
Structured Weight Unification and Encoding

for Neural Network Compression and Acceleration

Wei Jiang

Tencent America LLC.

Palo Alto, CA

vwjiang@tencent.com

Wei Wang

Tencent America LLC.

Palo Alto, CA

rickweiwang@tencent.com

Shan Liu

Tencent America LLC.

Palo Alto, CA

shanl@tencent.com

Abstract

We investigate structured joint weight unification and

weight encoding to compress deep neural network models

for reduced storage and computation. A structured weight

unification method is proposed, where weight coefficients

are unified according to a hardware-friendly structure, so

that the unified weights can be effectively encoded and the

inference computation can be accelerated. Our method can

be seen as a generalization of structured weight pruning,

where we unify weights of a selected structure to share some

value instead of removing them. A 3D pyramid-based en-

coding method is further proposed to team up with the struc-

turally learned weights, providing a systematic solution for

compressing neural network models while preserving the

network capacity and the original prediction performance.

Also, we develop a training framework to iteratively opti-

mize the subproblems of weight unification and target pre-

diction, which ensures the unification rate with little predic-

tion loss. Experiments over several benchmark models and

datasets of different tasks demonstrate the effectiveness of

our approach.

1. Introduction

Deep Neural Networks (DNNs) have achieved great suc-

cess in solving a wide range of tasks for computer vision,

natural language processing, etc. The large model capacity

of the deep network structures with huge amount of param-

eters leads to high prediction performance, but also makes

DNN models too expensive to use in practice, especially

for mobile and on-device applications with strong limita-

tions on storage, computation power, and energy consump-

tion. It has drawn great attention how to reduce the costs

of using DNNs in academia and industry. A special group

is also formed by the internatioanl standardization organi-

zation MPEG addressing this issue [18].

Active research has been conducted in the past years to

compress large DNN models. The overall target is to reduce

the size of the model (i.e., the required storage) and to accel-

erate inference, without sacrificing much the performance

of the original task (e.g., classification accuracy). Effective

solutions usually require multidisciplinary knowledge from

machine learning, computer architecture, hardware design,

etc., and great progress has been made using different tech-

niques, including weight pruning [8, 9, 11, 15, 16, 24],

weight quantization [25, 26, 27], low-rank factorization

[13], and knowledge distillation [12].

Among all the efforts, weight pruning and weight quanti-

zation are the most popular directions. Weight pruning aims

at removing unimportant weight coefficients and reducing

the redundancy in network connections. The pioneer work

of [8] proposed to prune pretrained weight tensors followed

by a stand-alone encoding process comprising quantization

and entropy coding, as shown in Fig. 1a. Several extensions

have also been developed [5, 7]. Although high compres-

sion rate can be achieved with little prediction loss, such

unstructured weight pruning methods can not reduce infer-

ence computation (sometimes even worsen the problem) in

general [21, 23], due to the random memory access caused

by the unstructured sparsity in the pruned weight matrices.

To overcome such drawbacks, the structured weight

pruning methods deliberately induce sparsity according to

some hardware-friendly patterns [11, 16, 23, 24, 28]. Unim-

portant structures such as channels, filters, or layers are

removed by minimizing the pruning loss measuring the

changes of weights, activations, etc. However, removing

entire weight structures usually causes large prediction per-

formance drop, especially for models like MobileNet [22]

that are designed to be highly efficient already.

Weight quantization [25, 26, 27] aims at reducing the

number of bits to represent the weight coefficients of DNNs.

Both storage and inference computation can be reduced

propotionally to weight precision naturally. However, train-

ing with quantized weights usually requires good gradient

estimation and stability control, due to the instability and

difficulty in back-propagation caused by integer weights.

1

(a) Stand-alone weight pruning and quantization (b) Joint optimization for weight pruning and quantization

(c) Structured joint weight unification and encoding
Figure 1: Framework of our approach and prior weight pruning and weight quantization methods. Our weights are structurally unified

to help the following encoding process as well as speeding up the inference computation. A 3D-octtree-based encoding method is also

developed to team up with the structurally learned weights, providing a compression system for both storage and computation reduction.

Jointly exploring weight pruning and quantization can

potentially improve the performance of individual solu-

tions. Naiive weight learning by optimizing the joint loss,

however, is quite difficult, due to similar reasons in weight

quantization. The recent work of [21] proposed an unstruc-

tured solution (as shown in Fig. 1b) to the problem by de-

composing it into unstructured weight pruning and quan-

tization subproblems whose losses can be iteratively opti-

mized through Alternating Direction Methods of Multipli-

ers (ADMM) optimization. Actual weight quantization is

conducted after the training process to avoid learning with

quantized weights. State-of-the-art compression rate has

been achieved with little accuracy degradation.

In this paper, we go one step further. We study structured

joint weight unification and weight encoding (i.e., quanti-

zation as well as the following entropy coding). Similar

to [21], we iteratively optimize the subproblems of weight

unification and weight retraining in separate steps, but in

a structured fashion (as shown in Fig. 1c). Our structured

weight unification approach unifies weights within a certain

structure in a way to facilitate the following encoding. Also,

the unified weight structure is designed to accelerate the un-

derlying convolution operation so as to speed up the infer-

ence computation. A hardware-friendly 3D pyramid-based

encoding method is further developed to team up with the

structurally learned weights, resulting in a systematic solu-

tion for both storage and computation reduction.

