low L2 loss (see Appendix for more details). Note that

we only consider 2D filters for illustration purpose, whereas

this difference in complexity should exist in 3D filters com-

mon to CNNs.

(b) Different sensitivity of group of filters to Strassen-

Nets. Furthermore, there exists convolutional filters at

each layer that tend to extract different features but can

have numerical-structural similarities (e.g., a 3 × 3 vertical

lines detector and a horizontal lines detector sharing com-

mon values at all the corners and at the center, see Appendix

for details). In addition to that, there exists filters that tend

to extract fairly similar features with slightly different ori-

entations (e.g. two filters attempting to detect edges rotated

by few degrees). As a result, when these groups of convolu-

tional filters are quantized to ternary values using Strassen-

Nets, they may share many hidden layer elements. These

groups of convolutional filters with similar value structure

in turn are more amenable to quantization using fewer hid-

den layer units than filters with no common value structure.

Given a constrained hidden layer budget for StrassenNets

(e.g. r = cout), these groups of convolutional filters may

together respond well to ternary quantization while other

dissimilar filters struggle to be strassenified alongside them

with low quantization error, due to the restricted hidden

layer bandwidth.

Figure 3(a) specifies a set of weight matrices that can

perform exact convolution of the 2× 2 filter bank compris-

ing fj and fk with the feature map using 7 multiplications.

Note that the two filters fj and fk do not have any common

values. However, owing to the presence of common value

𝑓𝑗𝑓𝑘 a b

*
c d

e f

g h

Feature mapConvolutional
filters

1 0 0 1 -1 0 1𝑾𝒄 = 0 1 0 1 0 0 0
0 0 1 0 1 0 0

1 -1 1 0 0 1 0

1 0 0 1𝑾𝒂 = 0 1 0 1

1 0 0 0

0 0 0 1

1 0 1 0

-1 1 0 0
0 0 1 -1

1 0 0 1𝑾𝒃 = 1 0 0 0

0 0 1 -1

-1 1 0 0

0 0 0 1

1 0 1 0
0 1 0 1

7 x 4 ternary weight matrix

7 x 4 ternary weight matrix 4 x 7 ternary weight matrix

(a) Strassen’s matrix multiplication for two filters fj
anf fk having unique values.

𝑓𝑗𝑓𝑘 a b

*
a c

e f

g h

Feature mapConvolutional
filters

1 0 0 1𝑾𝒂 = 0 1 0 1

1 0 0 0

0 0 0 1

1 0 1 0

0 0 1 -1

1 0 0 1𝑾𝒃 = 1 0 0 0

0 0 1 -1

-1 1 0 0

0 0 0 1

0 1 0 1

1 0 0 1 -1 1𝑾𝒄 = 0 1 0 1 0 0
0 0 1 0 1 0

1 -1 1 0 0 0

6 x 4 ternary weight matrix

6 x 4 ternary weight matrix 4 x 6 ternary weight matrix

(b) Strassen’s matrix multiplication for two filters fj
anf fk having some common values.

Figure 3: Understanding the sensitivity of group of filters to

ternary quantization.

of a between fj and fk filters in Figure 3(b), Strassen’s al-

gorithm now can compute the exact product matrix using

only 6 multiplications instead of the 7 required otherwise

for unique filters lacking common value structure in Fig-

ure 3(a). A set of ternary weight matrices with fewer hid-

den units implementing an exact convolution in this case is

shown in Figure 3(b).

Motivated by these observations, we propose per-layer

hybrid filter banks.

3. Per-Layer Hybrid Filter Banks

The per-layer hybrid filter banks can quantize a substan-

tial fraction of convolutional filters to ternary values at each

layer while relying on few remaining full-precision filters

to preserve the representational power of the original full-

precision network. As easy-to-quantize filters are quantized

only using StrassenNets leaving the difficult-to-quantize fil-

ters in full-precision values, this should in turn require nar-

row hidden layers for quantizing them thus restricting the

increase in additions and resulting in an overall reduction

in multiplications, MAC operations and memory footprint

while ensuring no loss in accuracy.

Architecture. The proposed quantization method con-

volves the same input feature map with full precision weight

filters and ternary weight filters in parallel, concatenating

the feature maps from each convolutions into a unified fea-

ture map. This concatenated feature map is fed as input

to the next network layer. At each layer, the combina-

tion of the two convolutions from full-precision and ternary

filters ensures that they combine to form a output feature

map of identical shape as in the baseline full-precision net-

work. For instance, given an input feature map with cin
channels, the quantization technique applies traditional con-

volution with k full-precision weight filters Wfp of shape

cin × wk × hk and strassen convolution with cout − k

ternary weight filters Wt to produce a feature map of total

cout channels for a layer. Here cout is the number of chan-

nels in the output volume of the corresponding convolution

layer in the baseline full-precision network, and wk, hk are

the kernel size. The fraction of channels generated in an

output feature map from the full-precision weight filters, α

(or in others words the channels generated from the ternary

weight filters, 1 − α) is a hyperparameter in our quantiza-

tion technique and it decides the representational power and

computational costs of MobileNets with hybrid filter banks.

