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Abstract

We tackle the problem of deep end-to-end multi-task

learning (MTL) for visual scene understanding from

monocular images in this paper. It is proven that learn-

ing several related tasks together helps in attaining im-

proved performance per-task than training them indepen-

dently. This is due to the fact that related tasks share im-

portant feature characteristics among themselves, which the

MTL techniques can effectively explore for improved joint

training. Based on this premise, we are interested in generic

to specific feature extraction given the different tasks within

a common framework. To this end, we propose a typical U-

Net based encoder-decoder architecture called AdaMT-Net,

where the densely-connected deep convolutional neural net-

work (CNN) based feature encoder is shared among the

tasks while the soft-attention based task-specific decoder

modules produce the desired outcomes. One major issue in

MTL is to assign the weights for the task-specific loss-terms

in the final cumulative optimization function. As opposed to

the manual approach, we propose a novel adaptive weight

learning strategy by carefully exploring the loss-gradients

per-task over the training iterations. Experimental results

on the benchmark CityScapes, NYUv2, and ISPRS datasets

confirm that AdaMT-Net achieves state-of-the-art perfor-

mance on most of the evaluation metrics.

1. Introduction

The recent times have witnessed great strides in visual

inference tasks with the application of deep CNN models.

This can predominantly be attributed to the availability of

large-scale labeled training samples for a given inference

task [14]. However, as opposed to the traditional single

task-specific CNN frameworks, the notion of learning mul-

tiple tasks together within a common CNN based founda-
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Figure 1. A high-level schematic of AdaMT-Net where the task-

generic to task-specific feature learning stages are dissociated us-

ing an encoder-decoder framework.

tion (aka multi-task learning or MTL in short) by explor-

ing their similarities has secured much potential [1, 24]. At

its core, this idea is inspired by human learning abilities,

where one often applies the knowledge across subjects for

better overall learning purposes.Theoretically, the inductive

bias is provided by one of the competing tasks (generally

referred to as the auxiliary task), which in turn causes the

model to prefer hypotheses that are able to explain multi-

ple tasks together. The idea of MTL is particularly eminent

in the area of visual computing where there exist several

inference tasks (dense pixel segmentation, dense depth es-

timation, etc.), which can be sensibly modeled together by

exploring the homogeneity of local image patches. Need-

less to mention, such an MTL approach is capable of per-

forming multi-view scene understanding by harnessing both

the 2D semantics and 3D depth information. In this paper,

we focus on introducing a novel CNN based framework for

joint learning of three highly similar visual inference tasks,

namely, semantic segmentation, depth estimation, and sur-

face normal estimation.

Nonetheless, the design of efficient MTL architecture

with respect to the deep CNN models has some inherent

obstacles: i) how to intuitively share the knowledge among

different tasks, ii) how to model the overall optimization

cost taking all the competing tasks into account. Gener-

ally speaking, we note that tasks like semantic segmen-

tation or depth estimation are usually carried out through



an encoder-decoder based CNN structure, where a latent

feature space is first modeled in the encoder-end whereas

the decoder performs the desired reconstruction. A sim-

ilar principle has been extended in MTL as well recently

[5, 16, 17]. While some of the deep MTL models prefer

separate feature-encoder per-task, shared feature-encoder is

considered in other cases (Figure 1). The second option

is usually favoured considering that sharing the encoder

across the tasks helps in regularizing the training process,

besides bringing the number of trainable parameters down

significantly.

At the same time, we foresee two major concerns in the

architecture design of Figure 1: i) as we deal with dense

pixel-wise prediction tasks, the standard vanilla CNN based

encoder may not be able to capture the more low-level im-

age information precisely. This is driven by the fact that

while the shallow CNN layers capture low-level image fea-

tures, the deeper layers are oriented towards extracting more

abstract high-level feature representations, and ii) given the

shared feature-encoder, how to channelize the task-specific

decoders is another critical issue. It is important to sun-

der the features tailored for each task explicitly from the

encoded feature space further to be fed to the individual de-

coder modules. One possible solution in this respect could

be to learn distinct attention modules for the decoders.