From another perspective, our weight unification can be

seen as a generalization of the weight pruning methods,

where we set selected weights to a unified value instead of

0. The main advantage is that by unifying weight structures

instead of removing them, the network capacity (so as the

prediction performance) can be better preserved. An iter-

ative two-step training framework is further developed to

effectively ensure the unification rate with little prediction

performance loss. The framework is flexible to accomodate

various encoding methods and unification structures.

We evaluate our algorithm over several benchmark mod-

els and datasets of different tasks, including ImageNet clas-

sification, end-to-end image compression, and audio clas-

sificatoin. Our experiments are consistent with the neu-

ral network compression standardization efforts of MPEG

[18, 19], which aims at defining a compressed representa-

tion for trained DNNs with scalability and generality. Ex-

perimental results are quite promising. For example, for

ImageNet classificatoin, with only 2% top-1 and top-5 ac-

curacy loss, we got 14× and 9× compression rate as well as

0.83 and 0.06 gigaMACs inference speed up using ResNet-

50 and MobileNet-V2, respectively. For image compres-

sion, we compress the Autoencoder by 6× with 6 million-

MACs inference speed up. We also compressed audio clas-

sification network by 20× with 23 millionMACs inference

speed up. Moreover, when the compression rate is small, we

often can improve the prediction performance of the orig-

inal pretrained model. Such phenomena, combined with

the good compression rate achieved over already compact

models like MobileNet-V2, further confirm that our struc-

tured joint approach can effectively reduce the redundancy

in DNNs while maintaining the network learning capacity.

The rest of the paper is organized as follows. Section 2

reviews related prior arts. Section 3 describes our weight

unification method. Section 4 introduces our 3D pyramid-

based encoding. Section 5 shows experimental results, and

Section 6 concludes our paper with some discussions.

2. Related Works

Active research has been conducted recently to compress

large DNN models for efficient computation. The target is

to simultaneously reduce the model size and accelerate in-

ference computation, with small accuracy loss. Among all

the efforts, weight pruning and weight quantization are two

major promising directions. In this section we briefly go

over some prior arts related to our work. More comprehen-

sive summaries can be found in surveys like [3].

2.1. Weight pruning

Weight pruning methods reduce the redundancy of net-

work parameters by reducing the number of weight coef-

ficients. The pionior work of [9] achieved about 10× re-

duction on classic networks like AlexNet and VGG by it-

eratively removing weak weight connections in a heuristic

way. Several extensions like [5, 7] have been developed

ever since. The basic idea is to place regularization over

weight coefficients, e.g., L0 or L1 norm, to promote spar-

sity of the learned weights. However, the sprase weight co-

efficients obtained by such unstructured pruning methods

are usually irregular, i.e., the pruned out weights are scat-

tered irregularly in weight tensors, resulting in very limited

benefit in computation acceleration.

The convolutional computation in DNN is commonly

implemented as GEneral Matrix Multiplication (GEMM)

by reshaping the weight tensors and input/output feature

tensors to matrices [4]. In this context, the structured weight

pruning approaches can better pursue both storage and com-

putation efficiency than the unstructured methods. The

main idea is to remove weight coefficients in a structured

way that can benefit the GEMM computation. For example,

the L2,1 norm was used on convolutional layers to promote

group-sparsity [28]. The trivial channels, filters, or layers

were removed in [24] to directly reduce rows and columns

of weight matrices in GEMM computation. Channel prun-

ing [11] iteratively pruned each network layer by alternating

channel selection and reconstruction. Filter pruning [16]

used L1 norm to select and prune unimportant filters.

2.2. Weight quantization

The goal of weight quantization is to reduce the number

of bits to represent the model with tolerable performance

degradation. This technique is usually hardware-friendly,

which improves both computation and storage. From an-

other point of view, pruned model after weight pruning can

be further compressed through weight quantization. There-

fore, effective weight quantization algorithms that jointly

consider DNN learning, optimization computer architecture

and hardware design are highly demanded by industry. Sev-

eral methods have been proposed to quantize DNN weights.

For example, early work like [25] proposed to quantize

weights in a layer-wise scheme to reduce performance drop.

An iterative quantization and retraining framework was pro-

posed in [27] which alternated the weight quantization step

and weight retraining step to achieve balanced quantization

ratio and accuracy loss incrementally.

In general, DNN training with quantized weights can

be challenging. Quantized weights often make the train-

ing process unstable [26], and also make back-propagation

difficult. As a result, sucessful network training depends on

good gradient estimation and stability control techniques.

2.3. Joint weight pruning and quantization

To fully benefit from both weight pruning and weight

quantization, recent efforts start to explore joint weight

pruning and quantization. The deep compression method in

[8] removed the redundant connections, quantized weights,

and coded the quantized weights. A regularization based

on soft weight-sharing was used to obtain pruned and quan-

tized weights in [14]. A systematic ADMM-NN algorithm

was proposed in [21], which decomposed the joint op-

timization problem into unstructured weight pruning and

weight quantization subproblems, which are solved sep-

arately by Alternating Direction Methods of Multipliers

(ADMM). State-of-the-art compression rates were obtained

with little accuracy loss, e.g., 17× weight reduction on

ResNet-50. However, the method can not enforce structured

weight pruning, which, when systematically combined with

the optimization computer architecture and hardware de-

sign, can largely speed up inference computation.

