
Adaptive Posit: Parameter aware numerical format for deep learning inference

on the edge

Hamed F. Langroudi §,†, Vedant Karia §, John L. Gustafson∗, Dhireesha Kudithipudi§

§ Neuromorphic AI Lab, University of Texas at San Antonio, TX, USA
† Rochester Institute of Technology, NY, USA
∗National University of Singapore, Singapore

Abstract

Ultra low-precision (< 8-bit width) arithmetic is a dis-

cernible approach to deploy deep learning networks on to

edge devices. Recent findings show that posit with linear

quantization has similar dynamic range as the weight and

activation values across the deep neural network layers.

This characteristic can benefit the data representation of

deep neural networks without impacting the overall accu-

racy. When capturing the full dynamic range of weights and

activations, posit with mixed precision or linear quantization

leads to a surge in hardware resource requirements.

We propose adaptive posit, which has the ability to cap-

ture the non-homogeneous dynamic range of weights and

activation’s across the deep neural network layers. A fine

granular control is achieved by embedding the hyperparam-

eters in the numerical format. To evaluate the overall system

efficiency, we design a parameterized ASIC soft core for the

adaptive posit encoder and decoder. Benchmarking and eval-

uation of the adaptive posit is performed on three datasets:

Fashion-MNIST, CIFAR-10, and ImageNet. Results assert

that on average the performance on inference with < 8-bit

adaptive posits surpasses (2% to 10%) that of posit.

1. Introduction

Deep neural networks (DNN) are used in a wide range of

applications such as recommender systems [28] to precision

agriculture [23]. The fast prediction during inference de-

mands intensive memory and compute resources on high-end

compute platforms. Conventional approaches of deploying

the computations to the cloud raise concerns over privacy,

latency, and energy efficiency [25]. To amortize these costs,

several lightweight DNN models have been proposed re-

cently [6, 14, 16, 24].

Among these models, low-precision DNN is one of the

most promising approaches to address the energy constraints

of edge devices, where it compacts the deep learning pa-

rameters and speeds up computation [16]. However, the

Value
20 40 600204060

Density

0
20
40
60
80
100
120
140
160

<5,1,1>
AP=Fl

oat

<5,1,2>
AP

<5,1,3>
AP
<5,1,4>

AP=Po
sit

- - -

Figure 1: An illustration of the average and standard devi-

ation for < n, es, rs > adaptive posit (AP) representation,

where n = 5 bits, es = 1 exponent bits and rs = [1, 2] bits.

Simulations performed on ResNet18 with ImageNet.

performance of ultra-low-precision (< 8-bit width) models

is degraded significantly when hardware-oriented numer-

ical formats such as binary/ternary, fixed-point, etc. are

utilized to represent DNN parameters [22]. Dissimilarity

between DNN parameters and the low precision fixed-point

numerical format representations, in terms of distribution

(uniform or non-uniform), dynamic range, and precision are

the primary contributing factors to this degradation in accu-

racy [22]. An alternate solution is to use other numerical

formats whose values have similar statistics as DNN param-

eters. Posit [11] is one of these numerical formats which has

recently shown potential benefits for [6..8]-bit width data

representation and computation of DNNs without impacting

the overall accuracy [19]. However, performing DNN infer-

ence with posit using a 5-bit representation of weights, also

fails to preserve accuracy when the complexity of bench-

marks and neural networks is increased [19]. For instance,

the performance of DNN inference on the CIFAR-10 dataset

with an 8-layer DNN drops from 92.10% to 15.18% while

using 5-bit weights in the posit format as compared to the

high-precision 32-bit floating point in similar benchmark.

One plausible reason for the performance drop could be the

inability to capture the variability in the dynamic range of

DNN parameters across the layers.

Approaches to mitigate this problem, such as linear, or

mixed-precision quantization, [16] and numerical format

scaling [20, 26] increase the computational complexity. One

approach to ameliorate this problem is to ensure that dy-

namic range of the numerical format inherently matches

the statistics of the DNN parameters. The adaptive posit

numerical format proposed in this research offers such flex-

ibility, wherein the dynamic range can be tuned (Fig. 1).