From a different perspective, another apprehension in

training the MTL models in general arises from the choice

of the combined loss function for all the tasks. While se-

mantic segmentation being a classification problem utilizes

a cross-entropy based loss measure, depth-estimation and

surface-normal estimation are typically dealt with under a

regression framework. Hence, the mere addition of these

loss-terms is not adequate as the proper balance among the

tasks is not maintained. An alternative way would be to re-

sort to a weighted summation of these loss-terms. It can

be clearly envisioned that a manual weighting is imprecise

in this case, and an adaptive weight learning paradigm is

highly endorsed.

Inspired by these arguments, we propose a novel U-Net

[19] based MTL model with an adaptive weight learning

scheme for the individual loss-terms: AdaMT-Net. Seem-

ingly, AdaMT-Net consists of a shared feature-encoder for

all the tasks and separate decoder networks for the indi-

vidual tasks, as illustrated in Figure 1. However, in or-

der to combat the aforementioned issues, we introduce the

following measures. i) We follow a dense-block architec-

ture for the shared-encoder, which can efficiently combine

low to high-level images features, thus aiding in the dense

structured prediction tasks. The task-specific decoders, in

contrast, reasonably utilize the notion of attention learning

to highlight the task-oriented feature-components from the

shared space. ii) In order to avoid manual weight assign-

ment to the loss-terms, we subsequently propose to explore

the gradient magnitudes of the individual loss-term with re-

spect to the respective decoder parameters over the training

iterations to calculate the loss-specific weights adaptively.

In this respect, we hypothesize that if a particular task is

being trained well, the loss-gradient magnitude is expected

to be low. This, in turn, suggests that the respective loss-

weight can be reduced. We ensure to follow a convex com-

bination of the loss-weights for stability. Our novel contri-

butions can be summarized as follows:

i) We propose an adaptive CNN based model for per-

forming multi-task learning called AdaMT-Net. ii) AdaMT-

Net can separate the shared features given a set of com-

peting tasks from the task-specific features through novel

network architecture. In this regard, we follow a dense-

block framework in the encoder, while attention-based de-

coder models are considered for the tasks. We also intro-

duce a novel weight learning scheme for the task-specific

loss-terms by following the loss-gradients of the individual

tasks. iii) Extensive experimental analysis is carried out on

the CityScapes [4], NYUv2 [21], and ISPRS [20] datasets

where improved performance is observed consistently.

2. Related works

Multi-task learning: MTL [1, 7, 15] has been regarded

as one of the cost-effective solutions for deciphering sev-

eral inference tasks simultaneously. Precisely, MTL aims

to improve the learning for each of the tasks by effi-

ciently exploring the complementary and shared informa-

tion jointly present in all the tasks. Earlier, MTL was pri-

marily solved using traditional feature transformation based

approaches such as latent support vector machine (SVM)

[25], Bayesian matrix factorization [23], task clustering

[10], matrix decomposition [2], to name a few. Subse-

quently, the traditional ad-hoc approaches have been re-

placed by the deep learning techniques, which are greatly

benefited by adhering to their feature learning capabilities.

MTL approaches developed in conjunction with the deep

CNN models have successfully been implemented in prob-

lems concerning joint semantic segmentation, depth predic-

tion, and surface normal estimation [6, 17], preferably from

monocular images. In this respect, the majority of the CNN

based frameworks are designed in encoder-decoder fashion

[17, 13]. Another compelling aspect of MTL is to learn

the weights for the individual loss-terms. Manual tuning of

weights leads to sub-optimal model training. In this regard,

several works have focused on the Bayesian approach [11],

learning-based model [16] for adaptive weight learning.

Attention models: The attention modules in general help

in highlighting visually appealing regions in images. Typi-

cally, attention modules are deployed in either of two ways:

soft or hard attention. In soft attention, relative weights are

learned for different feature dimensions. On the other hand,

hard attention processes each feature dimension and either



selects or rejects the same. For image data, the conventional

deep CNN models can be extended to support the attention

modeling within the end-to-end training setup. In this re-

gard, convolutional block attention module (CBAM) [22],

local attention masks [8], attention U-Net [18], multi-task

attention network (MTAN) [16] are some of the popular

variants.