2.4. Our motivation

In this paper, we study structured joint weight unifica-

tion and encoding including both quantization and the fol-

lowing entropy coding. Our goal is to compress the DNN

model into a compact bitstream that can reduce both storage

and comptuation costs. We generalize the idea of structured

weight pruning and propose a structured weight unification

approach, where locally unified real values are assigned to

weight coefficients in a structured way. Weight pruning

can be viewed as a special case of our method where the

unified real value is zero. With such a generalization, we

jointly consider weight unification and weight encoding by

enforcing a unified weight structure that is aligned with the

GEMM computation. Furthermore, we develop an iterative

retraining framework to effectively ensure the unification

rate with little prediction degradation.

3. Structured Weight Unification & Encoding

We first formulate our problem. Let {Wi} denote a set of

weight coefficients of a pre-trained DNN model, where Wi

represents the weights of the i-th layer. The previous weight

pruning methods can be described as finding a binary mask

Mi for each Wi where weights in Wi corresponding to zero

entries in Mi are set to value 0. The optimal mask Mi and

weights Wi are jointly optimized in a layer-wise fashion by

optimizing a joint loss function:

LΘ = L(D|Θ) + αLp(Θ), (1)

whereΘ = ({Wi}, {Mi}) denotes the whole set of parame-

ters to learn; L(D|Θ) is the original data loss over a training

data set D; Lp(Θ) is the sparsity-promoting regularization

over parameters Θ; and α is the hyperparameter balancing

different terms.

On the other hand, the previous weight quantization

methods can be described as finding a set of quantized

weights Ψ = {Ŵi} so that the following loss is minimized:

LΨ = L(D|Ψ) + βLq(Ψ), (2)

where Lq(Ψ) is a regularization (usually non-convex)

placed over quantized weight coefficients. For exam-

ple, Lq(Ψ) can promote some desired characteristics of

the quantized weights, e.g., allocating more/fewer bits to

more/less important weights.

Naiive joint weight pruning and quantization by optimiz-

ing both Eqn. (1) and (2) together is, unfortunately, hard and

inefficient, due to the difficulty of back-propagation and un-

stability in training with quantized weights.

In this paper, we go one step further to investigate joint

weight unification and encoding. We decompose the over-

all problem and solve it in separate steps while keeping

in mind the potential impacts of the subproblems on each

other. Inspired by [21], we conduct weight encoding out-

side of the weight retraining process. This avoids the in-

stability in training and the difficulty of back-propagation

caused by learning using encoded weights. In summary, for

weight unification, we want to learn compact weights in a

structured way that can accelerate inference computation,

and at the same time, can be effectively encoded later for

size reduction. For weight encoding, we select a hardware-

friendly locality-sensitive encoding method that can benefit

from the learned weights of the unification process.

3.1. Structured weight unification

The optimization problem of Eqn. (1) can be seen as a

special case of the following general task. Given a pre-

trained DNN model {Wi}, we would like to find a mask Mi

and a unifier Ui for each Wi, where weights corresponding

to the zero entries in the mask are set to some unified values

by the corresponding unifier. Each unifier Ui carries two

types of information: structural information indicating the

set of structures in Wi to be unified, and unifying opera-

tions determining how to set values of items in the unifica-

tion structures for Wi. For the case of weight pruning, the

masked out weights by Mi are all set to value 0.

Such a generalization provides three main benefits. First,

instead of setting all selected weights to 0, the non-zero

weights can still contribute to the network function, and

the original prediction performance can be better preserved.

Second, in terms of model compression, our unifier Ui

is locality-sensitive, which assigns locality-sensitive uni-

fied values to weights in a structured way to ensure that

the learned model can be effectively compressed by fur-

ther quantization and entropy coding process. Third, the

locality-sensitive unifier can also set weights to have a struc-

ture that aligns with the underlying GEMM operation, so

that the inference can be effectively accelerated.

We jointly consider all aspects and take a general mixed

approach: some weights are pruned (set to 0), and some

weights are structurally unified, to find an optimal compact

model, which can preserve the original prediction target,

can be effectively encoded later, and is fast for inference.

Specifically, we find the optimal set of parameters Φ =
({Wi}, {Mi}, {Ui}) by optimizing the following loss in an

alternative iterative process:
1. Find the unifier {Ui} by minimizing the unification

loss Lu(Φ), and then unify {Wi} using {Ui}
2. Update un-unified weights in {Wi} and masks {Mi}

by minimizing the joint loss:

LΦ = L(D|Φ) + αLp(Φ). (3)

Lp(Φ) is the sparsity-promoting regularization over Φ sim-

ilar to that in Eqn. (1). Lu(Φ) is the structural unification

loss over Φ to promote effective encoding and inference ac-

celeration of the learned model.

3.1.1 GEMM with unification structures

Let’s consider the general multiplication process of a left-

hand-sidem×r matrix A and a right-hand-side r×n matrix

B. Structured weight pruning removes rows and/or columns

of the matrices to skip multiplications in the GEMM com-

putation. To accelerate computation of our unified weights,

we propose a GEMM operation based on our unification

strcuture so that we can skip multiplications with or with-

out removing entire rows or columns. When the weights of

a unification structure are set to zero, we completely skip

the multiplication of that structure. When the weights of a

unification structure are unified as non-zero values, we re-

duce the number of multiplication operations by sharing the

multiplication outputs within that structure. Therefore, the

previous row/column removal can be seen as a special case

of our GEMM operation, where the unification structure is

row/column and weights are all set to 0.

