
Attentive Semantic Preservation Network for Zero-Shot Learning

Ziqian Lu∗

Zhejiang University

ziqianlu@zju.edu.cn

Yunlong Yu∗

Zhejiang University

yuyunlong@zju.edu.cn

Zhe-Ming Lu†

Zhejiang University

zheminglu@zju.edu.cn

Feng-Li Shen

Zhejiang University

fenglishen@zju.edu.cn

Zhongfei Zhang

Binghamton University

zhongfei@cs.binghamton.edu

Abstract

While promising progress has been achieved in the Zero-

Shot Learning (ZSL) task , the existing generated approach-

es still suffer from overly plain pseudo features, resulting

in poor discrimination of the generated visual features. To

improve the quality of the generated features, we propose

a novel Attentive Semantic Preservation Network (ASPN)

to encode more discriminative as well as semantic-related

information into the generated features with the category

self-attention cues. Specifically, the feature generation and

the semantic inference modules are formulated into a uni-

fied process to promote each other, which can effectively

align the cross-modality semantic relation. The category

attentive strategy encourages model to focus more on intrin-

sic information of the noisy generated features to alleviate

the confusion of generated features. Moreover, prototype-

based classification mechanism is introduced in an efficient

way of leveraging known semantic information to further

boost discriminative of the generated features. Experiments

on four popular benchmarks, i.e., AWA1, AWA2, CUB, and

FLO verify that our proposed approach outperforms state-

of-the-art methods with obvious improvements under both

the Traditional ZSL (TZSL) and the Generalized ZSL (GZS-

L) settings.

1. Introduction

Rcently, driven by the big data, the deep learning models

have been achieving great success in the field of comput-

er vision, especially for the image classification task. Al-

though the deep learning models perform well on the tradi-

tional supervised classification task, they will fail to classify

novel objects that no or few visual samples are available. In

reality, it is impractical to collect or annotate enough data
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Figure 1. ASPN generates pseudo features and infers the corre-

sponding semantic attributes simultaneously. The inter-class re-

lation between generated features can be calculated attentively as

the category self-attention cues to further guide the generation pro-

cess.

for some rare categories. Inspired by this, the researchers

try to endow the learning system with the ability to recog-

nize unseen classes via exploiting their auxiliary semantic

information, such a task is called Zero-Shot Learning (ZS-

L).

The existing ZSL approaches [12, 17, 13, 21] typically

tackle this task by leveraging the seen classes to learn in-

teraction models to connect the visual instances and their

corresponding class semantic information, which are then

applied to unseen classes. In addition, benefited from the

success of generative adversarial networks (GANs) [7, 18],

the generated approaches are predominant to address ZSL

task. The current generated approaches mostly are based on

conditioned GAN [15] that generates visual features for un-

seen classes by taking both the class semantic features and

noises as inputs. Then, generated visual features are used to

train a standard classifier for object recognition.

Despite the promising results of these methods, the exist-

ing generated approaches mostly suffer from the following

issues. First, most of the previous approaches only establish

a mapping between semantic and visual in a single direc-

tion, which does not guarantee that the generated visual fea-



tures are semantic-related. Second, more attention should

be paid to the discriminative of generated features because

the generated visual features are finally used for classifica-

tion in the ZSL task. To address the above problems, we

propose a novel generated model named Attentive Seman-

tic Preservation Network (ASPN) to improve the quality

of the generated features as illustrated in Fig. 1. Specifi-

cally, the proposed model consists of three modules, a se-

mantic preservation network, a category attentive network,

and a prototype-based classification network. The seman-

tic preservation network formulates both the feature gen-

eration and semantic inference in an cross-modality man-

ner to achieve visual and semantic bidirectional alignmen-

t. The category attentive network aims at capturing inter-

class relation to further improve the discriminative power

of the model and alleviate confusion between similar cate-

gories, where the attention layer is added proportionally to

the generated visual space to gradually guide the generation

of higher quality visual features. Besides, prototype-based

classification branch is introduced by optimizing the deci-

sion boundary at the semantic level to avoid introducing ex-

tra parameters, which is more efficient than training a clas-

sifier for classification. With the mutual promotion of these

three modules, the proposed model generates more discrim-

inative and semantic-related features through semantic con-

straints with category attention cues and class-level discrim-

inative information. In summary, the contributions of this

paper are:

• We propose a novel Attentive Semantic Preservation

approach that takes advantage of semantic constraints

to formulate both the feature generation and semantic

inference simultaneously to achieve visual and seman-

tic bidirectional alignment.