The existing method most similar to ours is MTAN [16],

which follows the segnet based encoder-decoder setup for

MTL. Instead, we postulate to follow the U-Net driven ar-

chitecture since U-Net offers better feature space explo-

ration by connecting the encoder layers to the respective

decoder layers in the up-sampling stage. Next, we follow

a dense-block model in the encoder, which can efficiently

combine the low to high-level image features in the encoded

feature space, a paradigm that is important for structured

prediction tasks. Finally, we propose a simple yet intuitive

gradient-based adaptive weight learning strategy for the in-

dividual loss-terms. Experimentally, we find AdaMT-Net

sharply outperforms MTAN along with other comparative

methods for all the datasets.

3. Proposed methodology

The objective is to develop a deep U-Net [19] based

encoder-decoder model, which is capable of simultaneously

learning multiple different but related tasks together from a

given input. Formally, let us consider a multi-task learning

dataset X = {xi, {y
t
i}

T
t=1

} equipped with T tasks where

x ∈ X denotes the input image and yt ∈ Yt is the output

corresponding to the tth task. In our experiments, we fix

T = 2 or T = 3 given three different structured prediction

tasks: semantic segmentation, depth estimation, and sur-

face normal estimation, respectively. We further note that

ours is a homogeneous MTL setup since all the tasks are

trained on the same training images. Under this setup, our

proposed AdaMT-Net follows a hard feature sharing based

MTL framework by implementing a shared feature encoder

for all the tasks on top of which separate attention-driven

task-specific decoder modules are enacted.

3.1. Model architecture

As mentioned, AdaMT-Net consists of two major mod-

ules, the shared global feature learning network (fE(; , θE))
with parameters θE and separate task-specific decoders

(fD
t (; , θDt )Tt=1

) corresponding to T tasks where θDt defines

the parameters for the tth decoder. We note that fE and

fD
t are realized in terms of CNNs where each of the corre-

sponding encoder and decoder blocks (for all the decoder

streams separately) are connected by bridge connections,

following the design protocol for U-Net. Such a bridge is

used to directly transfer the encoder-block feature maps to

the respective decoder-end. A block diagram for AdaMT-

Net can be found in Figure 2. Precisely, for a given input x,

the encoded representation x̂ and tth decoder output ŷt are

obtained as follows:

x̂ = fE(x, θE)

ŷt = fD
t (x̂, θDt )







(1)

In the following, we discuss about the design of fE and

{fD
t }Tt=1

together with the loss functions considered.

Shared feature encoder fE : We choose to follow a dense-

block CNN based framework for designing the feature en-

coder fE where dense forward connections exist between

all pairs of convolution blocks. Each block consists of a

small feed-forward CNN model consisting only of convo-

lution layers. The final encoder block is subsequently at-

tached to the bottleneck layer, which represents the shared

feature space (x̂ for a given x). As already stated, we note

that the convolutional kernels corresponding to the initial

convolution layers of a typical CNN tend to learn more

low-level feature constructs while the feature abstraction in-

creases proportionately with the network depth. We feel

that proper amalgamation of such a feature hierarchy is

expected to be fruitful for dense prediction tasks. From

another perspective, the use of extensive skip-connections

helps to handle the problems related to vanishing gra-

dient by offering multiple paths for gradient-flow during

the backward propagation stage of the training iterations.

Learning the encoder means obtaining the optimal values

for θE minimizing the final multi-task loss function.

Task-specific decoders {fD
t }Tt=1

: We consider T decoder

networks where each of the decoder streams follows sym-

metric network structure with respect to the shared encoder

fE . Due to the bridge connections between the respec-

tive encoder and decoder blocks, the input to the first con-

volution layer within a decoder block is derived from the

concatenation of the feature maps of the previous decoder

block and the respective encoder block. Further, the decoder

modules are equipped with a sophisticated attention learn-

ing scheme to highlight the task-specific features explicitly.