We observe that if p coefficients in a row of A share the

same absolute value, they share one multiplication opera-

tion and p−1 multiplication operations can be skipped. For

example, if the first p coefficients in a row of A have the

same absolute value, the output of these coefficients can be

generated with only one multiplication operation:

Oij = |Ail1
| ·

∑p−1

l1=0

Jl1j +
∑r−1

l2=p
Ail2

· Bl2j ,

Jl1j =











Bl1j , if Ail1
>0

0, if Ail1
=0

−Bl1j , if Ail1
<0

where | · | takes the absolute of a number. If two rows of

matrix A are identical, the entire computation of the sec-

ond row can be skipped by reusing the output computed by

the first row. Similarly, if a number of p coefficients in a

column of matrix B share the same absolute value, p − 1
multiplication operations can be skipped. The calculation

of an entire column can be skipped if two columns of B are

identical. Due to the nature of matrix multiplication, proper

row and column swaps can be performed to make use of the

above properties for skipping operations.

3.1.2 Computation & encoding-friendly structure

The structural unification loss Lu(Φ) aims at pursuing a

structure for learned weights that aligns with the GEMM

process for computation acceleration. Also, we hope that

the learned weights can be represented by as few bits as

possible, so that they can be encoded effectively.

For each layer, weights Wi is normally a 4D tensor of

size (cin, cout, k1, k2), where cin and cout and the num-

ber of input and output channels respectively, and (k1, k2)
gives the kernel size. The weight tensor can be reshaped as

needed, resulting in equivalent matrix multiplciation with

reshaped input and output tensors. Here, we reshape Wi

into a 3D tensor of size (cin, cout, k1 ·k2), and we reorder

the ck = k! · k2 indices of Wi along the kernel axis, as

shown in Fig. (2). The rationale is that a weight matrix

in the (cin, cout) dimension should have locally correlated

weights rather than being totally random in nature, because

weight matrices combine input features to generate mean-

ingful output features in an organized fashion.

We propose a locality-sensitive weight structure with a

pairing locality-sensitive encoding scheme to make use of

such local patterns for highly efficient weight compression.

We divide the reshaped weight tensor Wi into 3D Coding

Tree Units (CTU3D) as our basic processing units. The ben-

efits of such a block-wise process mainly lie in two folds.

First, blocking has been accepted as a general practice to

speed up the GEMM computation in popular libraries like

BLAS [6]. Second, encoding CTU3D individually avoids

the inefficiency of generating a very large codebook as will

be described in Sec. 4. By considering both aspects, we set

our CTU3D to be 64×64×ck for balanced computation and

encoding efficiency.

Note that when k=1, such as for 1×1 convolution, The

CTU3D units degenerate to 2D matrices. Also, for bound-

ary cases when cin or cout is not divisable by 64, the corre-

sponding CTU3D along the boundaries will be smaller. In

other words, 64×64×ck is the largest size for a CTU3D.

3.1.3 Structured unification

We further divide each CTU3D Sij into 2× 2× 2 blocks

(2×2 for the degenerated 2D version), and weights within

Figure 2: Illustration of the weight unification process. A general

4D weight tensor is firstly reshaped and reordered based on the

CTU3D structure. Weights of a selected CTU3D unit is unified

within partitioned blocks.

each block bijl are unified. Specifically, we set the weight

coefficients in the block to have the same absolute value

(i.e., the mean of the absolute of the weight coefficients

in bijl) while maintaining their original signs. We prefer

such small blocks to prevent large prediction loss, because

the larger the blocks, the more strict constraints we put on

weight coefficients by enforcing them to share the same ab-

solute values within blocks, and the less solution space we

have in finding optimal weights for prediction.

The potential loss introduced by such a unification op-

eration can be measured by the standard deviation of the

absolute of the weight coefficients:

Lu(bijl) = std (|bijl|) , (4)

Lu(Sij) = avgbijl∈Sij
Lu(bijl). (5)

Based on the above Lu(Sij), we search for the optimal

way to reorder Sij along the kernel axis by searching for

(k−1)/2 pairs of indices in a greedy fashion. For each pair

of indices (l1, l2), we first compute the 2D loss Lu(Sij)
based on 2 × 2 blocks within each (cin, cout) plane along

the kernel axis, and the first index l1 is the one with the

minimum loss. Then we exhaustively search for the optimal

index l2 to pair with l1 with the 3D loss Lu(Sij) computed

based on 2 × 2 × 2 blocks using l1 as the first index. Note

that since ck is normally an odd number, there will be a left-

alone index for each CTU3D, and 2×2 blocks are used for

for this index.

Then we rank all CTU3D units Sij based on their op-

timal unification loss Lu(Sij) in accenting order. Given a

ratio of unification q, weight coefficients of the top q% units

are unified over their corresponding 2D or 3D blocks.