In this introductory paper, we are motivated to evaluate the

efficacy of the adaptive posit representation as compared

to the standard posit numerical format to represent weights

and activations in various DNN models for image classifica-

tion. Note the following three reasons which motivated us

to evaluate adaptive posit for representation purposes in this

research while we explore adaptive posit for computation in

the future work: (i) The commercial hardware architecture

used in edge devices mostly support floating point or fixed-

point. Posit numerical format is not offered yet because of its

recent introduction [5]; (ii) The total energy consumption of

the DNN models on edge devices is dominated by memory

operations [27]. For instance, in a 28 nm CMOS process, the

16-bit SRAM (32 K memory size) memory access requires

80x more energy than the MAC operations. A 16-bit DRAM

access requires 2.6 orders of magnitude more energy than

the MAC operations [27]; and (iii) Edge devices support a

small memory footprint (less than 1 MB).

This research article highlights the following contribu-

tions:

• We propose a new numerical format, adaptive posit,

that is capable of adapting its dynamic range to match

that of the weights and activations in each DNN layer.

• We update the MemPosit architecture [21] to support

two new conversion algorithms; adaptive posit to high-

precision floating point and vice versa.

• We show that [5..8]-bit adaptive posit is efficient over

posit when benchmarked for latency and energy across

three data corpus.

2. Related Work

Since as early as the 1980s, low-precision arithmetic has

been explored as an option for reducing memory and com-

pute complexity in shallow neural networks without having

to sacrifice performance [2, 15]. In some scenarios, it has

even been shown to improve performance, as the quanti-

zation noise generated from the use of low-precision pa-

rameters in shallow neural networks acts as a regularization

method [2]. The outcome of these studies indicates that 16

and 8-bit precision DNN parameters are sufficient for train-

ing and inference respectively, on shallow networks [2, 15].

The capability of low-precision arithmetic is being reeval-

uated in the deep learning era to verify whether the earlier

mentioned benefits are still able viable for reducing the mem-

ory footprint and energy consumption during training and

inference [3, 4, 7, 8, 10, 12, 13, 17–19, 21].

The performance of DNN inference without retraining is

more robust to the noise that is generated from low-precision

DNN parameters as they are static during inference; several

groups have demonstrated that either 8-bit block floating

point (BFP) or 8-bit fixed-point, coupled with linear quan-

tization, are adequate to represent weights and activations

without significantly degrading the performance yielded with

32-bit floating point. Note that the accumulation bit-width

is selected to be 32 to preserve accuracy while performing

thousands of general purpose MAC-based addition opera-

tions. For instance, Gysel et al. demonstrates that an 8-bit

BFP for representing weights and activations, in 8-bit multi-

pliers, and 32-bit accumulators results in <1% loss in accu-

racy on AlexNet with the ImageNet corpus [12]. Following

this work, Hashemi et al. introduced low-precision DNN

inference networks to better understand the impact of numer-

ical formats on the energy consumption and performance

of DNNs [12, 13]. For instance, performing inference on

AlexNet with the 32-bit fixed-point format yields a 6× more

energy consumption over 8-bit fixed-point for the CIFAR-10

dataset [13]. Chung et al. proposed the Brainwave accel-

erator using 8-bit BFP with a 5-bit exponent to classify

ImageNet dataset on ResNet-50 with <2% accuracy loss [7].

However, the scaling factor parameter in the BFP numerical

format needs to be updated according to the DNN parameter

statistics, thus increasing the computational complexity of

inference.

To alleviate this problem, researchers have used posits

in DNNs [3, 4, 17–19, 21]. Posits represent numbers more

accurately around ±1 and less accurately for very small and

large numbers, unlike the uniform precision of the floating

point [11]. This tapered precision characteristic of posits

suits the distribution of DNN parameters well [11, 21]. For

instance, Langroudi et al. explored the efficacy of posits to

represent DNN weights and have shown that it is possible to

achieve performance within <1% variation on the AlexNet

and ImageNet corpora with 7-bit weight representation [21].

They also demonstrate that posits have 30% lower memory

footprint than fixed-point across multiple DNNs while main-

taining <1% drop in accuracy. However, this work uses 7-bit

posit quantized weights that are converted to 32-bit floats,

restricting posits for memory storage only.

