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Abstract

While promising progress has been achieved in the Zero-
Shot Learning (ZSL) task , the existing generated approach-
es still suffer from overly plain pseudo features, resulting
in poor discrimination of the generated visual features. To
improve the quality of the generated features, we propose
a novel Attentive Semantic Preservation Network (ASPN)
to encode more discriminative as well as semantic-related
information into the generated features with the category
self-attention cues. Specifically, the feature generation and
the semantic inference modules are formulated into a uni-
fied process to promote each other, which can effectively
align the cross-modality semantic relation. The category
attentive strategy encourages model to focus more on intrin-
sic information of the noisy generated features to alleviate
the confusion of generated features. Moreover, prototype-
based classification mechanism is introduced in an efficient
way of leveraging known semantic information to further
boost discriminative of the generated features. Experiments
on four popular benchmarks, i.e., AWAI, AWA2, CUB, and
FLO verify that our proposed approach outperforms state-
of-the-art methods with obvious improvements under both
the Traditional ZSL (TZSL) and the Generalized ZSL (GZS-
L) settings.

1. Introduction

Rcently, driven by the big data, the deep learning models
have been achieving great success in the field of comput-
er vision, especially for the image classification task. Al-
though the deep learning models perform well on the tradi-
tional supervised classification task, they will fail to classify
novel objects that no or few visual samples are available. In
reality, it is impractical to collect or annotate enough data
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Figure 1. ASPN generates pseudo features and infers the corre-
sponding semantic attributes simultaneously. The inter-class re-
lation between generated features can be calculated attentively as
the category self-attention cues to further guide the generation pro-
cess.

for some rare categories. Inspired by this, the researchers
try to endow the learning system with the ability to recog-
nize unseen classes via exploiting their auxiliary semantic
information, such a task is called Zero-Shot Learning (ZS-
L).

The existing ZSL approaches [12, 17, 13, 21] typically
tackle this task by leveraging the seen classes to learn in-
teraction models to connect the visual instances and their
corresponding class semantic information, which are then
applied to unseen classes. In addition, benefited from the
success of generative adversarial networks (GANSs) [7, 18],
the generated approaches are predominant to address ZSL
task. The current generated approaches mostly are based on
conditioned GAN [15] that generates visual features for un-
seen classes by taking both the class semantic features and
noises as inputs. Then, generated visual features are used to
train a standard classifier for object recognition.

Despite the promising results of these methods, the exist-
ing generated approaches mostly suffer from the following
issues. First, most of the previous approaches only establish
a mapping between semantic and visual in a single direc-
tion, which does not guarantee that the generated visual fea-



tures are semantic-related. Second, more attention should
be paid to the discriminative of generated features because
the generated visual features are finally used for classifica-
tion in the ZSL task. To address the above problems, we
propose a novel generated model named Attentive Seman-
tic Preservation Network (ASPN) to improve the quality
of the generated features as illustrated in Fig. 1. Specifi-
cally, the proposed model consists of three modules, a se-
mantic preservation network, a category attentive network,
and a prototype-based classification network. The seman-
tic preservation network formulates both the feature gen-
eration and semantic inference in an cross-modality man-
ner to achieve visual and semantic bidirectional alignmen-
t. The category attentive network aims at capturing inter-
class relation to further improve the discriminative power
of the model and alleviate confusion between similar cate-
gories, where the attention layer is added proportionally to
the generated visual space to gradually guide the generation
of higher quality visual features. Besides, prototype-based
classification branch is introduced by optimizing the deci-
sion boundary at the semantic level to avoid introducing ex-
tra parameters, which is more efficient than training a clas-
sifier for classification. With the mutual promotion of these
three modules, the proposed model generates more discrim-
inative and semantic-related features through semantic con-
straints with category attention cues and class-level discrim-
inative information. In summary, the contributions of this
paper are:

e We propose a novel Attentive Semantic Preservation
approach that takes advantage of semantic constraints
to formulate both the feature generation and semantic
inference simultaneously to achieve visual and seman-
tic bidirectional alignment.

e To further improve the quality of the generated fea-
tures, we propose a novel category attentive module
and a prototype-based classification module to sepa-
rately capture intrinsic and discriminative information
from genered features.

e We conduct extensive experiments on four benchmark
datasets, i.e., AWA1, AWA2, CUB, and FLO on both
ZSL and GZSL settings. Our model establishes the
new state-of-the-art performance in both settings on
these datasets, especially achieves remarkable perfor-
mances on the challenging fine-grained datasets.