3.2. Iterative training

As mentioned before, an iterative training process is used

to effectively find the optimal {Wi}, {Mi}, {Ui} by alter-

nating two steps:

Step 1: Given a unification ratio q, we conduct the above

weight unification process described in Sec. 3.1 to obtain

the unifier {Ui}, which computes a unified weight tensor

for each Wi. This step actually minimizes the following

unification loss Lu(Φ) defined over the CTU3D structure:

Lu(Φ) =
∑

i

∑
j
Lu(Sij) (6)

Step 2: We fix the unified weight coefficients of {Wi} uni-

fied by {Ui}, and conduct network fine-tuning to update

the remaining un-fixed weight coefficients of {Wi} and the

corresponding masks {Mi} with normal back-propagation,

based on the loss LΦ of Eqn. (3).

It is worth mentioning that in practice, the first weight

unification step can automatically preserve the pruning

structure in the mask Mi for most CTU3D units. This is

because the pruned weights are set to zero already, result-

ing in very small unification loss of the corresponding units.

Completely pruned out units will remain pruned out. Par-

tially pruned out units will be reset to have a very small

absolute value in most cases, which tends to be pruned out

again in sucessive iterations.

As discussed before, such an iterative training process

can effectively stabilize and speedup the learning process

by separating and alternatively pursuing the two learning

targets: structured weight unification for improved encod-

ing and computation, and weight retraining for maintaining

target prediction. Another benefit of such a separated pro-

cess is that varying hyperparameters q and α can be used

whose values can change during the training process to ad-

dress on different targets at different times. For example, an

increasing q as the iteration progresses results in a gradually

increased amount of unified weights, and an increasing α
results in a gradually increased amount of pruned weights.

4. 3D Pyramid-Based Encoding

In this seciton, we develop a 3D pyramid-based encoding

method to make use of the CTU3D based unification weight

structure for highly efficient weight compression.

The block-wise CTU structure has been used by the

video coding society [17] for its balanced compression and

computation performanc, where a video frame is usually

partitioned into 64×64 CTUs as the basic units for encod-

ing. Our 64× 64× ck CTU3D is an extension of the 2D

CTU as the basic encoding unit to provide the computation

and accuracy-preserving benefits for our weight unification.

That is, each CTU3D is individually encoded by first gen-

erating an indiviudal codebook and then selecting the opti-

mal encoding method using the codebook. Such a block-

wise process can largely improve the encoding efficiency

by avoiding the difficulty in finding an effective codebook

for encoding the huge amount of weight coefficients all to-

gether. It also introduces the flexibility of using different

coding schemes to encode different units for further im-

proved compression.

4.1. Quantization

For each Wi, given a saturation value vi and a bit depth

di, a step size ti can be computed as ti = vi/(2
di −1) to

divide the (0, vi) range into 2di uniform bins. Each item

wij in Wi is first truncated using vi, and then quantized into

a corresponding bin based on its absolute value |wij |. The

original sign of wij is also kept, which will be represented

by an additional bit. This gives a uniform quantization rep-

resentation for all CTU3D Sij ∈Wi.

For each CTU3D Sij , we can also compute a codebook

using the newly developed palette coding approach in the

HEVC extension of the screen content coding [17]. Each

weight coefficient can be represented by the codeword in-

dex of the codebook, which gives an individual codebook-

based quantization representation for each Sij .

4.2. Entropy coding

Due to the sensitivity of the DNN prediction to the

change of weight coefficients, lossless entropy coding is

usually used to encode quantized weights. In this paper,

we design 2 different pyramid-based coding schemes based

on the 3D-Octtree structure. Also, we can choose to encode

the codebook-based representation or the uniform quanti-

zation representation. Therefore, for each CTU3D Sij , we

have 4 different mix-and-match choices for entropy coding,

and we select the optimal one based on the corresponding

Rate-Distortion (RD) measurement: RD=D+ γR, where

D is the MSE between the original and reconstructed signal

and R is the bit count from entropy coding.

4.2.1 Pyramid-based coding

An octtree is a tree structure where each parent node has 8

children. A 3D-Octtree partitions a 3D tensor by recursively

subdividing it along the 3 axes into eight octants.

Method 1: 3D-Unitree: For non-leaf nodes, if all children

of a node share the same absolute unified value (or code-

book index), the node is assigned value 0. Otherwise the

node is assigned value 1. For leaf nodes, if all nodes of the

same parent node have the same absolute unified value (or

codebook index), these nodes are assigned value 0. Other-

wise, value 1 is assigned to these nodes. As illustrated in

Fig. 3, we can skip encoding nodes by taking advantage of

the unified weight structure, where only the absolute unified

value is encoded for skpped nodes.

Method 2: 3D-Tagtree: Each non-leaf node takes the max-

imum absolute value (or codebook index) of its children,

and the leaf node takes its original absolute value (or code-

book index). As illustrated in Fig. 3, we can skip encod-

ing nodes by taking advantage of the pruned weight struc-

ture obtained from our retraining process, since nodes in a

pruned branch share the same value 0 and can be skipped.