We detail the loss functions used for each of the decoders

first, which is followed by the discussions about the atten-

tion scheme and the task-specific weight learning strategy.

For simplicity, we consider decoder fD
1

for depth estima-

tion, decoder fD
2

for semantic segmentation, and decoder

fD
3

for surface normal prediction, respectively.

a) Decoder loss for depth estimation: We follow the stan-

dard ℓ1-norm based distance to define the depth loss (LD)

given their efficacy in the depth estimation literature [6].

LD(y1, ŷ1) =
1

HW

H−1
∑

j=0

W−1
∑

k=0

|| y1(j, k)− ŷ1(j, k) ||1
1

(2)

where y1 and ŷ1 = fD
1
(fE(x)) define the ground-truth



Figure 2. The overall architecture of the U-Net based AdaMT-Net with dense-block architecture followed in the encoder network and

separate soft-attention based task-specific decoders. Also, note that each decoder has a symmetric structure with respect to the encoder.

We also depict the architecture of the attention learning process. The number of feature maps mentioned for each block remains the same

for all the dataset.

and predicted depth masks for image x with (H,W ) denot-

ing the number of rows and columns of x, respectively.

b) Decoder loss for semantic segmentation: We note that

decoder fD
2

is very much similar to fD
1

except, it deals

with a multi-class prediction problem given the image pix-

els. Hence, the cross-entropy loss is deployed for the same.

Typically, considering that the pixels can take any of the

{1, 2, · · · , C} semantic labels, the segmentation loss can be

mentioned as,

LS(y
2, ŷ2) = −

1

HW

H−1
∑

j=0

W−1
∑

k=0

y2(j, k) log ŷ2(j, k) (3)

where, y2, ŷ2 = fD
2
(fE(x)) are the ground-truth labels and

predicted segmentation maps for x.

c) Decoder loss for surface normal estimation: Surface

normal estimation is very important to learn the spatial char-

acteristics of the surrounding environment, and they are es-

sentially computed from the 3D mesh structure. We follow

the element-wise dot (·) product between the normalized

pixels and the ground truth map for designing the loss cor-

responding to surface normal prediction as follows,

LN (y3, ŷ3) = −
1

HW

H−1
∑

j=0

W−1
∑

k=0

y3(j, k) · ŷ3(j, k) (4)

where, y3, ŷ3 = fD
3
(fE(x)) are the ground-truth labels and

predicted surface normal maps for x.

Attention learning framework followed for each de-

coder: In order to learn more focused task-specific features

at the decoders, we further consider introducing attention

learning modules for the decoder blocks. These attention

learning modules are inspired from MTAN [16]. Assuming

the presence of two convolution layers within each decoder

block, let M1

l and M2

l be the feature maps corresponding

to each of the layers of the lth block, respectively. We learn

the attention mask Al from M1

l using a small network and

subsequently perform a dot-product of the same with M2

l .

Henceforth, the set of feature maps to be propagated from

the lth to the (l+1)th block is represented as the concatena-

tion of M2

l and Al ⊙M2

l . Since the first convolution layer

of the decoder block has its input from the previous decoder

block and the corresponding encoder block, Al learns im-

portant feature weights and propagates the same to the sec-

ond convolution layer which by itself is expected to learn

more complex feature abstractions. Hence, the decoders

ensure that the lower level important features are not ne-

glected in the deeper layers. It is also to be noted that the

attention learning module has its own set of parameters that

are trained in a self-supervised fashion along with other pa-

rameters of AdaMT-Net.