2. Related Work
2.1. Generated Models for ZSL

In recent years, significant progress in the generated ap-
proaches suggests yielding the desired distribution with a
simple instance via functional approximators. Motivated

by this idea, some models are proposed to generate pseu-
do features for unseen classes with adversarial networks
[27, 30] and variational autoencoder [25]. CLSWGAN [27]
and GAZSL [30] try to generate unseen samples and train
a classifier for them. LisGAN [14] regularizes that each
sample should be close to one invariant prototype sample.
GDAN [9] regularizes an extra regressor with dual learn-
ing, which is related to our work. We instead introduce
prototype-based classification in cross-modality form to im-
prove the discriminative of generation. Another related
work Cycle-CLSWGAN [5] proposes to use the cycle feed-
back loss as constraints. Different from Cycle-CLSWGAN
[5], our model combines the feature generation and the se-
mantic inference to ensure that the generated features are
more semantic-related and pay more attention to the intrin-
sic relation between categories.

3. Attentive Semantic Preservation Model

The overall framework of Attentive Semantic Preserva-
tion Network is illustrated in Fig. 2, where the model con-
sists of three core components, a semantic preservation gen-
erated module, a category attentive module and a prototype-
based classification module. In this section, we first formal-
ly give a formulation overview of our proposed model, and
then introduce each part of our model in details.

3.1. Problem Definition and Notations

In ZSL and GZSL the training data is denoted by set S =
{(Xi,si7yi) Ix; € X%y, € YS,s; € Rq}, where x; rep-
resents images feature of set X extracted by convolutional
neural network for seen classes, y; represents label of set
V< for each seen classes, s; represents semantic vector (at-
tribute or sentence description) with ¢ dimensions for each
seen class ¢. Then in test stage, we are given similar test
setU = {(x¢,8¢,y¢) [xe € Xy, € Y5, € R4}, where
XY is the set of visual features from unseen classes, J¥ is
the set of unseen classes labels and ) N ¥ = (), s, repre-
sents semantic vector of unseen classes. Formally, the goal
of ZSL is to learn a classifier f,q : XY — YU, Similarly,
we learn a classifier for GZSL fy,q : XS, XY — YSUPY.

3.2. Semantic Preservation Network

Given the set {xi € XSy € ys} , the semantic vector
of seen samples s; € R? and noises z ~ N (0, 1), the en-
coder leverages the input s; and noises z to generate pseudo
visual features. Thus, during the training, the pseudo fea-
tures are supervised with real visual features:

. ~A 112
Ly, — E % 1
1% Ingln . ||XL X1H27 (1)

where X; = FEjy(s;,z) is the generated features with se-
mantic vector s; and random noises z; 6 is the parameter
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Figure 2. Architecture illustration of our model, including Semantic Preservation (SP), Category Attentive (CA) and Prototype Classifica-
tion (PC) modules. The visual and semantic features are represented by x and s, respectively. The generated features x given by SP are
semantically rich and boundary-distinguishable with the help of the PC. The category attention obtained by matrix multiplication and row
softmax is proportionally applied to the original generated features from SP to produce the final visual features.

of the encoder. This term encourages that the generated vi-
sual features are similar to the real visual features. At the
same time, the decoder takes training samples as input to
decompose the input into pseudo attributes and noise vec-
tors, where pseudo attribute vectors are supervised with re-
al semantic information. It should be noted that we write
$i,z = D, (x;), where p is the parameter of the decoder
and z are the generated noise vectors. Intuitively, the gen-
erated class semantic vector S; should be close to the real
class semantic prototype, i.e.,