To take full advantage of the posit numerical format,

Carmichael et al. proposed the Deep Positron DNN ac-

celerator which employs the posit numerical format to repre-

sent weights and activations combined with an FPGA-based

soft-core for ≤8-bit precision exact-MAC operations [3, 4].

They demonstrate that 8-bit posits outperform both 8-bit

Weights

C
lassification

Q
uantization

L
ayer	1

L
ayer	2

P/A
P	to	FP

Data ()�

1

→

:
float32
�

2

 (Posit,Adaptive Posit)

:
float32
�

1

�

�

1

�

�

2

→

:

�(�)

�(�())�

1

�(�) : (Float32)

Data ()�

2

Fully-Connected
Layer

�

�

�

1

�

�

1

�

2

Convolutional
 Layer

Initialization Classification

�(�())�

2

�

�

1

�

�

2

Exact MAC operation

Figure 2: The Modified MemPosit framework for DNN inference with two layers. The framework scales to any DNN

architecture. P= Posit; AP= Adaptive Posit; FP= Floating Point.

fixed-point and floating point numbers on low-dimensional

datasets, such as Iris [9]. The later study is extended to ultra-

low precision ([5..8]-bit) and high-dimensional datasets such

as MNIST, Fashion-MNIST, and CIFAR-10 by Langroudi

et al., which consistently shows the advantages of posits

over other numerical formats at ultra-low precision [18].

Following these works, Jeff Johnson proposed a log float

format that combines the posit numerical format with exact

log-linear multiply-add (ELMA), which is the logarithmic

version of the exact MAC operation. This work shows that

it is indeed possible to classify ImageNet with the ResNet

DNN architecture with <1% degradation in accuracy [17].

Finally, the low-precision posit arithmetic is extended to

both DNN training and inference with different quantization

approaches for both feedforward and convolution neural net-

works in Cheetah framework, and is evaluated on various

datasets [19].

However, posit is unable to capture the variance in dy-

namic range of a DNN’s parameters. Therefore, the proposed

research explores the efficacy of the adaptive posit numer-

ical format for DNNs with low-precision representation of

weights and activations in variety of image classification.

3. Adaptive Posit Numerical Format

The posit, a Type III unum, is a new numerical format

with a tapered precision characteristic which was proposed

as an alternative to IEEE-754 floating format to represent

real numbers [11]. Posit revamped the IEEE-754 floating

format and addressed complaints about Type I and Type

II unums. Posits provides better accuracy, dynamic range,

and program reproducibility than IEEE floating point. The

essential advantage of posits is their capability to represent

non-linearly distributed numbers in a specific dynamic range

around 1 with maximum accuracy. The value of a posit

number is represented by Equation (1), where s represents

the sign, es and fs represent the maximum number of bits

allocated for the exponent and fraction, respectively, e and f
indicate the exponent and fraction values, respectively, and

k, as computed by Equation (2), represents the regime value.

x =















0, if (00...0)

NaR, if (10...0)

(−1)s × 22
es

×k × 2e ×
(

1 + f

2fs

)

, otherwise

(1)

The regime bit-field is encoded based on the runlength m
of identical bits (r...r) terminated by either a regime termi-

nating bit r or the end of the n-bit value. Note that there is

no requirement to distinguish between negative and positive

zero since only a single bit pattern (00...0) represents zero.

Furthermore, instead of defining a NaN for exceptional val-

ues and infinity by different bit patterns, a single bit pattern

(10...0), “Not-a-Real” (NaR), represents exception values

and infinity. More details about the posit number format can

be found in [11].

k =

{

−m, if r = 0

m− 1, if r = 1
(2)

The adaptive posit numerical format is a version of the

posit format where the dynamic range is controlled by a new

hyperparameter. This hyperparameter can be defined either

Algorithm 1 Adaptive posit encoder for converting a real

value to n-bit outputs with es exponent bits and log n rs
bits.