• To further improve the quality of the generated fea-

tures, we propose a novel category attentive module

and a prototype-based classification module to sepa-

rately capture intrinsic and discriminative information

from genered features.

• We conduct extensive experiments on four benchmark

datasets, i.e., AWA1, AWA2, CUB, and FLO on both

ZSL and GZSL settings. Our model establishes the

new state-of-the-art performance in both settings on

these datasets, especially achieves remarkable perfor-

mances on the challenging fine-grained datasets.

2. Related Work

2.1. Generated Models for ZSL

In recent years, significant progress in the generated ap-

proaches suggests yielding the desired distribution with a

simple instance via functional approximators. Motivated

by this idea, some models are proposed to generate pseu-

do features for unseen classes with adversarial networks

[27, 30] and variational autoencoder [25]. CLSWGAN [27]

and GAZSL [30] try to generate unseen samples and train

a classifier for them. LisGAN [14] regularizes that each

sample should be close to one invariant prototype sample.

GDAN [9] regularizes an extra regressor with dual learn-

ing, which is related to our work. We instead introduce

prototype-based classification in cross-modality form to im-

prove the discriminative of generation. Another related

work Cycle-CLSWGAN [5] proposes to use the cycle feed-

back loss as constraints. Different from Cycle-CLSWGAN

[5], our model combines the feature generation and the se-

mantic inference to ensure that the generated features are

more semantic-related and pay more attention to the intrin-

sic relation between categories.

3. Attentive Semantic Preservation Model

The overall framework of Attentive Semantic Preserva-

tion Network is illustrated in Fig. 2, where the model con-

sists of three core components, a semantic preservation gen-

erated module, a category attentive module and a prototype-

based classification module. In this section, we first formal-

ly give a formulation overview of our proposed model, and

then introduce each part of our model in details.

3.1. Problem Definition and Notations

In ZSL and GZSL the training data is denoted by set S =
{

(xi, si,yi) |xi ∈ XS ,yi ∈ YS , si ∈ Rq
}

, where xi rep-

resents images feature of set XS extracted by convolutional

neural network for seen classes, yi represents label of set

YS for each seen classes, si represents semantic vector (at-

tribute or sentence description) with q dimensions for each

seen class i. Then in test stage, we are given similar test

set U =
{

(xt, st,yt) |xt ∈ XU ,yt ∈ YU , st ∈ Rq
}

, where

XU is the set of visual features from unseen classes, YU is

the set of unseen classes labels and YS ∩YU = ∅, st repre-

sents semantic vector of unseen classes. Formally, the goal

of ZSL is to learn a classifier fzsl : X
U → YU . Similarly,

we learn a classifier for GZSL fgzsl : X
S ,XU → YS∪YU .

3.2. Semantic Preservation Network

Given the set
{

xi ∈ XS ,yi ∈ YS
}

, the semantic vector

of seen samples si ∈ Rq and noises z ∼ N(0, 1), the en-

coder leverages the input si and noises z to generate pseudo

visual features. Thus, during the training, the pseudo fea-

tures are supervised with real visual features:

LV = min
θ

∑

i

‖xi − x̂i‖
2
2 , (1)

where x̂i = Eθ (si, z) is the generated features with se-

mantic vector si and random noises z; θ is the parameter
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Figure 2. Architecture illustration of our model, including Semantic Preservation (SP), Category Attentive (CA) and Prototype Classifica-

tion (PC) modules. The visual and semantic features are represented by x and s, respectively. The generated features x̂ given by SP are

semantically rich and boundary-distinguishable with the help of the PC. The category attention obtained by matrix multiplication and row

softmax is proportionally applied to the original generated features from SP to produce the final visual features.

of the encoder. This term encourages that the generated vi-

sual features are similar to the real visual features. At the

same time, the decoder takes training samples as input to

decompose the input into pseudo attributes and noise vec-

tors, where pseudo attribute vectors are supervised with re-

al semantic information. It should be noted that we write

ŝi, ẑ = Dµ (xi), where µ is the parameter of the decoder

and ẑ are the generated noise vectors. Intuitively, the gen-

erated class semantic vector ŝi should be close to the real

class semantic prototype, i.e.,

LS = min
θ,µ

∑

i

‖si − ŝi‖
2
2 , (2)