Figure 4 shows the organization of the hybrid filter bank

for a MobileNets layer. The depthwise convolutions of the

depthwise-separable layers are not quantized using either

StrassenNets or our hybrid filter banks. This is primarily

due to the following reasons: (a) they do not dominate the

compute bandwidth of MobileNets [23], (b) as per our ob-

servations, quantizing those to ternary values hurt the accu-

racy significantly without offering any significant savings

in either model size or computational costs. The strasseni-

fied convolutions portion of hybrid filter banks at each layer

are quantized using a number of r values, where r is the

hidden layer width of a strassenified convolution layer. The

r << 2cout configuration in conjunction with an optimal

non-zero α should offer substantial savings in model size

and addition operations without compromising accuracy in

comparison to a fully strassenified MobileNets architecture

with r = 2cout configuration. The presented quantization

technique can also be applied to the fully-connected layer

parameters, however, we only focus on convolution layers

in this work. We compress the last fully-connected layer of

MobileNets uniformly using StrassenNets.

End-to-end training. The full-precision filters along

with the strassenified weight filters for each layer are trained

jointly using a gradient-descent (GD) based training al-

gorithm so as to maximize accuracy. Before the train-

ing begins, depending on the value of α, the top α ∗ cout
channels of a feature map are configured to generate from

full-precision traditional convolutions, and the remaining

1 − α ∗ cout channels are forced to generate from ternary

strassenified convolutions. Note that the order of the chan-

𝐖𝑏

Previous Depthwise

convolutional layer

Traditional 1x1

convolution using

full-precision weights

Strassen 1x1

convolution using

ternary weights

Channel

concatenation

𝐖𝑐
𝑾𝑎𝑣𝑒𝑐(𝑨)

Figure 4: A MobileNets pointwise layer with hybrid filter

bank.

nels generated in the output feature volume by either full-

precision filters or ternary filters is not important, as the

output feature map comprising all the channels generated

forms the input of the subsequent layer and the weights in

the subsequent layer can adjust to accommodate that. Dur-

ing the end-to-end training process, the organization of hy-

brid filter banks tend to influence the difficult-to-quantize

filters (that require full-precision filters to extract features)

to be trained using full-precision values, and the filters that

are less susceptible to ternary quantizationto be trained us-

ing ternary values from strassenified convolutions. Further-

more, in order to recover any accuracy loss of the hybrid

MobileNets compressed with strassenified matrix computa-

tions, we use knowledge distillation, as exploited in [40],

during training. Knowledge distillation allows an uncom-

pressed teacher network to transfer its prediction ability to a

compressed student network by navigating its training. We

use the uncompressed MobileNets with per-layer hybrid fil-

ter banks as the teacher network and the compressed net-

work with ternary weight matrices as the student network.

4. Experiments and Results

Datasets and experimental setup. We evaluate the

MobileNets-V1 architecture comprising proposed per-layer

hybrid filter banks (Hybrid MobileNets) on the ImageNet

(ILSVRC2012) dataset and compare it against the state-of-

the-art MobileNets [23] with 16-bit floating-point weights.

The baseline and other network architectures presented here

use a width multiplier of 0.52 to stress more the impact

quantization. We use MXNet [6] based GluonCV toolkit3

to train the networks. In this work, the baseline MobileNets

and the full-precision filters of the hybrid filter banks use

16-bit floating-point weights. We quantize the activations

of the baseline and proposed architectures to 16-bit floating-

point values. A 8-bit representation of weights and activa-

tions should not alter the conclusions made in this work.

At the time of writing this paper, GluonCV toolkit does not

support training with 8-bit weights and activations.

2Using a width multiplier of 0.5 halves the number of channels used in

each layer of the original MobileNets architecture [23].
3GluonCV: a Deep Learning Toolkit for Computer Vision,

https://gluon-cv.mxnet.io/index.html

Hybrid MobileNets architecture training. We use

the Nesterov accelerated gradient (NAG) optimization al-

gorithm and follow the other training hyperparameters de-

scribed in the GluonCV framework for training the base-

line full-precision MobileNets, strassenified MobileNets

and our proposed Hybrid MobileNets. We begin by train-

ing the Hybrid MobileNets with full-precision strassen ma-

trices (Wa, Wb, and Wc) for 200 epochs. With a mini-

batch size per GPU of 128 on a 4 GPU system, the learning

rate is initially chosen as 0.2, and later gradually reduced

to zero following a cosine decay function as used in the

GluonCV framework for training the baseline full-precision

MobileNets (see Appendix for more details). We then acti-

vate quantization for these strassen matrices and the training

continues for another 75 epochs with initial learning rate of

0.02 and progressively smaller learning rates. Quantization

converts a full-precision strassen matrix to a ternary-valued

matrix along with a scaling factor (e.g., Wb = scaling factor

* W t
b).