Input: real value

Output: <n,es,rs> adaptive posit numerical format

1: procedure ENCODE(in) ⊲ Data extraction of input

2: nzero← |in ⊲ ‘1’ if in is nonzero

3: sign← in > 0 ? 0 : 1
4: Abs← Abs(in)

Encode the regime bit

5: if in > 1 then

6: RunLength← 1

7: while in > 22
es

& RunLength > rs do

8: in← in/22
es

9: RunLength← RunLength+ 1
10: end while

11: reg← RunLength− 1 ⊲ set Regime bit

12: else

13: RunLength← 0

14: while in < 1 & RunLength > rs do

15: in← in×22
es

16: RunLength← RunLength+ 1
17: end while

18: reg← −1× RunLength ⊲ set Regime bit

19: end if

Encode the exponent bit

20: e← 2es−1

21: while e > 0.5 do

22: if in < 2e then

23: in← in/2e

24: exp← exp+ 1
25: end if

26: e← e/2
27: end while

Encode the fraction

28: frac← RNE(in− 1) ⊲ Round-Tie-Even

29: return sign, reg, exp, frac

30: end procedure

as a regime bias parameter called Kb (in a range of [0, n−2]),
similar to the normalized posit format [20] or the adaptive

float numerical format [26], or as a maximum regime bit-

width called rs (in a range of [1, n − 1]). Depending on

which hyperparameter is used, the maximum and minimum

positive value that is represented by this numerical format

is computed either by Equations (3) and (4) or by Equations

(5) and (6) where t = n− rs− 1. Fundamentally, adaptive

posit can represent float numerical format (rs = 1), posit

(rs = n− 1) and other tapered numerical precision format

between them.

Algorithm 2 Adaptive posit decoder for converting an n-bit

input with es exponent bits, log n rs bits into a real value.

Input: < n, es, rs > adaptive posit numerical format

Output: real value

1: procedure DECODE(in) ⊲ Data extraction of input

2: nzero← |in ⊲ ‘1’ if in is nonzero

3: sign← in[n−1] ⊲ Extract sign

4: twos← ({n−1{sign}} ⊕ in[n−2 : 0]) + sign

5: rc← twos[n−2] ⊲ Regime check

6: inv← {n−1{rc}} ⊕ twos ⊲ Invert 2’s

Extract regime value with rs
7: zc← LZD(inv[n−1 : n−1− rs])
8: reg← rc ? zc−1 : −zc

Extract exponent and fraction

9: tmp← twos[n−2 : 0]≪ (zc+ 1)
10: exp← tmp[n−2 : n−es−1]
11: frac← {nzero, tmp[n−es−2 : 0]}
12: return (−1)sign × 22

es
×reg × 2exp ×

(

1+ frac
2fs

)

13: end procedure

Max(xAP) = 22
es

×(k−Kb) (3)

Min(xAP) = 2−2es×(k−Kb) (4)

Max(xAP) =











22
es

×(rs−1), if (t = 0)

22
es

×(rs−2−t), if (t ≤ es)

22
es

×rs × (1− 2es−t−1) otherwise

(5)

Min(xAP) =











2−2es×(rs−1), if (t = 0)

2−2es×(rs−2−t) if (t ≤ es)

2−2es×rs × (1 + 2es−t), otherwise

(6)

4. DNN with Adaptive Posit weight representa-

tion

The MemPosit framework [20] is modified (as shown

in Fig. 2) to achieve adaptive posit weight and activation

representation in performing DNN inference. The MemPosit

is divided into two sub-modules (initialization and classifica-

tion). In the initialization step, the 32-bit precision floating

point learned weights are quantized to low-precision adap-

tive posit numerical format (Algorithm 1). In this paper, the

quantization function is defined by Equation (7) where δ and

λ are the maximum and minimum values represented in low-

precision numerical format. To perform image classification

by DNN, the quantized weights and quantized activations

that are computed in each layer are converted back to the

32-bit precision floating point (Algorithm 2). For brevity, the

encoding and decoding algorithm explained here are based

on two hidden layers DNN inference using the adaptive posit

numerical format with the rs hyperparameter. When the

Kb hyperparameter is used, the encoding and decoding are

similar to posit with the exception of shifting regime value

with Kb. Note that we do not consider “Not a Real” because

all DNN parameters and data are real-valued, and adaptive

posits do not overflow to infinity.