3.2. Overall loss function for AdaMT­Net

In MTL, the cumulative loss for all the tasks can be de-

fined in various ways, such as just adding all the loss-terms

with manual weights per loss or weighted sum of loss-terms

with learnable weights. Here we consider the magnitude

of the loss gradient to be the measure of importance for a

given task in each iteration and accordingly decide on the

weight for the respective loss-term. Apparently, if the gra-

dient magnitude is less, it signifies that the task is being

learned towards optimality, and the corresponding weight

may be decreased. On the other hand, a large gradient mag-

nitude suggests abrupt training for the task and requires

further attention. We highlight that our approach is very

different from the GradNorm method of [3] in the sense

that GradNorm automatically tweaks the gradient magni-

tude of the loss-specific gradient magnitudes to regularize

the multi-task training whereas we explore gradient magni-

tude to perform adaptive loss-specific weight learning. In



this regard, we consider the normalized average gradient

magnitude of a given loss-term with respect to the corre-

sponding decoder’s parameters as the relative weight for the

specific task. Mathematically, the weight W and the total

loss TTotal for i, j ∈ {D,S,N} can be mentioned as,

Wi =
∇~θD

i

Li

L
∑

j=1

∇~θD
j

Lj

(5)

LTotal = WSLS +WDLD +WNLN (6)

where ∇~θD
i

Li is the average gradient magnitude of Li

with respect to the decoder’s parameters ~θDi for the ith ∈
{D,S,N} task. The normalization strategy of Equation

5 further ensures a convex combination for the weights:

WD + WS + WN = 1. From Bayesian point of view, it

can also be presumed that a small W refers to high cer-

tainty whereas a large W denotes uncertainty for learning

the task.

4. Experimental evaluations

This section deals with the evaluation of AdaMT-Net on

three datasets: CityScapes [4], NYUv2 [21], and ISPRS

[20]. While the major tasks consider for all the dataset be-

ing semantic segmentation and depth estimation, we evalu-

ate AdaMT-Net for the additional task of the surface normal

prediction on the NYUv2 dataset. As a whole, we follow

the dataset design protocols followed in [16].

4.1. Datasets

CityScapes: The CityScapes dataset contains high-

resolution street-view images to be deployed for the purpose

of semantic segmentation and depth estimation. In this re-

gard, we consider the standard 7 semantic classes for eval-

uating the segmentation performance of AdaMT-Net. As

a pre-processing step, the images are re-sized to [128, 256]
prior to feeding to the network.

NYUv2: Our model is evaluated on the NYUv2 dataset for

the joint segmentation, surface normal prediction, and depth

estimation tasks. This dataset consists of RGB-D indoor

scene images from 13 semantic categories and is more chal-

lenging compared to the CityScapes dataset. It is primarily

due to variations in camera viewpoint, scene occlusion, dif-

ferences in lighting conditions, etc. Similar to CityScapes;

the images are re-sized to [128, 256].

ISPRS: Finally, the ISPRS dataset is considered for seman-

tic segmentation and depth estimation. This dataset con-

tains the aerial scenes of the ground surface as well as the

digital surface model (DSM) of Potsdam city of Germany,

where the pixels are mapped to 6 semantic classes. The

DSM data is considered for depth estimation. We con-

sider non-overlapping tiles of size [256, 256] from the big-

ger scenes for training and evaluation.

4.2. Architecture and training protocols

The feature encoder of AdaMT-Net consists of four CNN

blocks, each of them being made up of two convolution

layers with kernel size 3 × 3 for each layer. The convo-

lution blocks of feature encoder are further interconnected

in a similar way as the dense blocks in a typical DenseNet

model [9]. Additionally, each of the convolution blocks is

followed by a dropout and a max-pool layer with a kernel

size of 2 × 2 and stride 2. ReLU non-linearity and Batch-

normalization are used to ensure stable training. In gist,

the convolution blocks compute the feature maps of depth

64,128, 256, and 512, respectively. The bottleneck layer,

which also represents the shared feature space, consists of

1024 feature maps. The decoder modules follow symmet-

ric architecture with respect to the shared feature encoder.

Besides, the input to each of the convolution blocks at the

decoder-ends is the output of concatenated feature maps of

the corresponding encoder block and the immediate pre-

vious convolution block in the decoder. For the decoder

blocks, the respective attention modules consist of two 3×3
convolution layers, each followed by Batch-normalization

and Sigmoid layers. Sigmoid non-linearity ensures that the

masks’ values are squeezed within the range [0, 1].
The model is trained for 200 epochs using Adam opti-

mizer [12] with an initial learning rate of 1e−4. We further

consider a batch size of 8, 4, and 2 for CityScapes, ISPRS,

and NYUv2 datasets, respectively.