To evaluate our hypothesis that some full-precision fil-

ters are changing significantly to recover features lost due

to quantization, we measured the L2 distance between their

pre- and post-quantization weight vectors. We found the

L2 distances fit a normal distribution: most filters experi-

ence low-to-moderate changes to their weight vectors while

a few exceptional filters saw very significant movement.

This supports our claim that the full-precision filters are

preserving the overall representational power of the net-

work. Finally, we fix the strassen matrices of the hybrid fil-

ter banks to their learned ternary values and continue train-

ing for another 25 epochs with initial learning rate of 0.002
and progressively smaller learning rates to ensure that the

scaling factors associated with the ternary matrices can be

absorbed by full-precision vec(A) portion of strassenified

matrix multiplication.

Energy and throughput modeling for hybrid filter

banks. The proposed per-layer hybrid filter banks for

MobileNets can be executed by existing DNN hardware

accelerators, such as DaDianNao [7] and TPU [25] con-

sisting of only MAC units. However, in order to achieve

an energy- and runtime- efficient execution of hybrid fil-

ter banks dominated with additions, we propose a custom

hardware accelerator, where a fraction of MAC units are re-

placed by low-cost adders within the same silicon area. A

16-bit floating-point MAC unit takes about twice the area of

a 16-bit floating-point adder [31]. Given a fixed silicon area

and a model configuration for Hybrid MobileNets, the ratio

of MAC units to adders in the proposed hardware acceler-

ator is decided in such a way that the maximum possible

throughput can be achieved for the configuration. We use

the energy consumption numbers of adder and MAC units

reported in [21] to estimate the energy required per infer-

ence of baseline and proposed models.

Table 2: Top-1 accuracy along with the computational costs, model size, and energy per inference for baseline MobileNets-

V1, ST-MobileNets, and Hybrid MobileNets on ImageNet dataset. α is the fraction of channels generated by the full-

precision weight filters at each layer, cout is the number of remaining channels generated by the ternary strassen filters at

the corresponding convolutional layer, r is the hidden layer width of the strassenified convolutions. The last column shows

the throughput of proposed models on an area-equivalent hardware accelerator comprising both MAC and adder units when

compared to the throughput of baseline MobileNets with 16-bit floating-point weights on a MAC-only accelerator.

Network Alpha r Acc. Muls, Adds MACs Model Energy/inference Throughput

(α) (%) size (normalized) (normalized)

MobileNets - - 65.2 - 149.49M 2590.07KB 1 1

(float16)

ST-MobileNets 0 2cout 65.14 3.11M, 624.27M 8.69M 1178.92KB 0.9 0.46

MobileNets cout 63.62 1.16M, 204.63M 43.76M 1004.67KB 0.56 1.02

(Hybrid 0.25 1.33cout 63.47 1.55M, 270.95M 43.76M 1097.07KB 0.65 0.83

filter banks) 2cout 64.84 2.33M, 405.59M 43.76M 1284.65KB 0.84 0.6

MobileNets cout 64.13 0.97M, 157.84M 61.3M 1131.43KB 0.62 1.06

(Hybrid 0.375 1.6cout 64.17 1.55M, 250.34M 61.3M 1260.44KB 0.74 0.8

filter banks) 2cout 65.2 1.94M, 312.01M 61.3M 1346.45KB 0.83 0.68

MobileNets 0.5 cout 64.69 1.28M, 142.37M 78.83M 1267.13KB 0.72 1

(Hybrid 2cout 65.17 1.55M, 228.68M 78.83M 1327.88KB 0.83 0.77

filter banks)

Hybrid MobileNets architecture evaluation. One of

the main focus of our evaluation is the study of how α im-

pacts on the performance of our models. This parameter,

that can be independently set for each convolutional layer in

the network, is directly proportional to the number of learn-

able parameters in a given layer. In this work, we use iden-

tical value of α for all the layers of Hybrid MobileNets. We

believe use of different values for different layers may result

in better cost accuracy trade-offs. We leave this exploration

for future work. Ideally small values of α and r are desired

to achieve significant reduction in MAC along with addition

operations while preserving the baseline accuracy.