Inspired by the effectiveness of the modality consistent, we

introduce the unified structure for generated features to re-

duce the difference for both visual generation space and se-

mantic inference space, respectively. Specifically, we pre-

serve the visual and semantic prototype by reusing the pre-

trained Eθ and Dµ to achieve alignment for each space. The

training objective of semantic preservation part is to mini-

mize the following loss function:

Lpre (θ, µ) = E
s∼p(s)

[

‖si −Dµ (Eθ (si, z))‖
2
2

]

+E
x∼p(x)

[

‖xi − Eθ (Dµ (xi))‖
2
2

] (3)

With Eq. (3) the feature generation and semantic inference

procedures are formed as more powerful unified constraint

to encourage generated visual features from the same class

to be clustered together while preserving distribution and

semantic-related information.

As the visual and class semantic features are high-level

representations, the lp− norm is hard to capture sufficient

information. Hence, we also adopt adversarial learning for

the visual semantic pairs. The discriminator is designed to

distinguish whether the input is from the output of the gen-

erator or the real data distribution. The adversarial process

is formulated as:

LD = E(x,s)∼p(x,s) [Dϕ(x, s)]

− E(x̂,s)∼pθ(x̂|s,z) [Dϕ(x̂, s)]− βLGP ,
(4)

where D is discriminator with parameter ϕ and LGP =
(‖∇τDϕ(τ, s)‖

2
2−1)2 is the gradient penalty to enforce the

Lipschitz constraint; τ is the linear interpolation between

the real feature x and the generated feature x̂; β > 0 is a

hyper parameter.

3.3. Category Attentive Network

The above Semantic Preservation Network mostly focus-

es on learning to generate more semantic-related visual fea-

tures. However, it is no doubt that the feature confusion

does exist in traditional and generalized zero-shot learning,

especially generated methods. In this section we introduce

a Category Attentive Network that takes the task of guiding

generator to generate more discriminative and high quality

visual features. As illustrated in the right of Fig. 2, the gen-

erated features from the previous hidden layer x̂ ∈ Rb×d

are first copied into two feature spaces f(x̂) ∈ Rb×d and

g(x̂) ∈ Rb×d to calculate the attention and h(x̂) ∈ Rb×d

represents original features, where b is batch size of the gen-

erated samples and d is the number of feature dimensions.

Here, we have Eq. (5):

kij = f (x̂i) g (x̂j)
T
,Wi,j =

exp (kij)
∑b

i=1 exp (kij)
, (5)



where the ith row and jth column of k reflects the influ-

ence to which the jth class attends to the ith class, in other

words, the product between the different generated features

is regarded as a category correlation matrix. Hence, each

row of W after softmax represents a mode of attention and

the output is formulated as:

t =

b
∑

i=1

Wi,jh (x̂) ,oi = αt+ (1− α)h(x̂), (6)

where W is attention map, the original features are multi-

plied by the attention weights to produce the category at-

tentive representation t, and α is a parameter to control the

influence of attention for final generated features o based

on the consideration of generated feature quality and itera-

tive stability. More intuitively, assuming that the ith row of

f is a horse and the jth column of gT is a sheep, the cor-

relation between the two is relatively strong, and the cor-

relation is weak if the jth column represents a bat. Then

we can learn better features through attention and it helps

to refine the category feature, enabling the similar images

to have smaller distances and dissimilar images have larger

distances. Besides, the category attention is obtained from

the previous generated process as the intrinsic information.

This indicates that this strategy has potential for expanding

into other methods and tasks. In this way, the attention layer

is seen as the auxiliary generation module, which allows the

network to first rely on the cues from a certain category and

then gradually learn to assign more weight to the inter-class

evidence. This also mitigates the classification bias towards

some specific classes. Therefore, the generated features are

more high-quality and discriminative.