5. Experiments

We evaluate the proposed method on a set of represen-

tative DNN benchmarks: ResNet-50 [10], MobileNet-V2

[22] for ImageNet image classification; Autoencoder for

image compression over CIFAR-100; and MLP for audio

sound event classification [1]. These benchmarks cover dif-

ferent tasks including image and audio classification and

Figure 3: Illustration of pyramid-based coding, which benefits

from the unification structure for efficient encoding.

end-to-end image compression, and the size of the tested

network models vary dramatically, ranging from the moder-

ately large ResNet-50 to the relatively condense MobileNet-

V2 and to a simple 2-layer MLP. These benchmarks (mod-

els and corresponding datasets) are also selected as repre-

sentative test cases by the MPEG Neural Network Com-

pression Standard group for required core experiments [19].

More details about the evaluation setup can be found there.

5.1. Implementation details

To clearly show the benefit of our algorithm, we eval-

uate two different versions of our method. First, we set

α = 0 and conduct weight unification and retraining with-

out weight pruning. That is, starting from the pre-trained

model using the corresponding benchmark training data, we

evaluate the ability of our algorithm in compressing the pre-

trained model and accelerating the inference computation,

without the component of weight pruning. Then, we set

α > 0, and conduct the whole weight unification and prun-

ing process described in Sec. 3.2. In this case, the unstruc-

tured weight pruning method of [2] is used. This weight

pruning method is actually adopted by the MPEG Neural

Network Compression Standard group as one of the param-

eter pruning methods [20]. We follow the experiment setup

in [19], where α is automatically determined by presetting

a ratio m between the validation regularization loss and the

validation data loss. That is, we use the reported hyperpa-

rameter m to automatically calculate α following [19], and

then fix this α throughout our retraining process.

For our weight unification step, we skip the first input

layer and the last output layer. This is because these two lay-

ers are very sensitive to parameter changes, which may lead

to significant prediction loss. Also, these two layers usually

do not have a large amount of parameters due to the small

number of input channels and the small number of output

targets (e.g., number of classes). Our algorithm implemen-

tation is based on PyTorch, and experiments are conducted

using the NVIDIA DGX station with 4 Tesla V100 GPUs.

5.2. ImageNet classification

Table 1 shows the performance of the two versions of our

algorithm with α=0 and α> 0 over the ImageNet classifi-

cation task using ResNet-50 and MobileNet-V2. The Top-1

accuracy and Top-5 accuracy are used to measure the pre-

diction performance. The complexity of inference compu-

tation is measured by MACs (about 0.5×FLOPs). For all

the experiments, we set the maximum tolerable prediction

performance drop to be 2% and report results of different

unification ratios q. The results of q = 0 correspond to the

original pre-trained model when α=0, or the unstructurally

pruned model by [2] when α> 0. Note that the unstructu-

ally pruned input model (α> 0, q=0) can not improve the

inference computation in general, and will have the same

number of MACs with the original pre-trained model.

To better understand the performance of our system, we

list the prediction performance of the unified model after

the two-step retraining and before the following quantiza-

tion and entropy coding, named as “u-top-1”, “u-top-5”. We

also list the final prediction performance of our system after

the further encoding process, named as “c-top-1”, “c-top-

5”. The compression rate “c−rate” of the original model

versus the final encoded model measures the compression

performance of our system. The lossy encoding process

will cause performance drop, and an optimal model can be

empirically determined based on the validation set by ex-

amining the RD measurements.

q u-top-1 u-top-5 c-top-1 c-top-5 c-rate g-macs

0 76.15 92.87 75.10 92.38 10.56 4.11

10 76.30 92.94 75.07 92.28 10.63 3.83

20 76.23 92.89 74.66 92.15 10.72 3.55

30 75.77 92.64 74.72 92.31 10.07 3.27

(a) ResNet-50 (α = 0)

q u-top-1 u-top-5 c-top-1 c-top-5 c-rate g-macs

0 69.00 88.70 68.6 88.26 8.9 4.11

10 69.57 89.05 68.57 88.40 14.5 3.87

20 68.83 88.62 68.17 87.99 13.16 3.56

30 68.30 88.24 66.67 87.11 9.02 3.27

(b) ResNet-50 (α>0)

q u-top-1 u-top-5 c-top-1 c-top-5 c-rate g-macs

0 71.87 90.29 70.41 89.71 6.85 0.32

10 71.60 90.19 70.29 89.42 7.02 0.3

20 71.45 90.07 70.34 89.29 7.2 0.28

30 71.05 89.85 69.62 88.95 7.44 0.26

40 70.42 89.63 69.60 89.17 6.59 0.24

50 70.25 89.44 69.38 88.83 6.87 0.21

60 69.26 88.97 68.71 88.66 7.2 0.19

(c) MobileNet-V2 (α=0)

q u-top-1 u-top-5 c-top-1 c-top-5 c-rate g-macs

0 65.06 86.41 64.65 86.15 7.06 0.32

10 67.62 88.19 66.38 87.42 9.25 0.3

20 66.36 87.19 65.14 86.52 9.73 0.28

30 64.06 86.03 64.50 84.18 10.38 0.26

(d) MobileNet-V2 (α>0)

Table 1: Performance of unified and encoded model for ImageNet

classification with different q. g-macs denotes gigaMACs

From the table, we can see that for ImageNet classi-

fication, within only 2% performance drop, we can ac-

celerate the inference of ResNet-50 by 0.83 gigaGMACs

with about 10× compression rate, for both pruned or orig-

inal pre-trained model. As for the already highly efficient

MobileNet-V2, we can still accelerate its inference by 0.11

or 0.06 gigaMACs and compress the model by about 7× or

9× for the original pre-trained model or the pruned model.

