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Abstract

Deep neural networks (DNN) have shown remarkable

success in a variety of machine learning applications. The

capacity of these models (i.e., number of parameters),

endows them with expressive power and allows them to

reach the desired performance. In recent years, there

is an increasing interest in deploying DNNs to resource-

constrained devices (i.e., mobile devices) with limited en-

ergy, memory, and computational budget. To address this

problem, we propose Entropy-Constrained Trained Ternar-

ization (EC2T), a general framework to create sparse and

ternary neural networks which are efficient in terms of stor-

age (e.g., at most two binary-masks and two full-precision

values are required to save a weight matrix) and computa-

tion (e.g., MAC operations are reduced to a few accumula-

tions plus two multiplications). This approach consists of

two steps. First, a super-network is created by scaling the

dimensions of a pre-trained model (i.e., its width and depth).

Subsequently, this super-network is simultaneously pruned

(using an entropy constraint) and quantized (that is, ternary

values are assigned layer-wise) in a training process, re-

sulting in a sparse and ternary network representation. We

validate the proposed approach in CIFAR-10, CIFAR-100,

and ImageNet datasets, showing its effectiveness in image

classification tasks.

1. Introduction

Convolutional neural networks (CNN) have excelled

in numerous computer vision applications. Their per-

formance is attributed to their design. That is, deeper

(i.e., designed with many layers) and high-capacity (i.e.,

equipped with many parameters) CNNs achieve better per-

formance in a given task, at the cost of sacrificing com-

putational and memory efficiency. This general trend has

been disrupted by the need to deploy neural networks in

resource-constrained devices (e.g., autonomous vehicles,

robots, smartphones, wearable, and IoT devices) with lim-

ited energy, memory, and computational budget, as well as

low-latency and/or low-communication cost requirements.

Thus, driven by both the industry and the scientific com-

munity, the design of efficient CNNs has become an ac-

tive area of research. Moreover, the Moving Picture Expert

Group (MPEG) of the International Organization of Stan-

dards (ISO) joined this endeavor, and recently issued a call

on neural network compression techniques [1].

Recent studies have shown that most CNNs are over-

parameterized for the given task [2]. Such models can be

interpreted as super-networks, designed with millions of pa-

rameters to reach a target performance (e.g., high classifi-

cation accuracy), while being memory and computational

inefficient. However, from these models, it is possible to

find a small and efficient sub-network with comparable per-

formance. This hypothesis has been validated with simple

methods, i.e., by pruning neural network connections based

on the weights’ magnitude [3], resulting in little accuracy

degradation. Moreover, the recently proposed lottery-ticket

hypothesis [4], supports the existence of an optimal sub-

network inside a super-network, and has shown to general-

ize across different datasets and optimizers [5].

Among existing network compression techniques, prun-

ing and quantization are two popular and effective tech-

niques to reduce the redundancy of deep neural net-

works [6]. Pruning entails systematically removing network

connections in a structured (i.e., by removing groups of pa-

rameters) or unstructured fashion (i.e., by removing indi-

vidual parameter elements) [7]. In contrast, quantization

minimizes the bit-width of the network parameter values

(and thus, the number of distinct values) [8, 9]. From an-

other perspective, efficient neural networks can be designed

by finding the right balance between its dimensions, i.e.,

the networks’ width, depth, and input resolution. In this

regard, compound model scaling [10] allows scaling the di-



mensions of a baseline-network according to some heuristic

rules grounded on computational efficiency.

In this work, we propose Entropy-Constrained Trained

Ternarization (EC2T), a method that leverages on com-

pound model scaling [10] and ternary quantization tech-

niques [9], to design a sparse and ternary neural network.

The motivations behind such network representation are

based on efficiency. Specifically, in terms of storage, at

most two binary-masks and two full-precision values are

required to represent and save each layer’s weight matrix.

Regarding mathematical operations, multiply-accumulate

operations (MACs) are reduced to a few accumulations

plus two multiplications. The EC2T approach is illustrated

in Figure 1 and consists of two stages. In the first stage,

a super-network is created by scaling the dimensions of

a baseline-network (its width and depth). Subsequently,

during a training stage, a sparse and ternary sub-network

is found by simultaneously pruning (enforced by introduc-

ing an entropy constraint in the assignment cost function)

and quantizing (ternary values are assigned layer-wise) the

super-network. Specifically, our contributions are:

• We propose an approach to design sparse and ternary

neural networks, that relies on compound model scal-

ing [10] and quantization techniques. For the latter,

we extend the approach described in [9] by introduc-

ing an assignment cost function in terms of distance

and entropy constraints. The entropy constraint allows

adjusting the trade-off between sparsity and accuracy

in the quantized model. Therefore, quantized mod-

els with different levels of sparsity can be rendered,

according to the compression and application require-

ments.

• Our approach allows simultaneous quantization and

sparsification in a single training stage.

• In the context of image classification, the proposed ap-

proach finds sparse and ternary networks across differ-

ent datasets (CIFAR-10, CIFAR-100, and ImageNet),

whose performance is competitive with efficient state-

of-the-art models.

This paper is organized as follows. First, in section 2, a

literature review of techniques to design efficient neural net-

works is provided, emphasizing those that are related to our

approach. Subsequently, in section 3, the proposed EC2T

approach is detailed. Afterward, in section 4, we present

experimental evidence and results, validating the proposed

method across different networks and datasets. Finally, in

section 5, we discuss the insights of the EC2T approach, its

advantages and downsides, and future work.

2. Related Works

In recent years, various techniques have been proposed

in the literature to design efficient neural networks, e.g.,

pruning, quantization, distillation, and low-rank factoriza-

tion [6]. In particular, pruning and quantization provide

unique benefits to DNNs in terms of hardware efficiency

and acceleration.