. L2
S = min E llsi —Sill5,
0.1 p

Inspired by the effectiveness of the modality consistent, we
introduce the unified structure for generated features to re-
duce the difference for both visual generation space and se-
mantic inference space, respectively. Specifically, we pre-
serve the visual and semantic prototype by reusing the pre-
trained Ky and D, to achieve alignment for each space. The
training objective of semantic preservation part is to mini-
mize the following loss function:

2
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With Eq. (3) the feature generation and semantic inference
procedures are formed as more powerful unified constraint
to encourage generated visual features from the same class
to be clustered together while preserving distribution and
semantic-related information.

As the visual and class semantic features are high-level
representations, the /,,— norm is hard to capture sufficient

information. Hence, we also adopt adversarial learning for
the visual semantic pairs. The discriminator is designed to
distinguish whether the input is from the output of the gen-
erator or the real data distribution. The adversarial process
is formulated as:

L = E(x5)~p(x,s) [Dp(x,5)]

. 4)
— E(x5)~po (xs,2) [Dy (X, 8)] —

BLGP,

where D is discriminator with parameter ¢ and Lop =
(IV-Dy(,s) ||§ —1)? is the gradient penalty to enforce the
Lipschitz constraint; 7 is the linear interpolation between
the real feature x and the generated feature x; 8 > 0 is a
hyper parameter.

3.3. Category Attentive Network

The above Semantic Preservation Network mostly focus-
es on learning to generate more semantic-related visual fea-
tures. However, it is no doubt that the feature confusion
does exist in traditional and generalized zero-shot learning,
especially generated methods. In this section we introduce
a Category Attentive Network that takes the task of guiding
generator to generate more discriminative and high quality
visual features. As illustrated in the right of Fig. 2, the gen-
erated features from the previous hidden layer x € R*?
are first copied into two feature spaces f(x) € R?*? and
g(%) € R"* to calculate the attention and h(%x) € R**¢
represents original features, where b is batch size of the gen-
erated samples and d is the number of feature dimensions.
Here, we have Eq. (5):

% % exp (ky;
kij = f (%) g (];)" Wi = #’

Q)
> i1 exp (Kij)



where the i*" row and j** column of k reflects the influ-
ence to which the j*" class attends to the i* class, in other
words, the product between the different generated features
is regarded as a category correlation matrix. Hence, each
row of W after softmax represents a mode of attention and

the output is formulated as:
b
i=1

where W is attention map, the original features are multi-
plied by the attention weights to produce the category at-
tentive representation t, and « is a parameter to control the
influence of attention for final generated features o based
on the consideration of generated feature quality and itera-
tive stability. More intuitively, assuming that the i row of
f is a horse and the j** column of g7 is a sheep, the cor-
relation between the two is relatively strong, and the cor-
relation is weak if the j** column represents a bat. Then
we can learn better features through attention and it helps
to refine the category feature, enabling the similar images
to have smaller distances and dissimilar images have larger
distances. Besides, the category attention is obtained from
the previous generated process as the intrinsic information.
This indicates that this strategy has potential for expanding
into other methods and tasks. In this way, the attention layer
is seen as the auxiliary generation module, which allows the
network to first rely on the cues from a certain category and
then gradually learn to assign more weight to the inter-class
evidence. This also mitigates the classification bias towards
some specific classes. Therefore, the generated features are
more high-quality and discriminative.