4.3. Evaluation metrics

To evaluate the performance, we rely on following stan-

dard metrics: intersection over union (IoU), and mean in-

tersection over union (mIoU) for semantic segmentation,

absolute error, and relative error for depth estimation, and

mean, median, and angular distance of the percentage of

pixels whose predictions lie within the angular deviations

of 11.25◦, 22.5◦ and 30◦ to the ground truth for surface

normal prediction.

4.4. Comparison to the literature

We compare the performance of AdaMT-Net with a

number of techniques from the literature: STAN [16],

DenseNet [9], Cross-Stitch network [17], and MTAN [16],

respectively. In addition, we analyze the performance

of MTL with respect to learning each of the tasks sepa-

rately: ST-Net, which follows a single encoder-single de-

coder setup out of AdaMT-Net. As far as the weight learn-

ing for the losses is concerned, we consider two cases: man-

ual weighting with equal weights to all the loss terms and

the proposed weighting scheme of Equation 5.



Method Segmentation Depth error Surface Normal

Angle Distance Within t◦

(Higher) (Lower) (Lower) (Higher)

IoU mIoU Absolute Relative Mean Median 11.25 22.5 30

ST-Net (Ours) 58.44 20.98 0.6657 0.2746 29.67 25.08 20.94 45.52 58.74

STAN [16] 52.89 15.73 0.6935 0.2891 32.09 26.32 21.49 44.38 56.51

Dense [9] 52.73 16.06 0.6488 0.2871 33.58 28.01 20.07 41.50 53.35

Cross-Stitch [17] 52.73 14.71 0.6481 0.2871 33.56 28.58 20.08 40.54 51.97

MTAN [16] 55.32 17.72 0.5906 0.2577 31.44 25.37 23.17 45.65 57.48

AdaMT-Net (Ours)∗ 59.55 22.36 0.6247 0.2558 29.41 24.05 23.72 47.42 59.83

AdaMT-Net (Ours)† 60.35 21.86 0.5933 0.2456 27.74 21.85 26.58 51.63 63.88

Table 1. 3-task multi-task validation results on NYUv2 dataset for 13-class semantic segmentation, depth estimation and surface normal

prediction. †Gradient-based weight learning, * Equal weights.

Method Segmentation Depth error

(Higher Better) (Lower Better)

IoU mIoU Abs. Rel.

ST-Net (Ours) 58.44 20.98 0.6657 0.2746

STAN [16] 55.07 16.65 0.6935 0.2891

Dense [9] 55.59 17.22 0.6002 0.2654

Cross-Stitch [17] 53.99 17.01 0.6095 0.2671

MTAN [16] 56.24 18.32 0.5931 0.2562

AdaMT-Net (Ours)∗ 58.42 21.74 0.6320 0.2551

AdaMT-Net (Ours)† 58.91 20.61 0.6136 0.2547

Table 2. 2-task multi-task validation results on NYUv2 dataset for

13-class semantic segmentation and depth estimation. †Gradient-

based weight learning, * Equal weights.

Method Segmentation Depth error

(Higher Better) (Lower Better)

IoU mIoU Abs. Rel.

ST-Net (Ours) 93.71 61.58 0.0131 24.21

STAN [16] 90.87 51.90 0.0145 27.46

Dense [9] 90.89 51.91 0.0138 27.21

Cross-Stitch [17] 90.33 50.08 0.0154 34.49

MTAN [16] 91.11 53.04 0.0144 33.63

AdaMT-Net (Ours)∗ 94.01 61.91 0.0129 23.82

AdaMT-Net (Ours)† 94.16 62.53 0.0125 22.23

Table 3. Multi-task validation results on CityScapes dataset for

7-class semantic segmentation and depth estimation. †Gradient-

based weight learning, * Equal weights.

Method Segmentation Depth error

(Higher Better) (Lower Better)

IoU mIoU Abs. Rel.