We search the model hyperparameters space systemati-

cally to develop Hybrid MobileNets. Table 2 captures the

top-1 accuracy of the Hybrid MobileNets for various con-

figurations of α and hidden layer width r, along with their

impact on computational costs, model size, energy required

per inference, and throughput and and compares that against

baseline full-precision MobileNets, and ST-MobileNets. As

shown in Table 2, the ST-MobileNets and various configu-

rations of Hybrid MobileNets offer comparable reduction

(about 50%) in model size over the baseline full-precision

Mobilenets. While the r = 2cout configurations for dif-

ferent values of α (0.25, 0.375, and 0.5) can preserve the

baseline top-1 accuracy of 65.2% and offer modest sav-

ings in energy required per inference, that comes at the cost

of large increase in additions. This in turn causes signif-

icant degradation in throughput on the proposed hardware

accelerator when compared to the throughput of the base-

line full-precision MobileNets on an existing DNN acceler-

ator consisting of only MAC units. On the other end, the

cout ≤ r < 2cout configurations with the α of 0.25 and

0.375 incur modest to significant drop in top-1 accuracy

possibly owing to lack of enough full-precision weights fil-

ters at each hybrid filter bank to preserve the representa-

tional ability of the overall network. The r < cout con-

figurations for different values of α leads to large drop in

prediction accuracy and hence is not shown in Table 2.

The Hybrid MobileNets with the α = 0.5 and r =
cout configuration strikes an optimal balance between ac-

curacy, computational costs, energy, and throughput. It

achieves comparable accuracy to that of the baseline Mo-

bileNets, strassenified and Hybrid MobileNets with the

r = 2cout configuration while reducing the number of

MACs, and multiplications by 47.26%, and 46.4% respec-

tively and requiring a modest (45.51%) increase in addi-

tions over the baseline MobileNets architecture. Of par-

ticular note is that it reduces the number of additions to

about 142.37M when compared to 624.27M additions of

ST-MobileNets described in Section 2. The significant re-

duction in MAC operations and modest increase in addi-

tions over the baseline full-precision MobileNets in turn

translates into 27.98% savings in energy required per infer-

ence while ensuring no degradation in throughput in com-

parison to the execution of baseline MobileNets on a MAC-

only hardware accelerator. This reduction in additions is

primarily attributed to strassenifying easy-to-quantize fil-

ters using fewer hidden units (r = cout) while relying on

full-precision filters to generate 50% channels at each layer

and preserve the representational ability of the overall Mo-

bileNets architecture. Owing to the substantial presence of

ternary weights matrices, the Hybrid MobileNets with the

α = 0.5 and r = cout configuration reduces the model size

to 1267.13KB when compared to 2590.07KB of the base-

line MobileNets network thus enabling a 51.07% savings in

model size.

In summary, the Hybrid MobileNets reduces model size

by 51.07% and energy required per inference by 27.98%
while incurring a negligible loss in accuracy and no degra-

dation in throughput when compared to the baseline full-

precision MobileNets. Note that because of the large sav-

ings in model size, our Hybrid MobileNets will have sig-

nificantly fewer accesses to the energy- and power-hungry

DRAM. This in conjunction with skipping ineffectual com-

putations of zero-valued weights in our proposed hardware

accelerator (as exploited by [47]), owing to about 40−50%
of sparsity in the ternary weight matrices of strassenified

layers as we observe, will improve the energy savings and

run-time performance even further. Our current energy and

throughput modeling does not take this into account. We

leave this exploration for future work.

Generalizability of hybrid filter banks to other net-

work architectures. We evaluate the ResNet-20 archi-

tecture comprising hybrid filter banks (Hybrid ResNet-20)

on the CIFAR-10 dataset to demonstrate the efficacy of hy-

brid filter banks over other state-of-the-art ternary quantiza-

tion techniques and its generalizability to other neural net-

work architectures, especially to architectures dominated

with 3 × 3 convolutional layers. ResNet-20 has 19 3 × 3
convolutional layers. The Hybrid ResNet-20 consistently

achieves a better accuracy for different hidden layer widths

in comparison to StrassenNets. For example, the Hybrid

ResNet-20 with the α = 0.25 and the r = 0.75cout con-

figuration achieves an accuracy of 91.55% when compared

to the accuracy of 90.62% observed by StrassenNets with

r = 0.75cout. The accuracy of full-precision ResNet-20

is 92.1%. All other configurations consistently outperform

the state-of-the-art StrassenNets (see Appendix), demon-

strating the generalizability and effectiveness of hybrid filter

banks to 3× 3 convolutional layers.