Q(Wi) =











δ, x > δ

F loat to Adaptive Posit δ > x > λ

λ, λ > x

(7)

To encode adaptive posit, at the first step, the zero value

and sign are determined. By capturing the sign bit, the abso-

lute value of the real number is enough to determine other

posit encode bits (lines 2-4). When the rs hyperparame-

ter is selected, The regime bit (reg) is computed by ≤ rs
times dividing or multiplying a real number by 22

es

until the

number is in the range [1, 22
es

) (lines 5-19). Otherwise, the

aforementioned range condition is enough to terminate this

process (lines 11-14). To find the exponent, this process is

continued until the number is in the range [1, 2) (lines 20-27).

To compute the fraction, the remaining value is diminished

by one and rounded to the nearest even number.

To decode adaptive posit, during the initialization step

(lines 2-6), the zero value and sign are captured, and the

inverse of the two’s complement of the input is calculated.

The last step is performed to bypass the requirement to com-

pute both Leading Zero Detection (LZD) and Leading One

Detection (LOD). The regime value is extracted (lines 7-8).

The regime bits are shifted out, and the exponent based on

the es value and fraction is obtained (lines 9-12). Note that

a regime-terminating bit r and extended zero are assumed if

we run out of space (n bit-width) to compute the regime-bit

as well as the exponent and the fraction bits.

5. ASIC Soft Core for Adaptive Posit

The encoding and decoding architecture, detailed in Figs

3, and 4, compute the conversion between adaptive posit

and floating point numerical format and vice versa. The

encoder and decoder design follows the algorithm described

in Algorithms 1 and 2. Posit numbers are represented as a

combination of sign, rs, e and fraction bits respectively. rs

value is the number of leading zeros in the result obtained

by performing XOR operation on every consecutive pair of

bits in the input. The input is left shifted rs times to extract

the es. The exponent value is computed as a product of rs

and 2es summed with e. The multiplication is performed by

left shifting the rs bits by es. The remaining bits post the

calculation of the exponential bits are assigned to fraction

bits of float value. To encode adaptive posit, the number of

XOR operations are reduced from n− 1 to rs during the ex-

traction of regime bits. However, rest of the process remains

same as posit encoding. The hardware overhead increases

because of the circuitry needed for selecting arbitrary rs.

For encoding a 32-bit float value, the exponent value of

float is subtracted by 127 to extract rs and e values. The

most significant bit of the subtraction operation indicates

the sign of the rs value. Based on the sign of rs, either 01
or 10 is concatenated to the fraction and e bits respectively,

and arithmetic right shift is performed on the concatenated

value. To increase the precision of the decoding, the fraction

bits are rounded by introducing the sticky bit. Sticky bit is

calculated by performing OR operation on the fraction bits

that were not accommodated in the encoded value. Adding

the sticky bit to the encoded value rounds off to the closest

value. The rounding off adds an overhead on the power and

the delay of the hardware.

6. Simulation Results & Analysis

A modified version of the MemPosit [21] is implemented

in Python and extended to the Tensorflow framework [1].

The performance and efficiency of adaptive posit and posit

numerical formats is evaluated for three DNN inference tasks.

The specification of the tasks and inference performance on

32-bit floating point DNNs are summarized in Table 1. Table

2 presents the low-precision inference performance for the

three data corpus on posit and adaptive posit formats.

The findings show that the ultra low-precision adaptive

posit (with es=1) outperforms the posit on most tasks and

DNN models. For instance, the 5-bit low-precision perfor-

mance of ResNet-50 on CIFAR-10 dataset is boosted by

36.31% for adaptive posit weight representation in compari-

son to posit. This boost up, however is not observed in high-

dimensional datasets such as ImageNet. The weights skewed

towards zero may be a plausible cause for this observation.

A combination of adaptive posit and linear quantization may

address this drawback.

To compare the footprint of these two numerical formats,

the maximum frequency and power of the encoder and the

decoder designs of these numeric formats is measured using

Synopsys design compiler as shown in Fig. 5. The results

for adaptive posit show a 5% improvement over posit in the

decoder’s maximum frequency while consuming the same

power. This improvement is attributed to the reduction in

the number of XOR operations for computing the regime bit.