3.4. Prototype-based Classification Network

Since the goal of ZSL and GZSL is to identify novel
classes, the quality and generalization ability of generated
features should be focused. To further preserve the discrim-
inative information of generated visual features, a classifi-
cation network is designed to predict corresponding class
labels of both seen and unseen categories. We introduce the
classification branch from the perspective of prototype to
reduce model complexity and make full use of known se-
mantic information. In fact, the experiments show that the
proposed strategy is more reasonable. The training objec-
tive of classification part is to minimize the following loss
function:

£cls - mglnz (Lg (Xia A) + L‘9 ()A(HA)) ’ (7)

Ly (x;,A) = —log P (y|x:, A;0), 8)

. N exp(x?Eg(sj))

where P (y;[xi, Ai0) = Sarcp 6By (s,
classification losses of real and generated pseudo visual fea-
tures, A € R9*M is the class semantic prototype matrix of

and Ly are

both the seen and unseen classes, M is number of all classes
with semantic features dimensions g. While, s; is the cor-
responding class semantic prototype of class y;, Fy men-
tioned in Eq. (3) is used to project the class semantic fea-
tures into the visual space. The value of x! Ejy (s;) is seen
as the compatibility score between the visual feature x; and
the j*" class semantic prototype s; selected from semantic
space. If the sample x; belongs to class y;, their compati-
bility score should be large; otherwise it should be small. In
this way, the separability between any two different classes
is enlarged at the level of visual-semantic prototypes. Be-
sides, the unseen class semantic prototypes are also taken
into consideration, which prevents the seen data from clas-
sifying into unseen classes. The seen to unseen bias issue
thus is mitigated obviously.

3.5. Full Objective

Overall, the objective function trained of the proposed
model is summarized with:

'CObj = EV + ‘CS + £pre + ED + ﬁﬁcls (9)

where 9 is hyper-parameter that assign weight on the clas-
sification loss. Among them, £, and L., reuse the cor-
responding network, so no additional parameters are intro-
duced. During the test stage, the similarities between the
test instances and the unseen class semantics prototypes are
obtained by calculating the distances of the visual features
and the generated unseen visual features.

4. Experiments

In this section, we conduct experiments to evaluate our
approach on both traditional ZSL and generalized ZSL. We
first document the datasets and the experimental settings
and then compare our approach with some selected com-
petitors. Finally, some ablation studies are given, as well as
the discussions.

4.1. Datasets and Implementation Details

We conduct experiments on two coarse-grained dataset-
s and two fine-grained datasets. Animals with Attributes]
(AWAL) [11] consists of 30,475 images of 50 animal
species, where 85-dimensional attributes are provided for
each class as the class semantic features. Similarly, AWA?2
[22] has 37,322 images with 85-dimensional attributes for
50 classes. In addition to the coarse-grained datasets AWA1
and AWA?2, we also test fine-grained datasets Caltech-
UCSD-Birds 200-2011 (CUB) [24] and Oxford Flower-
s (FLO) [16] with 11,788 and 8,189 images, respectively.
As for the class semantic for both CUB and FLO dataset-
s, we follow Cycle-CLSWGAN [5] and leverage 1,024-
dimensional semantic features produced by the character-
based CNN-RNN [19] that encodes the textual description



AWA1 AWA2 CUB FLO AWAI AWA2 CUB FLO

Method

u s H u S H u s H u s H
LATEM[26] 551 558 493 404 | 73 717 133 [ 115 773 200 | 152 573 240 | 6.6 476 115
DEVISE[6] 542 597 520 459 | 134 687 224 | 171 747 278 |238 530 328 | 99 442 162
ESZSL[20] 582 586 539 510 24 701 46 | 59 778 110 | 126 63.8 21.0 | 114 56.8 19.0
SAE[10] 530 541 330 - |18 771 35 | L1 822 22 | 88 180 118 | - - -
ALE[] 599 625 549 485|168 761 275 | 140 81.8 239 |237 628 344 | 133 616 219
SYNCI[4] 540 466 556 - | 89 873 162 |10.0 90.5 180 | 115 709 198 | - - -
SJE[] 656 619 539 534|113 746 196 | 80 739 144 | 235 592 336 | 139 47.6 215
DEM[29] 684 67.1 517 702|328 847 473 |30.5 864 451 | 19.6 579 292 | 572 67.7 62.0
RELATION NET[23] | 682 642 556 - | 314 913 467 | 30.0 934 453 | 381 61.1 470 | 389 844 532
GAZSL[30] 682 702 558 605|296 842 438 |354 869 503 |317 613 418 | - - -
CLSWGAN[27] 682 653 573 672|579 614 59.6 | 561 650 602 |50.3 583 540 | 59.0 739 65.6
Cycle-CLSWGAN(5] | 66.8 - 586 703|569 640 602 | - - - [457 61.0 523 |592 725 65.1
GDAN[] - - - - - - - 321 675 435 393 667 495 | - - -
COSMOI3] - - - - 528 800 636 | - - - |444 578 502 | 59.6 814 688
LisGAN[14] 706 - 588 699|526 763 623 | 51.1 724 60.0 | 465 57.9 51.6 | 57.7 83.8 683
f-VAEGAN-D2[25] - 711 610 677| - - - |576 706 63.5 | 484 60.1 53.6 | 56.8 749 64.6
[ ASPN (Ours) [754 733 734 781 [58.0 857 69.2 [462 87.0 60.4 [50.7 615 556 | 67.3 87.4 76.0 |