Furthermore, we evaluate MobileNets-V2 [34] with hy-

brid filter banks on the ImageNet dataset. The initial per-

formance results for MobileNets-V2 is promising, incur-

ring very marginal loss (about 2%) in accuracy compared

to the uncompressed MobilNets-V2 with only the first set

of hyperparameters we chose. We believe the small accu-

racy drop can be bridged with more model hyperparameters

exploration (e.g., appropriate division of output channels to

be generated from either full-precision or ternary weight fil-

ters at each layer, appropriate value of hidden layer width

for ternary weight filters, etc.) associated with hybrid filter

banks approach and knowledge distillation (as exploited by

StrasseNets baseline and MobileNets-V1 with hybrid filter

banks and mentioned in Section 3). Knowledge distillation

historically improves accuracy by another 1− 2%.

5. Comparison against Prior Work

In recent years, numerous research efforts have been de-

voted to quantizing ResNet architecture to ternary values

while preserving the accuracy of full-precision model [40,

29, 44, 11, 26, 53, 52, 35, 46, 17]. However, none of the re-

cent works on binary and ternary quantization demonstrate

their potential to quantize MobileNets on ImageNet or other

datasets. There are recent works [41, 4, 9] that can quantize

MobileNets with 4-6-bit weights (see Appendix and Table

2 in [29] for more details). To the best of our knowledge,

the hybrid filter banks proposed is a first step towards quan-

tizing the already compute-efficient MobileNets to ternary

values on a large-scale dataset, such as ImageNet. The hy-

brid filter banks quantizes a significant fraction of weight

filters of MobileNets to ternary values while achieving com-

parable accuracy to that of baseline full-precision model on

ImageNet. Nevertheless, the hybrid filter banks [12, 13]

can benefit further by adopting these prior proposals. Fur-

thermore, several approaches have been proposed in recent

years on developing compressed neural networks through

the use of weight pruning, tensor decomposition, compact

network architecture design, etc.

Weight pruning. Recent work on channel prun-

ing [19] demonstrates negligible drop in accuracy for Mo-

bileNets while achieving significant reduction in computa-

tional costs. As different channel pruning [19, 54, 20] and

filter pruning techniques [18, 32, 51, 16, 1, 42, 30, 45, 15]

are orthogonal to our compression scheme, they can be used

in conjunction with hybrid filter banks to further reduce

model size and computational complexity.

Tensor decomposition. Tensor decomposition tech-

niques [24, 36, 43, 39, 37, 38] exploit parameter redundancy

to obtain low-rank approximations of weight matrices. Full-

precision weights filters and Strassen matrices of hybrid fil-

ter banks can adopt these prior proposals to further reduce

model size and computational complexity.

Compact network architectures. While we show

promising results for MobileNets-V1 and ResNet-20 here,

the benefits of hybrid filter banks should scale when

extended to other popular resource-efficient architectures

dominated with either DS convolutions, such as Shuf-

fleNet [48], and Xception [8] or 3× 3 convolutions.

6. Conclusion and Future Work

We use per-layer hybrid filter banks to quantize already

highly optimized CNNs, especially MobileNets to ternary

weights. We use 16-bit to represent intermediate activations

and traditional weight filters of hybrid filter banks. In fu-

ture, we plan to explore the impact of quantizing them to

8-bit or less. In addition, it will be interesting to see how

channel pruning [19, 54] assists in reducing the computa-

tional complexity of strassenified MobileNets.

References

[1] Alireza Aghasi, Afshin Abdi, Nam Nguyen, and Justin

Romberg. Net-trim: Convex pruning of deep neural net-

works with performance guarantee. In Advances in Neural

Information Processing Systems 30: Annual Conference on

Neural Information Processing Systems 2017, 4-9 December

2017, Long Beach, CA, USA, pages 3180–3189, 2017. 8

[2] Hande Alemdar, Nicholas Caldwell, Vincent Leroy, Adrien

Prost-Boucle, and Frédéric Pétrot. Ternary neural net-

works for resource-efficient AI applications. CoRR,

abs/1609.00222, 2016. 1

[3] R. Andri, L. Cavigelli, D. Rossi, and L. Benini. Yodann:

An architecture for ultralow power binary-weight cnn accel-

eration. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 37(1):48–60, Jan 2018. 1, 4

[4] Ron Banner, Yury Nahshan, Elad Hoffer, and Daniel Soudry.