The encoder design, however does not show any difference

in performance or efficiency over posit format.

The results show that adaptive posit is able to achieve a

10% boost up in performance over posit numerical format.

Additionally, systems performing inference by using adap-

tive posit are able to exhibit efficient processing over posit

when benchmarked for latency and power.

In summary, the best trade-off between maximum fre-

CLZ

>>

<< <<

2:1
M
ux D Q

Q

Po
sit
_in

clk

+ +
[� − 1:� − ��]

[� − 2:� − �� − 1]

� − 1

1

23

8

8 −

8

32

1

127 Fl
oa
t_
ou
t

/

//

/

//

/

/

/ /

es

es

Figure 3: RTL design for converting N-bit adaptive posit with es exponential bits and rs regime bits to floating point single

precision format. Floating point exponent value is combination of rs and es bits which is computed by counting the number of

leading zeros. Adaptive posit fraction bits are directly assigned floating point fraction bits.

/ 2:1
M
ux

/

AP
os
it_
ou
t

/D Q

Q

[30: 23]

[22: 0]

[31]

− 1

>>

>>>

7

es127

clk

− 3

/

− 1

Fl
oa
t_
in

2:1
M
ux

[6]

/
[6]

/

/

+/

1

>>

==

/
OR_reduce

+
1

/
1

sti
ck
y_
bi
trs

/

/

-
N N

N

N

Figure 4: RTL design for converting floating point single precision to adaptive posit format with rounding off fraction bits

using sticky bit. Regime bits are computed by performing arithmetic right shift.

Table 1: Specifications of the benchmark tasks and performance on a baseline 32-bit floating point network

Dataset Layers1 # Parameters # EMAC Ops2 Memory Accuracy

Fashion-MNIST 2 Conv, 3 FC, 2 PL, 1 BN 1.88 M 69.8 K 7.77 MB 92.54%

CIFAR-10
7 Conv, 1 FC, 3 PL 0.95 M 312.60 K 6.23 MB 81.37%

ResNet-18 0.27 M 286.72 K 3.01 MB 91.54%

ResNet-50 0.86 M 802.89 K 8.76 MB 92.10%

ImageNet ResNet-18 11.70 M 3.43 M 72.69 MB 68.10%

1 Conv: 2D convolutional layer; FC: fully-connected layer; PL: max/avg. pooling layer; BN: batch normalization

layer.
2 The number of EMAC operations for a single sample.

quency and average accuracy degradation from 32-bit float-

ing point on all the benchmarks (when analyzed across the

[5..8]-bit range) is achieved by utilizing 5-bit adaptive posit.

Looking at the adaptive posit numerical format in terms of

Table 2: MemPosit accuracy on three datasets with [5..8]-bit precision adaptive posit weights compared to posit respective best

results are when adaptive posit and posit have es ∈ {0, 1}

Dataset DNN Adaptive posit with rs Posit Adaptive posit with Kb

8-bit 7-bit 6-bit 5-bit 8-bit 7-bit 6-bit 5-bit 8-bit 7-bit 6-bit 5-bit

F-MNIST Conv 92.61% 92.48% 92.48% 91.94% 92.60% 92.48% 92.53% 90.48% 92.65% 92.55% 92.51% 92.25%

CIFAR-10

Conv 81.22% 80.17% 78.92% 71.28% 81.19% 80.16% 76.00% 71.30% 81.47% 81.41% 79.97% 73.29%

ResNet-18 91.10% 90.68% 83.46% 46.70 % 91.10% 90.64% 82.87% 48.57% 91.10% 90.64% 82.87% 57.44%

ResNet-50 91.65% 90.42% 75.95% 51.49% 91.57% 90.17% 72.56% 15.18% 91.57% 90.17% 72.56% 15.18%

ImageNet ResNet-18 62.32% 12.65% 0.10% 0.10% 62.32% 12.65% 0.10% 0.10% 62.32% 12.65% 0.10% 0.10 %

(8,1) (7,1) (6,1) (5,1)