Table 1. The per-class average Top-1 accuracy (%) for the traditional (TZSL) and generalized ZSL (GZSL) on four datasets. The best

results are marked with boldface.

of an image containing fine-grained visual descriptions (10
sentences per image). As for visual features, we follow the
previous work [27] to use the 2,048-dimensional top pool-
ing units of the 101-layered ResNet [8] as the deep features
without fine-tuning.

In our model, the encoder and decoder are implement-
ed by three-layer neural network of 1,800 hidden units with
ReLU activation. The proposed model is trained with batch
size of 64 to find the best one model for testing accuracy.
As for parameters, we set 9 = 1.0, § = 0.01 and initialize
a = 0.9. The model is optimized with the Adam solver
with a cross-validated learning rate 0.0001. For the tradi-
tional ZSL task that all the test instances are from the un-
seen classes where they are predicted into, we use the aver-
age per-class top-1 accuracy T to evaluate the performance
of each model. For the generalized ZSL task, we evaluate
the the accuracy of unseen and seen classes and their har-
monic mean to comprehensively show the performance of
the proposed model. In harmonic mean H=(2 xuxs)/(u+s),
u and s denote the accuracy of unseen and seen classes, re-
spectively.

4.1.1 Results on Traditional ZSL

We report the comparison results of the proposed approach
and several competitors in Table 1 T column. It can be
observed that our model achieves the best performance on
four datasets. The overall improvements on AWA1, AWA2,
CUB, and FLO datasets are from 70.6%, 71.1%, 61.0% and
70.3% to 75.4%, 73.3%, 73.4% and 78.1% i.e., all quite sig-
nificant, against the previous state-of-the-art. From a holis-
tic perspective, ASPN obtains 75.1% average performance
from coarse-grained to fine-grained datasets. It should be
noted that our approach achieves excellent results on two
challenging fine-grained datasets CUB and FLO. This indi-

cates that the proposed unified model is able to accurately
distinguish a large number of different categories through
the SP and CA strategies. The contribution of each part will
be discussed in the ablation study.

4.1.2 Results on Generalized ZSL

We then report the results of the generalized ZSL task and
compare the proposed model with these approaches in Ta-
ble 1.

From the result, it can be observed that our approach
achieves superior and stable results on most datasets under
generalized setting, especially on T and H metric. Specif-
ically, for the coarse dataset AWAI, we obtain 5.6% im-
provement in terms of comprehensive evaluation metric H
over the second best approach COSMO[3], which indicates
that our ASPN achieves balance between the seen and un-
seen accuracy benefited from the higher quality generated
samples. Compared with similar cyclic based work Cycle-
CLSWGAN [5], ASPN greatly improves the performance
on unseen accuracy, which proves that the category attentive
regularization may further promote the diversity and dis-
crimination of the genrated features. As a result, it can tack-
le the confusing problem of seen and unseen classes to boost
the harmonic mean accuracy. On the AWA?2 dataset, our
model is still very competitive, where the proposed mod-
el obtains the highest H. Different from the best results of
f-VAEGAN-D2[28], our ASPN improves the accuracy of
unseen classes as much as possible without sacrificing the
accuracy of the seen class, which is more feasible in real
life. In summary, our method generates discriminative fea-
tures by the proposed strategies to alleviate part of the clas-
sification bias problems and balance the accuracy of seen
and unseen categories under the challenging GZSL setting
to boost the performance significantly.
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Figure 3. The classification results (in %) of the traditional and generalized ZSL for component analysis in (a) AWA1, (b) CUB and the
confusion matrices on the evaluation of AWA1 dataset for both CLSWGAN and ASPN (Ours) method.