Actually, when the unification ratio is small, e.g., q=10%,

our unification retraining actually improves the prediction

performance from the original input models most of the

time. Such promising results indicate that there are indeed

redundancy in the original pre-trained or already pruned

model. Our approach can reduce such redundancy by us-

ing the unification requirement as a regularizer and learn a

better model for both prediction and computation.

5.3. Audio classification and image compression

The network for both audio classification and image

compression are quite small, and we observe unbalanced

performances of our structured weight unification process

and the final encoding process over these tasks. Specifi-

cally, Table 2 shows the performance of the unified model

for audio classification, where we improve the prediction

performance on top of the original input models most of

the time, and also speed up the original computation by 2×
(i.e., 53.13 millionMACs). Similarly, Table 3 shows the per-

formance of the image compression task, where PSNR and

SSIM are used as measurements. Again, we consistently

improve the prediction performance over the original input

models, and speed up the computation by 27.16 million-

MACs, which is roughly 3×.

q u-top-1 u-top-5 m-macs

0 58.27 91.85 113.74

10 60.61 91.23 107.84

20 60.74 91.36 101.94

30 60.49 91.36 96.03

40 60.62 91.23 90.13

50 59.88 91.48 84.22

60 60.00 91.48 78.32

70 60.74 91.48 72.42

80 60.98 91.60 66.51

90 58.64 90.86 60.61

(a) α=0

q u-top-1 u-top-5 m-macs

0 60.37 92.96 113.74

10 60.99 92.72 107.84

20 61.23 92.72 101.94

30 60.49 92.47 96.03

40 59.75 91.85 90.13

50 60.49 91.98 84.22

60 59.75 91.72 78.32

70 59.88 92.59 72.42

80 60.62 92.10 66.51

90 60.86 90.37 60.61

(b) α>0

Table 2: Performance of unified model for audio classification

with different q. m-macs denotes millionMACs

q u-psnr u-ssim m-macs

0 29.79 0.956 46.05

10 29.87 0.957 43.04

20 29.86 0.957 40.03

30 29.91 0.957 37.00

40 29.88 0.957 33.99

50 29.87 0.957 30.95

60 29.85 0.957 27.95

70 29.89 0.956 24.93

80 29.88 0.957 21.91

90 29.92 0.957 18.89

(a) α=0

q u-psnr u-ssim m-macs

0 29.91 0.958 46.05

10 29.97 0.958 43.04

20 29.99 0.958 40.03

30 29.94 0.959 37.00

40 30.05 0.959 33.99

50 29.98 0.958 30.95

60 29.93 0.959 27.95

70 29.96 0.958 24.93

80 29.97 0.958 21.91

90 30.01 0.959 18.89

(b) α>0

Table 3: Performance of unified model for image compression

with different q. m-macs denotes millionMACs

Comparing with the structurally unified model, the en-

coding process causes additional prediction performance

drop. Here we set the maximum tolerable prediction perfor-

mance drop to be 3%, and Table 4 shows the results within

this range. We can see that our method still can reduce the

already small model size by 5 ∼ 6× and 10∼ 20× for im-

age compression and audio classification tasks, respectively,

and at the same time, improve the inference computation by

3∼6 millionMACs and 17∼23 millionMACs.

q u-top-1 u-top-5 c-top-1 c-top-5 c-rate m-macs

0 58.27 91.85 58.01 90.86 7.02 113.74

10 60.61 91.23 59.26 91.48 9.24 107.84

20 60.74 91.36 58.15 90.37 13.11 101.94

30 60.49 91.36 55.68 90.37 10.35 96.03

(a) audio classification α=0

q u-top-1 u-top-5 c-top-1 c-top-5 c-rate m-macs

0 60.37 92.96 59.80 92.01 7.11 113.74

10 60.99 92.72 60.62 92.84 16.32 107.84

20 61.23 92.72 59.63 92.59 17.91 101.94

30 60.49 92.47 59.26 92.59 19.24 96.03

40 60.49 92.47 57.16 92.10 21.03 90.13

(b) audio classification α>0

q u-psnr u-ssim c-psnr c-ssim c-rate m-macs

0 29.79 0.956 28.07 0.93 3.20 46.05

10 29.87 0.957 26.46 0.91 5.36 43.04

(c) image compression α=0

q u-psnr u-ssim c-psnr c-ssim c-rate m-macs

0 29.91 0.958 29.20 0.95 3.62 46.05

10 29.97 0.958 28.88 0.95 5.76 43.04

20 29.99 0.958 28.19 0.94 6.15 40.03

(d) image compression α>0

Table 4: Performance of unified and encoded model for audio

classification and image compression within 2% prediction drop

6. Conclusion
We propose a structured joint weight unification and

weight encoding framework for reducing the model size and

speeding up the inference computation of DNNs. Our struc-

tured weight unification method unifies weights according

to hardware-friendly structures to facilitate the following

encoding as well as accelerating the underlying convolu-

tion operation. Our locality-sensitive encoding method is

designed to make use of the unified weight structures to ef-

fectively compress the DNN models. Compared with tradi-

tional unstructured weight pruning, our structured approach

can largely reduce inference computation. Compared with

traditional structured weight pruning, our method unifies

weight structures instead of removing them, which better

preserves the network capacity to avoid the prediction per-

formance degradation. Our generic two-step training frame-

work can accommodate different encoding algorithms, dif-

ferent weight unification structures, and different DNN ar-

chitectures. Experiments over several benchmarks show the

effectiveness of our method. One future work is to further

investigate improved encoding methods or joint retraining

process to alleviate the unbalanced performance of unified

and encoded models for small-size models.