Post-training 4-bit quantization of convolution networks for

rapid-deployment. CoRR, abs/1810.05723, 2018. 8

[5] Zhaowei Cai, Xiaodong He, Jian Sun, and Nuno Vasconce-

los. Deep learning with low precision by half-wave gaussian

quantization. In 2017 IEEE Conference on Computer Vision

and Pattern Recognition, CVPR 2017, Honolulu, HI, USA,

July 21-26, 2017, pages 5406–5414, 2017. 2

[6] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang,

Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang, and

Zheng Zhang. Mxnet: A flexible and efficient machine learn-

ing library for heterogeneous distributed systems. CoRR,

abs/1512.01274, 2015. 6

[7] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He,

Jia Wang, Ling Li, Tianshi Chen, Zhiwei Xu, Ninghui Sun,

and Olivier Temam. Dadiannao: A machine-learning super-

computer. In Proceedings of the 47th Annual IEEE/ACM

International Symposium on Microarchitecture, MICRO-47,

pages 609–622, Washington, DC, USA, 2014. IEEE Com-

puter Society. 6

[8] Francois Chollet. Xception: Deep learning with depthwise

separable convolutions. In The IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), July 2017. 3,

8

[9] Yoni Choukroun, Eli Kravchik, and Pavel Kisilev. Low-

bit quantization of neural networks for efficient inference.

CoRR, abs/1902.06822, 2019. 8

[10] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre

David. Binaryconnect: Training deep neural networks with

binary weights during propagations. In Advances in Neu-

ral Information Processing Systems 28: Annual Conference

on Neural Information Processing Systems 2015, December

7-12, 2015, Montreal, Quebec, Canada, pages 3123–3131,

2015. 2

[11] Ruihao Gong, Xianglong Liu, Shenghu Jiang, Tianxiang Li,

Peng Hu, Jiazhen Lin, Fengwei Yu, and Junjie Yan. Differen-

tiable soft quantization: Bridging full-precision and low-bit

neural networks. In The IEEE International Conference on

Computer Vision (ICCV), October 2019. 8

[12] Dibakar Gope, Jesse G. Beu, Urmish Thakker, and Matthew

Mattina. Ternary mobilenets via per-layer hybrid filter banks.

CoRR, abs/1911.01028, 2019. 8

[13] Dibakar Gope, Jesse G. Beu, Urmish Thakker, and Matthew

Mattina. Aggressive compression of mobilenets using hybrid

ternary layers. tinyML Summit, 2020. 8

[14] Dibakar Gope, Ganesh Dasika, and Matthew Mattina.

Ternary hybrid neural-tree networks for highly constrained

iot applications. CoRR, abs/1903.01531, 2019. 1

[15] Ariel Gordon, Elad Eban, Ofir Nachum, Bo Chen, Hao Wu,

Tien-Ju Yang, and Edward Choi. Morphnet: Fast & sim-

ple resource-constrained structure learning of deep networks.

In 2018 IEEE Conference on Computer Vision and Pattern

Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-

22, 2018, pages 1586–1595, 2018. 8

[16] Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic net-

work surgery for efficient dnns. In Proceedings of the 30th

International Conference on Neural Information Processing

Systems, NIPS’16, pages 1387–1395, USA, 2016. Curran

Associates Inc. 8

[17] Yiwen Guo, Anbang Yao, Hao Zhao, and Yurong Chen. Net-

work sketching: Exploiting binary structure in deep cnns.

In 2017 IEEE Conference on Computer Vision and Pattern

Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26,

2017, pages 4040–4048, 2017. 8

[18] Song Han, Huizi Mao, and William J. Dally. Deep com-

pression: Compressing deep neural network with prun-

ing, trained quantization and huffman coding. CoRR,

abs/1510.00149, 2015. 8

[19] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and

Song Han. AMC: automl for model compression and accel-

eration on mobile devices. In Computer Vision - ECCV 2018

- 15th European Conference, Munich, Germany, September

8-14, 2018, Proceedings, Part VII, pages 815–832, 2018. 8

[20] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning

for accelerating very deep neural networks. In IEEE Interna-

tional Conference on Computer Vision, ICCV 2017, Venice,

Italy, October 22-29, 2017, pages 1398–1406, 2017. 8

[21] M. Horowitz. Computing’s energy problem (and what we

can do about it). In 2014 IEEE International Solid-State Cir-

cuits Conference Digest of Technical Papers (ISSCC), pages

10–14, Feb 2014. 1, 4, 6

[22] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh

Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,

Ruoming Pang, Vijay Vasudevan, Quoc V. Le, and Hartwig

Adam. Searching for mobilenetv3. CoRR, abs/1905.02244,

2019. 3

[23] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-

dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-

tional neural networks for mobile vision applications. CoRR,

abs/1704.04861, 2017. 3, 5, 6

[24] Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman.