3.4. Prototype­based Classification Network

Since the goal of ZSL and GZSL is to identify novel

classes, the quality and generalization ability of generated

features should be focused. To further preserve the discrim-

inative information of generated visual features, a classifi-

cation network is designed to predict corresponding class

labels of both seen and unseen categories. We introduce the

classification branch from the perspective of prototype to

reduce model complexity and make full use of known se-

mantic information. In fact, the experiments show that the

proposed strategy is more reasonable. The training objec-

tive of classification part is to minimize the following loss

function:

Lcls = min
θ

∑

i

(Lθ (xi,A) + Lθ (x̂i,A)) , (7)

Lθ (xi,A) = − logP (y|xi,A; θ) , (8)

where P (yj |xi,A; θ) =
exp(xT

i Eθ(sj))
∑

M
k exp(xTEθ(sj))

, and Lθ are

classification losses of real and generated pseudo visual fea-

tures, A ∈ Rq×M is the class semantic prototype matrix of

both the seen and unseen classes, M is number of all classes

with semantic features dimensions q. While, sj is the cor-

responding class semantic prototype of class yj , Eθ men-

tioned in Eq. (3) is used to project the class semantic fea-

tures into the visual space. The value of xT
i Eθ (sj) is seen

as the compatibility score between the visual feature xi and

the jth class semantic prototype sj selected from semantic

space. If the sample xi belongs to class yj , their compati-

bility score should be large; otherwise it should be small. In

this way, the separability between any two different classes

is enlarged at the level of visual-semantic prototypes. Be-

sides, the unseen class semantic prototypes are also taken

into consideration, which prevents the seen data from clas-

sifying into unseen classes. The seen to unseen bias issue

thus is mitigated obviously.

3.5. Full Objective

Overall, the objective function trained of the proposed

model is summarized with:

LObj = LV + LS + Lpre + LD + ϑLcls (9)

where ϑ is hyper-parameter that assign weight on the clas-

sification loss. Among them, Lpre and Lcls reuse the cor-

responding network, so no additional parameters are intro-

duced. During the test stage, the similarities between the

test instances and the unseen class semantics prototypes are

obtained by calculating the distances of the visual features

and the generated unseen visual features.

4. Experiments

In this section, we conduct experiments to evaluate our

approach on both traditional ZSL and generalized ZSL. We

first document the datasets and the experimental settings

and then compare our approach with some selected com-

petitors. Finally, some ablation studies are given, as well as

the discussions.

4.1. Datasets and Implementation Details

We conduct experiments on two coarse-grained dataset-

s and two fine-grained datasets. Animals with Attributes1

(AWA1) [11] consists of 30,475 images of 50 animal

species, where 85-dimensional attributes are provided for

each class as the class semantic features. Similarly, AWA2

[22] has 37,322 images with 85-dimensional attributes for

50 classes. In addition to the coarse-grained datasets AWA1

and AWA2, we also test fine-grained datasets Caltech-

UCSD-Birds 200-2011 (CUB) [24] and Oxford Flower-

s (FLO) [16] with 11,788 and 8,189 images, respectively.