Bit width

500

600

700

800

900

1000

1100

1200

M
ax

im
um

 F
re

qu
en

cy
 (M

hz
) Posit to Float

Adaptive Posit to Float
Float to Posit
Float to Adaptive Posit

(8,1) (7,1) (6,1) (5,1)

Bit width

0.2

0.3

0.4

0.5

0.6

0.7

En
er

gy
 (p

J)

Figure 5: Analysis of encoding and decoding operations for adaptive posit with 4 rs bits and posit. (a) Maximum operating

clock frequency of the different encoding blocks; (b) Energy requirements of the encoding and decoding architecture blocks.

classification performance and unit energy-delay-product,

posits with es = 1 provide a better trade-off compared to

posits with es ∈ {0, 2} same as posit.

7. Conclusions

In this work, adaptive posit numerical format is studied

in the context of DNNs for the edge. The adaptive posit

format DNNs are realized on a modified version of MemPosit

framework, where the network maintains a high degree of

integrity at even [5-6] bit precision. The area and resource

overhead introduced by the adaptive posit are negligible.

This motivates us to further investigate ultra-low precision

DNN training with adaptive posit.

8. Acknowledgements

The authors would like to thank Anurag Daram and Tej

Pandit from Neuromophic AI lab for their support in this

work.

References

[1] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, et al. TensorFlow: Large-scale machine learn-

ing on heterogeneous systems, 2015.

[2] Krste Asanovic and Nelson Morgan. Experimen-

tal determination of precision requirements for back-

propagation training of artificial neural networks, inter-

national computer science institute, 1991.

[3] Zachariah Carmichael, Hamed Fatemi Langroudi, Char

Khazanov, Jeffrey Lillie, et al. Deep positron: A deep

neural network using the posit number system. In

Design, Automation & Test in Europe Conference &

Exhibition, DATE, pages 1421–1426, Florence, Italy,

Mar. 2019. IEEE.

[4] Zachariah Carmichael, Hamed F. Langroudi, Char

Khazanov, Jeffrey Lillie, et al. Performance-efficiency

trade-off of low-precision numerical formats in deep

neural networks. In Proceedings of the Conference

for Next Generation Arithmetic, CoNGA’19, pages 3:1–

3:9, Singapore, Singapore, 2019. ACM.

[5] Rohit Chaurasiya, John Gustafson, Rahul Shrestha,

Jonathan Neudorfer, et al. Parameterized posit arith-

metic hardware generator. In 2018 IEEE 36th Interna-

tional Conference on Computer Design (ICCD), pages

334–341. IEEE, 2018.

[6] Yunpeng Chen, Haoqi Fang, Bing Xu, Zhicheng Yan,

et al. Drop an octave: Reducing spatial redundancy in

convolutional neural networks with octave convolution.

arXiv preprint arXiv:1904.05049, 2019.

[7] Eric Chung, Jeremy Fowers, Kalin Ovtcharov, Michael

Papamichael, Adrian Caulfield, Todd Massengill, Ming

Liu, Daniel Lo, Shlomi Alkalay, Michael Haselman,

et al. Serving DNNs in real time at datacenter scale

with Project Brainwave. IEEE Micro, 38(2):8–20,

2018.

[8] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre

David. Low precision arithmetic for deep learning. In

Workshop Track Proceedings of the 3rd International

Conference on Learning Representations, ICLR, San

Diego, CA, USA, May 2015.

[9] Ronald A Fisher. The use of multiple measurements

in taxonomic problems. Annals of eugenics, 7(2):179–

188, 1936.

[10] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrish-

nan, and Pritish Narayanan. Deep learning with limited

numerical precision. In Proceedings of the 32nd In-

ternational Conference on Machine Learning, ICML,

volume 37 of JMLR Workshop and Conference Pro-

ceedings, pages 1737–1746, Lille, France, July 2015.

JMLR.org.

[11] John L Gustafson and Isaac T Yonemoto. Beating

floating point at its own game: Posit arithmetic. Su-

percomputing Frontiers and Innovations, 4(2):71–86,

2017.

[12] Philipp Gysel, Jon Pimentel, Mohammad Motamedi,

and Soheil Ghiasi. Ristretto: A framework for empir-

ical study of resource-efficient inference in convolu-

tional neural networks. IEEE Transactions on Neural

Networks and Learning Systems, 2018.