Speeding up convolutional neural networks with low rank

expansions. In British Machine Vision Conference, BMVC

2014, Nottingham, UK, September 1-5, 2014, 2014. 8

[25] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patter-

son, Gaurav Agrawal, Raminder Bajwa, Sarah Bates, Suresh

Bhatia, Nan Boden, Al Borchers, Rick Boyle, Pierre-luc

Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike

Daley, Matt Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaem-

maghami, Rajendra Gottipati, William Gulland, Robert Hag-

mann, C. Richard Ho, Doug Hogberg, John Hu, Robert

Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Ja-

worski, Alexander Kaplan, Harshit Khaitan, Daniel Kille-

brew, Andy Koch, Naveen Kumar, Steve Lacy, James

Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan

Liu, Kyle Lucke, Alan Lundin, Gordon MacKean, Adriana

Maggiore, Maire Mahony, Kieran Miller, Rahul Nagarajan,

Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Nor-

rie, Mark Omernick, Narayana Penukonda, Andy Phelps,

Jonathan Ross, Matt Ross, Amir Salek, Emad Samadi-

ani, Chris Severn, Gregory Sizikov, Matthew Snelham, Jed

Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gre-

gory Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay Va-

sudevan, Richard Walter, Walter Wang, Eric Wilcox, and

Doe Hyun Yoon. In-datacenter performance analysis of a

tensor processing unit. In Proceedings of the 44th Annual

International Symposium on Computer Architecture, ISCA

’17, pages 1–12, New York, NY, USA, 2017. ACM. 6

[26] Sangil Jung, Changyong Son, Seohyung Lee, Jinwoo Son,

Jae-Joon Han, Youngjun Kwak, Sung Ju Hwang, and

Changkyu Choi. Learning to quantize deep networks by op-

timizing quantization intervals with task loss. In The IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), June 2019. 8

[27] Fengfu Li and Bin Liu. Ternary weight networks. CoRR,

abs/1605.04711, 2016. 1, 2

[28] Xiaofan Lin, Cong Zhao, and Wei Pan. Towards accurate

binary convolutional neural network. In Advances in Neural

Information Processing Systems 30: Annual Conference on

Neural Information Processing Systems 2017, 4-9 December

2017, Long Beach, CA, USA, pages 344–352, 2017. 2

[29] Christos Louizos, Matthias Reisser, Tijmen Blankevoort, Ef-

stratios Gavves, and Max Welling. Relaxed quantization for

discretized neural networks. In 7th International Conference

on Learning Representations, ICLR 2019, New Orleans, LA,

USA, May 6-9, 2019, 2019. 8

[30] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A fil-

ter level pruning method for deep neural network compres-

sion. In IEEE International Conference on Computer Vision,

ICCV 2017, Venice, Italy, October 22-29, 2017, pages 5068–

5076, 2017. 8

[31] David R. Lutz. Arm floating point 2019: Latency, area,

power. In IEEE Symposium on Computer Arithmetic, 2019.

6

[32] Sharan Narang, Gregory F. Diamos, Shubho Sengupta, and

Erich Elsen. Exploring sparsity in recurrent neural networks.

CoRR, abs/1704.05119, 2017. 8

[33] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon,

and Ali Farhadi. Xnor-net: Imagenet classification using bi-

nary convolutional neural networks. In Computer Vision -

ECCV 2016 - 14th European Conference, Amsterdam, The

Netherlands, October 11-14, 2016, Proceedings, Part IV,

pages 525–542, 2016. 1, 2

[34] Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey

Zhmoginov, and Liang-Chieh Chen. Inverted residuals and

linear bottlenecks: Mobile networks for classification, detec-

tion and segmentation. CoRR, abs/1801.04381, 2018. 3, 8

[35] Qigong Sun, Fanhua Shang, Kang Yang, Xiufang Li, Yan

Ren, and Licheng Jiao. Multi-precision quantized neu-

ral networks via encoding decomposition of {-1, +1}. In

The Thirty-Third AAAI Conference on Artificial Intelligence,

AAAI 2019, The Thirty-First Innovative Applications of Arti-

ficial Intelligence Conference, IAAI 2019, The Ninth AAAI

Symposium on Educational Advances in Artificial Intelli-

gence, EAAI 2019, Honolulu, Hawaii, USA, January 27 -

February 1, 2019., pages 5024–5032, 2019. 8

[36] Cheng Tai, Tong Xiao, Xiaogang Wang, and Weinan E.

Convolutional neural networks with low-rank regularization.