ST-Net (Ours) 81.52 43.27 0.1731 1.3843

STAN [16] 78.87 35.82 0.1926 1.4721

Dense [9] 78.92 35.92 0.1746 1.3936

Cross-Stitch [17] 78.69 34.83 0.1794 1.504

MTAN [16] 79.02 35.98 0.1867 1.3072

AdaMT-Net (Ours)∗ 81.82 43.66 0.1698 1.3595

AdaMT-Net (Ours)† 83.04 45.34 0.1642 1.3676

Table 4. Multi-task validation results on ISPRS dataset for 6-class

semantic segmentation and depth estimation. †Gradient-based

weight learning, * Equal weights.

The results for three tasks (semantic segmentation, depth

estimation, and surface normal prediction) on the NYUv2

dataset are shown in Table 1. Compared to Cross-Stitch,

Dense, and MTAN networks, AdaMT-Net outperforms all

the other methods at least by +8.33% in IoU, +18.98%
in mIoU, −4.9% in relative error, −13.33% and −15.97%
in mean and median angle distances, +12.83%, +11.58%,

and +9.7% in the percentage of pixels within 11.25◦, 12.5◦,

and 30◦ respectively. From another perspective, we con-

sider the semantic segmentation and the depth estimation as

the two tasks for the model evaluation on NYUv2. Table

2 confirms that our model tops in three out of four metrics

among all the comparative techniques in this regard. Fur-

ther, while comparing Table 1 and Table 2, we can observe

that the performance on segmentation improves when three

tasks are considered. Similar trends can be observed for

both the CityScapes (Table 3) and ISPRS (Table 4) datasets.

In all the cases, we observe that the multi-task performance

exceeds that of the single-task networks (ST-Net), besides

the fact that the adaptive weight learning outperforms the

manual weighting scheme.

4.5. Critical analysis

Consideration of an extra self-supervised task: To fur-

ther assess the scalability of AdaMT-Net, we consider a

scenario with four tasks for NYUv2. Apart from the three

tasks of segmentation, depth estimation, and surface nor-

mal prediction, we consider the auxiliary self-supervised

task of image reconstruction. For the reconstruction task,

we use PSNR as the performance metric. The rationale be-

hind including a self-supervised task is that such an auxil-

iary task helps in modeling a better latent space by high-

lighting important image properties that may be overlooked

by the different supervised inference tasks. We compare the

performance of the 4-task setup with the MTAN [16] model

trained with these four tasks. From Table 5, we can observe

sharp improvements in the performance of AdaMT-Net with

respect to MTAN for all the tasks. This clearly establishes

the robustness of AdaMT-Net in terms of extracting more

focused feature as the number of tasks grows.

Ablation on network design: Table 6 emphasizes the spe-

cific architecture choice for AdaMT-Net with respect to a

number of baselines. In this respect, we consider vanilla



Method Segmentation Depth error Surface Normal Reconstruction

Angle Distance Within t◦

(Higher) (Lower) (Lower) (Higher) (Higher)

IoU mIoU Absolute Relative Mean Median 11.25 22.5 30 PSNR

MTAN [16] 53.38 16.66 0.6173 0.2692 32.56 26.39 23.02 44.17 55.52 23.25

AdaMT-Net (Ours)† 59.22 20.93 0.6519 0.2618 31.69 25.13 23.16 45.80 57.61 30.68

Table 5. AdaMT-Net’s 4-tasks performance on NYUv2 dataset for 13-class semantic segmentation, depth estimation, surface normal

prediction, and reconstruction. † Gradient-based weighting.

Figure 3. Qualitative results of semantic segmentation and depth estimation on CityScapes dataset (7 categories). From top to bottom: a.)

Input image, b.) Semantic true, c.) Semantic predicted, d.) Depth true, and e.) Depth predicted.

Figure 4. Qualitative results of semantic segmentation and depth estimation on ISPRS dataset (6 semantic classes). From top to bottom:

a.) Input image, b.) Semantic true, c.) Semantic predicted, d.) Depth true, and e.) Depth predicted.