As for the class semantic for both CUB and FLO dataset-

s, we follow Cycle-CLSWGAN [5] and leverage 1,024-

dimensional semantic features produced by the character-

based CNN-RNN [19] that encodes the textual description



Method
AWA1 AWA2 CUB FLO AWA1 AWA2 CUB FLO

T u s H u s H u s H u s H

LATEM[26] 55.1 55.8 49.3 40.4 7.3 71.7 13.3 11.5 77.3 20.0 15.2 57.3 24.0 6.6 47.6 11.5

DEVISE[6] 54.2 59.7 52.0 45.9 13.4 68.7 22.4 17.1 74.7 27.8 23.8 53.0 32.8 9.9 44.2 16.2

ESZSL[20] 58.2 58.6 53.9 51.0 2.4 70.1 4.6 5.9 77.8 11.0 12.6 63.8 21.0 11.4 56.8 19.0

SAE[10] 53.0 54.1 33.0 - 1.8 77.1 3.5 1.1 82.2 2.2 8.8 18.0 11.8 - - -

ALE[1] 59.9 62.5 54.9 48.5 16.8 76.1 27.5 14.0 81.8 23.9 23.7 62.8 34.4 13.3 61.6 21.9

SYNC[4] 54.0 46.6 55.6 - 8.9 87.3 16.2 10.0 90.5 18.0 11.5 70.9 19.8 - - -

SJE[2] 65.6 61.9 53.9 53.4 11.3 74.6 19.6 8.0 73.9 14.4 23.5 59.2 33.6 13.9 47.6 21.5

DEM[29] 68.4 67.1 51.7 70.2 32.8 84.7 47.3 30.5 86.4 45.1 19.6 57.9 29.2 57.2 67.7 62.0

RELATION NET[23] 68.2 64.2 55.6 - 31.4 91.3 46.7 30.0 93.4 45.3 38.1 61.1 47.0 38.9 84.4 53.2

GAZSL[30] 68.2 70.2 55.8 60.5 29.6 84.2 43.8 35.4 86.9 50.3 31.7 61.3 41.8 - - -

CLSWGAN[27] 68.2 65.3 57.3 67.2 57.9 61.4 59.6 56.1 65.0 60.2 50.3 58.3 54.0 59.0 73.9 65.6

Cycle-CLSWGAN[5] 66.8 - 58.6 70.3 56.9 64.0 60.2 - - - 45.7 61.0 52.3 59.2 72.5 65.1

GDAN[9] - - - - - - - 32.1 67.5 43.5 39.3 66.7 49.5 - - -

COSMO[3] - - - - 52.8 80.0 63.6 - - - 44.4 57.8 50.2 59.6 81.4 68.8

LisGAN[14] 70.6 - 58.8 69.9 52.6 76.3 62.3 51.1 72.4 60.0 46.5 57.9 51.6 57.7 83.8 68.3

f-VAEGAN-D2[28] - 71.1 61.0 67.7 - - - 57.6 70.6 63.5 48.4 60.1 53.6 56.8 74.9 64.6

ASPN (Ours) 75.4 73.3 73.4 78.1 58.0 85.7 69.2 46.2 87.0 60.4 50.7 61.5 55.6 67.3 87.4 76.0

Table 1. The per-class average Top-1 accuracy (%) for the traditional (TZSL) and generalized ZSL (GZSL) on four datasets. The best

results are marked with boldface.

of an image containing fine-grained visual descriptions (10

sentences per image). As for visual features, we follow the

previous work [27] to use the 2,048-dimensional top pool-

ing units of the 101-layered ResNet [8] as the deep features

without fine-tuning.

In our model, the encoder and decoder are implement-

ed by three-layer neural network of 1,800 hidden units with

ReLU activation. The proposed model is trained with batch

size of 64 to find the best one model for testing accuracy.

As for parameters, we set ϑ = 1.0, β = 0.01 and initialize

α = 0.9. The model is optimized with the Adam solver

with a cross-validated learning rate 0.0001. For the tradi-

tional ZSL task that all the test instances are from the un-

seen classes where they are predicted into, we use the aver-

age per-class top-1 accuracy T to evaluate the performance

of each model. For the generalized ZSL task, we evaluate

the the accuracy of unseen and seen classes and their har-

monic mean to comprehensively show the performance of

the proposed model. In harmonic mean H=(2×u×s)/(u+s),

u and s denote the accuracy of unseen and seen classes, re-

spectively.

4.1.1 Results on Traditional ZSL

We report the comparison results of the proposed approach

and several competitors in Table 1 T column. It can be

observed that our model achieves the best performance on

four datasets. The overall improvements on AWA1, AWA2,

CUB, and FLO datasets are from 70.6%, 71.1%, 61.0% and

70.3% to 75.4%, 73.3%, 73.4% and 78.1% i.e., all quite sig-

nificant, against the previous state-of-the-art. From a holis-

tic perspective, ASPN obtains 75.1% average performance

from coarse-grained to fine-grained datasets. It should be

noted that our approach achieves excellent results on two

challenging fine-grained datasets CUB and FLO. This indi-

cates that the proposed unified model is able to accurately

distinguish a large number of different categories through

the SP and CA strategies. The contribution of each part will

be discussed in the ablation study.

4.1.2 Results on Generalized ZSL

We then report the results of the generalized ZSL task and

compare the proposed model with these approaches in Ta-

ble 1.