CoRR, abs/1511.06067, 2015. 8

[37] Urmish Thakker, Jesse G. Beu, Dibakar Gope, Ganesh

Dasika, and Matthew Mattina. Run-time efficient RNN

compression for inference on edge devices. CoRR,

abs/1906.04886, 2019. 8

[38] Urmish Thakker, Jesse G. Beu, Dibakar Gope, Chu Zhou,

Igor Fedorov, Ganesh Dasika, and Matthew Mattina. Com-

pressing rnns for iot devices by 15-38x using kronecker prod-

ucts. CoRR, abs/1906.02876, 2019. 8

[39] Urmish Thakker, Igor Fedorov, Jesse Beu, Dibakar Gope,

Chu Zhou, Ganesh Dasika, and Matthew Mattina. Pushing

the limits of rnn compression. CoRR, abs/1910.02558, 2019.

8

[40] Michael Tschannen, Aran Khanna, and Animashree Anand-

kumar. StrassenNets: Deep learning with a multiplication

budget. In Jennifer Dy and Andreas Krause, editors, Pro-

ceedings of the 35th International Conference on Machine

Learning, volume 80 of Proceedings of Machine Learning

Research, pages 4985–4994, Stockholmsmässan, Stockholm

Sweden, 10–15 Jul 2018. PMLR. 1, 2, 3, 6, 8

[41] Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han.

Haq: Hardware-aware automated quantization with mixed

precision. In The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), June 2019. 8

[42] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and

Hai Li. Learning structured sparsity in deep neural networks.

In Proceedings of the 30th International Conference on Neu-

ral Information Processing Systems, NIPS’16, pages 2082–

2090, USA, 2016. Curran Associates Inc. 8

[43] Wei Wen, Cong Xu, Chunpeng Wu, Yandan Wang, Yiran

Chen, and Hai Li. Coordinating filters for faster deep neural

networks. In IEEE International Conference on Computer

Vision, ICCV 2017, Venice, Italy, October 22-29, 2017, pages

658–666, 2017. 8

[44] Jiwei Yang, Xu Shen, Jun Xing, Xinmei Tian, Houqiang Li,

Bing Deng, Jianqiang Huang, and Xian-sheng Hua. Quan-

tization networks. In The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), June 2019. 8

[45] Tien-Ju Yang, Andrew G. Howard, Bo Chen, Xiao Zhang,

Alec Go, Mark Sandler, Vivienne Sze, and Hartwig Adam.

Netadapt: Platform-aware neural network adaptation for mo-

bile applications. In Computer Vision - ECCV 2018 - 15th

European Conference, Munich, Germany, September 8-14,

2018, Proceedings, Part X, pages 289–304, 2018. 8

[46] Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and Gang

Hua. Lq-nets: Learned quantization for highly accurate

and compact deep neural networks. In Computer Vision -

ECCV 2018 - 15th European Conference, Munich, Germany,

September 8-14, 2018, Proceedings, Part VIII, pages 373–

390, 2018. 8

[47] Shijin Zhang, Zidong Du, Lei Zhang, Huiying Lan, Shaoli

Liu, Ling Li, Qi Guo, Tianshi Chen, and Yunji Chen.

Cambricon-x: An accelerator for sparse neural networks.

In The 49th Annual IEEE/ACM International Symposium

on Microarchitecture, MICRO-49, pages 20:1–20:12, Piscat-

away, NJ, USA, 2016. IEEE Press. 8

[48] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun.

Shufflenet: An extremely efficient convolutional neural net-

work for mobile devices. In The IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), June 2018. 3,

8

[49] Shuchang Zhou, Zekun Ni, Xinyu Zhou, He Wen, Yuxin Wu,

and Yuheng Zou. Dorefa-net: Training low bitwidth convo-

lutional neural networks with low bitwidth gradients. CoRR,

abs/1606.06160, 2016. 2

[50] Chenzhuo Zhu, Song Han, Huizi Mao, and William J. Dally.

Trained ternary quantization. CoRR, abs/1612.01064, 2016.

2

[51] Michael Zhu and Suyog Gupta. To prune, or not to prune:

exploring the efficacy of pruning for model compression.

CoRR, abs/1710.01878, 2017. 8

[52] Shilin Zhu, Xin Dong, and Hao Su. Binary ensemble neural

network: More bits per network or more networks per bit?

In The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), June 2019. 8

[53] Bohan Zhuang, Chunhua Shen, Mingkui Tan, Lingqiao Liu,

and Ian Reid. Structured binary neural networks for accu-

rate image classification and semantic segmentation. In The

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), June 2019. 8

[54] Zhuangwei Zhuang, Mingkui Tan, Bohan Zhuang, Jing Liu,

Yong Guo, Qingyao Wu, Junzhou Huang, and Jin-Hui Zhu.

Discrimination-aware channel pruning for deep neural net-

works. In Advances in Neural Information Processing Sys-

tems 31: Annual Conference on Neural Information Pro-

cessing Systems 2018, NeurIPS 2018, 3-8 December 2018,

Montréal, Canada., pages 883–894, 2018. 8