[13] Soheil Hashemi, Nicholas Anthony, Hokchhay Tann,

R. Iris Bahar, et al. Understanding the impact of preci-

sion quantization on the accuracy and energy of neural

networks. In Design, Automation & Test in Europe

Conference & Exhibition, DATE, pages 1474–1479,

Lausanne, Switzerland, Mar. 2017. IEEE.

[14] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, et al. Mobilenets: Efficient convolu-

tional neural networks for mobile vision applications.

arXiv preprint arXiv:1704.04861, 2017.

[15] Akira Iwata, Yukio Yoshida, Satoshi Matsuda, Yuki-

masa Sato, et al. An artificial neural network accelera-

tor using general purpose 24 bits floating point digital

signal processors. In International Joint Conference on

Neural Networks, IJCNN, volume 2, pages 171–175,

1989.

[16] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong

Zhu, et al. Quantization and training of neural net-

works for efficient integer-arithmetic-only inference.

In The IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR), June 2018.

[17] Jeff Johnson. Rethinking floating point for deep learn-

ing. arXiv preprint arXiv:1811.01721, 2018.

[18] H. F. Langroudi, Z. Carmichael, J. L. Gustafson, and

D. Kudithipudi. Positnn framework: Tapered precision

deep learning inference for the edge. In 2019 IEEE

Space Computing Conference (SCC), pages 53–59, July

2019.

[19] Hamed F Langroudi, Zachariah Carmichael, David Pas-

tuch, and Dhireesha Kudithipudi. Cheetah: Mixed low-

precision hardware & software co-design framework

for dnns on the edge. arXiv preprint arXiv:1908.02386,

2019.

[20] Seyed HF Langroudi, Tej Pandit, and Dhireesha

Kudithipudi. Deep learning inference on embed-

ded devices: Fixed-point vs posit. arXiv preprint

arXiv:1805.08624, 2018.

[21] S. H. Fatemi Langroudi, T. Pandit, and D. Kudithipudi.

Deep learning inference on embedded devices: Fixed-

point vs posit. In 2018 1st Workshop on Energy Effi-

cient Machine Learning and Cognitive Computing for

Embedded Applications (EMC2), pages 19–23, March

2018.

[22] Asit Mishra and Debbie Marr. Apprentice: Us-

ing knowledge distillation techniques to improve

low-precision network accuracy. arXiv preprint

arXiv:1711.05852, 2017.

[23] Alex Olsen, Dmitry A Konovalov, Bronson Philippa,

Peter Ridd, Jake C Wood, Jamie Johns, Wesley Banks,

Benjamin Girgenti, Owen Kenny, James Whinney, et al.

Deepweeds: A multiclass weed species image dataset

for deep learning. Scientific Reports, 9(1):2058, 2019.

[24] Mengye Ren, Andrei Pokrovsky, Bin Yang, and Raquel

Urtasun. Sbnet: Sparse blocks network for fast in-

ference. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 8711–

8720, 2018.

[25] Shadab Siddiqui, Manuj Darbari, and Diwakar

Yagyasen. A comprehensive study of challenges and

issues in cloud computing. In Soft Computing and

Signal Processing, pages 325–344. Springer, 2019.

[26] Thierry Tambe, En-Yu Yang, Zishen Wan, Yuntian

Deng, Vijay Janapa Reddi, Alexander Rush, David

Brooks, and Gu-Yeon Wei. Adaptivfloat: A floating-

point based data type for resilient deep learning infer-

ence. arXiv preprint arXiv:1909.13271, 2019.

[27] Xuan Yang, Mingyu Gao, Jing Pu, Ankita Nayak,

Qiaoyi Liu, Steven Emberton Bell, Jeff Ou Setter,

Kaidi Cao, Heonjae Ha, Christos Kozyrakis, et al.

Dnn dataflow choice is overrated. arXiv preprint

arXiv:1809.04070, 2018.

[28] Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. Deep

learning based recommender system: A survey and

new perspectives. ACM Computing Surveys (CSUR),

52(1):1–38, 2019.