From the result, it can be observed that our approach

achieves superior and stable results on most datasets under

generalized setting, especially on T and H metric. Specif-

ically, for the coarse dataset AWA1, we obtain 5.6% im-

provement in terms of comprehensive evaluation metric H

over the second best approach COSMO[3], which indicates

that our ASPN achieves balance between the seen and un-

seen accuracy benefited from the higher quality generated

samples. Compared with similar cyclic based work Cycle-

CLSWGAN [5], ASPN greatly improves the performance

on unseen accuracy, which proves that the category attentive

regularization may further promote the diversity and dis-

crimination of the genrated features. As a result, it can tack-

le the confusing problem of seen and unseen classes to boost

the harmonic mean accuracy. On the AWA2 dataset, our

model is still very competitive, where the proposed mod-

el obtains the highest H. Different from the best results of

f-VAEGAN-D2[28], our ASPN improves the accuracy of

unseen classes as much as possible without sacrificing the

accuracy of the seen class, which is more feasible in real

life. In summary, our method generates discriminative fea-

tures by the proposed strategies to alleviate part of the clas-

sification bias problems and balance the accuracy of seen

and unseen categories under the challenging GZSL setting

to boost the performance significantly.
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Figure 3. The classification results (in %) of the traditional and generalized ZSL for component analysis in (a) AWA1, (b) CUB and the

confusion matrices on the evaluation of AWA1 dataset for both CLSWGAN and ASPN (Ours) method.

Model MFLOPs Parameters Memory

Cycle-CLSWGAN 304.3 18.1M

ASPN (Ours) 109.8 13.9M

Table 2. Complexity evaluation with FLOPs and Parameters Mem-

ory under Tensorflow framework.

4.2. Ablation Studies

In this section, we analyze our Attentive Semantic P-

reservation Network in terms of components of the model

and give the class-wise accuracy evaluation.

4.2.1 Component Analysis.

In order to investigate the impacts of each module, we con-

duct the component analysis on these datasets. Specifically,

the unidirectional mapping of the generation from seman-

tic space with prototype-based classification loss is set to be

the Baseline. At the same time, SPN represents semantic p-

reservation module and ASPN means the complete network

equipped with all the components. As can be seen from Fig.

3 (a) (b), the proposed model with SPN module outperform-

s the baseline across all these datasets in terms of unseen

accuracy, where CUB obtains the highest 11.1% improve-

ment for u. Besides, our ASPN method further improves the

performance of unseen classes while maintaining the accu-

racy of seen classes. In fact, the results (i.e.,T and u) of

the ASPN model with category self-attention are boosted

compared to the Baseline and the SPN with a large mar-

gin. This indicates that the proposed category self-attention

module brings positive impacts for the classification via im-

proving the discriminative of the generated visual features.

Note that the accuracy of the seen class is slightly reduced

because the generated visual features are a little biased to-

wards the unseen classes.

In addition, Table 2 shows that the proposed prototype-

based classification model is more efficient with the low-

er complexity and better performance than the method of

training classifiers. Low runtime consumption is also more

realistic in application scenarios.

4.2.2 The Evaluation of the Class-wise Accuracy.

To show the results in detail, we also conduct experiments

to evaluate the class-wise accuracy. Fig. 3 (c) (d) shows

the confusion matrices of CLSWGAN [27] (T =68.2%)

and our method (T =75.4%) on the AWA1 dataset. Com-

paring the results of ZSL, we can find that our model has

fewer misclassifications, and the classification results are

more consistent with the visual correspondence. In fact, our

model has better performance on most of the classes, which

proves the effectiveness of our method on handling cate-

gories fusion in ZSL setting. More intuitively, CLSWGAN

[27] tends to recognize seal as walrus in Figure (c), while

ASPN can accurately distinguish this visually similar ani-

mals with the help of category attention. The same phe-

nomenon appears in the classification of bat and rat, giraffe

and horse, which further proves the effectiveness of the pro-

posed method. Back to Fig. 3 (a) we can find that the

improvement of u obviously promotes the overall perfor-

mance. By the comparison of u for different strategies in

histogram, we can draw a simple conclusion that the main

contribution comes from category attentive strategy.

5. Conclusion

In this paper, we propose a novel generated approach to

improve the quality of generated features. Semantic preser-

vation strategy encodes semantic-related information into

the generated features. Category self-attention network and

prototype-based classification module are then deployed to

further alleviate feature confusion in classification. Exten-

sive experiments on four benchmark datasets demonstrate

the effectiveness of the proposed model in both traditional

ZSL and challenging generalized ZSL tasks. The ablation

studies show the impacts of each part of the model. The

class-wise evaluation is also given to intuitively explain why

the performance of the proposed model can be improved.
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