U-Net based MTL model, U-Net equipped with dense en-

coder but without attention learning in the decoder, and the

full AdaMT-Net model, respectively. As can be seen, the

performance gradually increases from vanilla U-Net to full



Figure 5. The evolution of the loss during training for i) AdaMT-

Net with proposed weight learning of Equation 5, ii) with equal

weight to the loss terms for the CityScapes dataset.

Figure 6. The attention masks learned by the task-specific decoders

on CityScapes dataset. From top to bottom: a.) Input image, b.)

Semantic attention mask, and c.) Depth attention mask.

Method Segmentation Depth error

(Higher Better) (Lower Better)

IoU mIoU Abs. Rel.

Simple U-Net [19] 91.27 53.55 0.0196 26.19

Dense encoder

without decoder attention 92.07 55.67 0.0187 24.67

AdaMT-Net (Ours)* 94.01 61.91 0.0129 23.82

AdaMT-Net (Ours)† 94.16 62.53 0.0125 22.23

Table 6. Ablation on the proposed network design of AdaMT-Net

for CityScapes dataset. ∗ Equal weight, †Gradient-based weight

learning.

AdaMT-Net in all the metrics. Moreover, the performance

on AdaMT-Net on both the manual weighting and adaptive

weight learning schemes outperform the other baselines.

Comparison of different weight learning techniques: In

Figure 5, we show the evolution of training for two models

based on the AdaMT-Net: i) model trained with our weight

learning scheme, and ii) model with equal weight to all the

loss terms where a weight value of 1 is considered. It can

be seen that the proposed weight learning scheme induces

lower empirical loss than the manual weighting scheme.

Besides, it can be observed that the convergence is obtained

rapidly with the proposed weight learning scheme. Addi-

tionally, we compare the proposed weight learning strat-

egy with a number of very recent weight learning schemes

used in MTL in Table 7. In this regard, we compare our

gradient-based weight learning with Bayesian uncertainty

based weighting [11] and loss value-based weighting [16],

respectively, where we train our model with these different

weight learning strategies for the CityScapes dataset. It is

found that the proposed weight learning produces the best

performance in this respect.

Weight Type Segmentation Depth error

(Higher Better) (Lower Better)

IoU mIoU Abs. Rel.

Equal Weights 91.11 53.04 0.0144 33.63

Weights Uncertainty [11] 91.10 53.86 0.0144 35.72

DWA [16] 91.09 53.29 0.0144 34.14

Gradient-based Weights 94.16 62.53 0.0125 22.23

Table 7. Results comparison between different weighting scheme

and our proposed gradient-based scheme for the CityScapes

dataset.

Visualization: Figure 3 and 4 depict sample segmentation

and depth estimation outputs for the CityScapes and the IS-

PRS datasets. The qualitative analysis confirms that the pre-

dicted segmentation and depth maps largely resemble the

ground-truth maps. For example, in Figure 3, the person in

different depth are found to be well segmented. A similar

pattern can be observed for the ISPRS dataset.

Although, by design, the decoders are the same, yet they

learn different attention masks for different tasks. Figure

6 shows the semantic and depth attention masks learned

by the task-specific decoders on the CityScapes dataset. It

is clear from the figure that the attention masks for differ-

ent decoders focus on very different scene characteristics,

which establishes the fact that learning task-specific atten-

tion in the decoders induces minimal redundancy.

5. Conclusions

In this paper, we propose a novel U-Net based multi-task
learning framework called AdaMT-Net for jointly carrying
out multiple visual inference tasks from monocular images.
Our model efficiently combines the notion of task-generic
and task-specific feature learning. For this purpose, while
we follow a dense-block convolution architecture model in
the shared feature encoder, separate attention-driven task-
specific decoder modules are deployed to perform the in-
dividual tasks. Additionally, we introduce a novel loss
gradient-based weight learning scheme for the individual
loss-terms. Our experimental results show sharp improve-
ments on three benchmark datasets, both quantitatively and
qualitatively. As a future endeavor, we plan to scale-up
AdaMT-Net to several tasks and incorporate the notion of
task-clustering for quicker model training.
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