Model ‘ MFLOPs ‘ Parameters Memory
Cycle-CLSWGAN 304.3 18.1M
ASPN (Ours) 109.8 13.9M

Table 2. Complexity evaluation with FLOPs and Parameters Mem-
ory under Tensorflow framework.

4.2. Ablation Studies

In this section, we analyze our Attentive Semantic P-
reservation Network in terms of components of the model
and give the class-wise accuracy evaluation.

4.2.1 Component Analysis.

In order to investigate the impacts of each module, we con-
duct the component analysis on these datasets. Specifically,
the unidirectional mapping of the generation from seman-
tic space with prototype-based classification loss is set to be
the Baseline. At the same time, SPN represents semantic p-
reservation module and ASPN means the complete network
equipped with all the components. As can be seen from Fig.
3 (a) (b), the proposed model with SPN module outperform-
s the baseline across all these datasets in terms of unseen
accuracy, where CUB obtains the highest 11.1% improve-
ment for u. Besides, our ASPN method further improves the
performance of unseen classes while maintaining the accu-
racy of seen classes. In fact, the results (i.e., T and u) of
the ASPN model with category self-attention are boosted
compared to the Baseline and the SPN with a large mar-
gin. This indicates that the proposed category self-attention
module brings positive impacts for the classification via im-
proving the discriminative of the generated visual features.
Note that the accuracy of the seen class is slightly reduced
because the generated visual features are a little biased to-
wards the unseen classes.

In addition, Table 2 shows that the proposed prototype-
based classification model is more efficient with the low-
er complexity and better performance than the method of

training classifiers. Low runtime consumption is also more
realistic in application scenarios.

4.2.2 The Evaluation of the Class-wise Accuracy.

To show the results in detail, we also conduct experiments
to evaluate the class-wise accuracy. Fig. 3 (c) (d) shows
the confusion matrices of CLSWGAN [27] (T =68.2%)
and our method (T =75.4%) on the AWA1 dataset. Com-
paring the results of ZSL, we can find that our model has
fewer misclassifications, and the classification results are
more consistent with the visual correspondence. In fact, our
model has better performance on most of the classes, which
proves the effectiveness of our method on handling cate-
gories fusion in ZSL setting. More intuitively, CLSWGAN
[27] tends to recognize seal as walrus in Figure (c), while
ASPN can accurately distinguish this visually similar ani-
mals with the help of category attention. The same phe-
nomenon appears in the classification of bat and rat, giraffe
and horse, which further proves the effectiveness of the pro-
posed method. Back to Fig. 3 (a) we can find that the
improvement of u obviously promotes the overall perfor-
mance. By the comparison of u for different strategies in
histogram, we can draw a simple conclusion that the main
contribution comes from category attentive strategy.

5. Conclusion

In this paper, we propose a novel generated approach to
improve the quality of generated features. Semantic preser-
vation strategy encodes semantic-related information into
the generated features. Category self-attention network and
prototype-based classification module are then deployed to
further alleviate feature confusion in classification. Exten-
sive experiments on four benchmark datasets demonstrate
the effectiveness of the proposed model in both traditional
ZSL and challenging generalized ZSL tasks. The ablation
studies show the impacts of each part of the model. The
class-wise evaluation is also given to intuitively explain why
the performance of the proposed model can be improved.
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