References

[1] S. Adavanne, A. Politis, and T. Vertanen. A multi-room re-

verberant dataset for sound evnet localization and detection.

Detection and Classification of Acoustic Scenes and Events

2019 Workshop (DCASE2019), 2019. 6

[2] C. Aytekin, F. Cricri, T. Wang, and E. Aksu. Response

to the call for proposals on neural network compression:

Training highly compressible neural networks. ISO/IEC

JTC1/SC29/WG11 m47379, 2019. 7

[3] Y. Cheng, D. Wang, P. Zhou, and T. Zhang. A survey of

model compression and acceleration for deep neural net-

works. IEEE Signal Processing Magazine, Special Issue on

Deep Learning for Image Understanding, 2019. 3

[4] S. Chetlur, C. Woolley, P. Vandermersc, J. Cohen, J. Tran, B.

Catanzaro, and E. Shelhamer. cudnn: Efficient primitives for

deep learning. arXiv preprint arXiv:1410.0759, 2014. 3

[5] X. Dong, S. Chen, and S. Pan. Learning to prune deep neural

networks via layer-wise optimal brain surgeon. NIPS, pages

4857–4867, 2017. 1, 3

[6] R. Geijn and J. Huang. How to optimize gemm. 5

[7] Y. Guo, A. Yao, and Y. Chen. Dynamic network surgery for

efficient dnns. NIPS, pages 1379–1387, 2016. 1, 3

[8] S. Han, H. Mao, and W. Dally. Deep compression: Com-

pressing deep neural networks with pruning, trained quanti-

zation and huffman coding. ICLR, 2016. 1, 3

[9] S. Han, J. Pool, J. Tran, and W. Dally. Learning both weights

and connections for efficient neural network. NIPS, pages

1135–1143, 2015. 1, 3

[10] K. He, X. Ren, and J. Sun. Deep residual learning for image

recognition. CVPR, pages 770–778, 2016. 6

[11] Y. He, X. Zhang, and J. Sun. Channel pruning for accelerat-

ing very deep neural networks. ICCV, 2017. 1, 3

[12] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge

in a neural network. NIPS Deep Learning and Representa-

tion Learning Workshop, 2015. 1

[13] M. Jaderberg, A. Vedaldi, and A. Zisserman. Speeding up

convolutional neural networks with low rank expansions.

BMVC, 2014. 1

[14] K.Ullrich, E. Meeds, and M. Welling. soft weight-sharing

for neural network compression. CoRR, 2017. 3

[15] V. Lebedev and V. Lempitsky. Fast convnets using group-

wise brain damage. CVPR, pages 2074–2082, 2016. 1

[16] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. Graf. Prun-

ing filters for efficient convnets. ICLR, 2017. 1, 3

[17] S. Liu, X. Xu, S. Lei, and K. Jou. Overview of hevc exten-

sions on screen content coding. SIP Industrial Technology

Advances, 4:1–12, 2015. 6

[18] Document N18162. Updated call for proposals on neural

network compression. ISO/IEC JTC 1/SC 29/WG 11, 1 2019.

1, 2

[19] Document N18782. Description of core experiments on

compression of neural networks for multimeida content de-

scription and analysis. ISO/IEC JTC 1/SC 29/WG 11, 10

2019. 2, 7

[20] Document N18785. Test model 2 of compression of neu-

ral networks for multimedia content description and analysis.

ISO/IEC JTC 1/SC 29/WG 11, 10 2019. 7

[21] A. Ren, J. Li, T. Zhang, S. Ye, W. Xu, X. Qian, X. Lin, and Y.

Wang. Admm-nn: An algorithm-hardware co-design frame-

work of dnns using alternating direction methods of multipli-

erss. International conference on Architectural Support for

Programming Languages and Operating Systems, 2019. 1,

2, 3, 4

[22] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.

Chen. Mobilenetv2: Inverted residuals and linear bottle-

necks. CVPR, pages 4510–4520, 2018. 1, 6

[23] G. Schindler, W. Roth, F. Pernkopf, and H. Froning. Param-

eterized structured pruning for deep neural networks. arXiv

preprint: https://arxiv.org/pdf/1906.05180.pdf, 2019. 1

[24] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. Learning

structured sparsity in deep neural networks. NIPS, pages

2074–2082, 2016. 1, 3

[25] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng. Quantized

convolutional neural networks for mobile devices. CVPR,

2016. 1, 3

[26] S. Wu, G. Li, F. Chen, and L. Shi. Training and inference

with integers in deep neural networks. ICLR, 2018. 1, 3

[27] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen. Incremen-

tal network quantization: Towards lossless cnns with low-

precision weights. ICLR, 2017. 1, 3

[28] H. Zhou, J. Alvarez, and F. Porikli. Less is more: Towards

compact cnns. ECCV, 2016. 1, 3