Pruning removes non-essential neural network connec-

tions, according to different criteria, either in groups (struc-

tured pruning) or individual parameters (unstructured prun-

ing). Specifically, the second approach is achieved by max-

imizing the sparsity 1 of the network parameters. Conse-

quently, the computational complexity of the network is

reduced, since arithmetic operations can be skipped for

those parameter elements which are zero [11]. Early works

on sparsity use second-order derivatives (Hessian) to com-

pute the saliency of parameters, suppressing those with the

smallest value [12, 13]. Current state-of-the-art techniques

to promote sparsity in DNNs rely either on magnitude-

based pruning or Bayesian approaches [14]. Magnitude-

based pruning is the simplest and most effective way to in-

duce sparsity in neural networks, [7]. In contrast, Bayesian

approaches although computationally expensive, represent

an elegant solution to the problem. Moreover, they estab-

lish connections with information theory. In this context,

variational dropout [15] and l0-regularization [16] are two

representative techniques.

Regarding quantization, it reduces the redundancy of

deep neural networks by minimizing the bit-width of the

full-precision parameters. Therefore, quantized networks

require fewer bits to represent each full-precision weight,

and demand less mathematical operations than their full-

precision counterparts. Binary networks [17, 18] repre-

sent an extreme case of quantization where both, weights

and activations are binarized. Thus, arithmetic opera-

tions are reduced to bit-wise operations. By introducing

three distinct elements per layer, ternary networks achieve

more expressive power and higher performance than bi-

nary networks. Moreover, sparsity can be induced in the

network by including zero as a quantized value, while

the remaining values are modeled with scaling factors per

layer. Following this approach, [19] proposed to minimize

the Euclidean distance between full-precision and quan-

tized parameters (e.g., wq), where the latter are symmet-

rically constrained (e.g., wq ∈ {−a, 0, a}, with a > 0).

In contrast, [9] used asymmetric constraints (e.g., wq ∈
{−a, 0, b}, with a > 0 and b > 0), improving the mod-

eling capabilities of ternary networks. Several variants of

ternary network quantization exist, e.g., based on Truncated

Gaussian Approximation (TGA) [20], Alternating Direction

1Percentage of zero-valued parameter elements in the whole neural net-

work.



Figure 1. In the EC2T approach, model compound scaling is used to create a super-network from a baseline-network. Afterward, in a

ternary quantization stage, this super-network is simultaneously pruned and quantized, rendering a sparse and ternary sub-network with

comparable performance.

Method of Multipliers (ADMM)) [21], and Multiple-Level-

Quantization (MLQ) [22], among others. With regards to

hardware efficiency, ternary networks represent a trade-off

between binary networks (extremely hardware-friendly, but

with limited modeling capabilities) and their full-precision

counterparts (with higher modeling capabilities, but expen-

sive in terms of storage and computational resources), [19].

Usually, highly efficient network representations are the

result of combining multiple techniques. For instance, prun-

ing followed by quantization [23, 24], in addition to en-

tropy coding [25, 26, 27]. From a different perspective,

progress in designing efficient neural networks has been fu-

eled by advances in hand-crafted architectures (e.g., Mo-

bilenet [28], Mobilenet-V2 [29], and ShuffleNet [30]) as

well as neural architecture search techniques (e.g., Mnas-

net [31], EfficientNet [10], and MobileNet-V3 [32]). More-

over, simpler methods such as model scaling, allows in-

creasing the performance of a baseline network by scaling

one or more dimensions (i.e., its depth, width, and input

resolution) independently [31, 32]. In [10], this approach

is improved with the introduction of compound model scal-

ing, where the network dimensions are treated as dependent

variables, constrained by a limited number of resources,

measured in terms of floating-point operations (FLOPs).

In this research work, we advocate for compound model

scaling, ternary quantization, and information theory tech-

niques, as the core building blocks to design a CNN with

optimal dimensions (i.e., the right balance between the net-

works’ width and depth) and efficient parameter representa-

tion (i.e., three distinct values per layer and maximal spar-

sity).

3. Learning Sparse & Ternary Networks

The entropy-constrained trained ternarization (EC2T)

approach (see Figure 1), consists of two stages, namely

compound model scaling followed by ternary quantization,

both described in sections 3.1 and 3.2, respectively.

3.1. Compound model scaling

In this stage, a super-network is created by scaling the

dimensions of a pre-trained model, resulting in an over-

parameterized network. Specifically, the pre-trained net-

work’s depth, width, and input image resolution, are mod-

ified with the scaling factors d, w, and r, respectively, ac-

cording to Equation (1). In this equation, a, b and c, are

constants determined by grid search, and φ is an user spec-

ified parameter. For small-scale datasets (CIFAR-10 and

CIFAR-100) the input image resolution was fixed in the pre-

trained model. Thus, Equation (1) was solved with r = 1.

On the other hand, for large-scale datasets (ImageNet), the

EfficientNet-B1 network was adopted using the scaling fac-

tors suggested in [10].

d = aφ, w = bφ, r = cφ (1)

s.t. a · b2 · c2 ≈ 2 and a ≥ 1, b ≥ 1, c ≥ 1

3.2. Ternary quantization

In this stage, a sparse and ternary sub-network is ob-

tained by simultaneously pruning and quantizing a super-

network. To this end, we extend the approach described

in [9], where a ternary network is obtained by the inter-

play between quantized and full-precision models. That

is, gradients from the quantized model are used to update

both, its parameters and those of the full-precision model.

Therefore, the first parameter update enables the learning
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Figure 2. Histograms of the parameters in the projection-convolution layer, in the first block (MBConv1) of the EfficientNet-B1 network.

The centroid values wn (negative scalar), w0 (zero), and wp (positive scalar), are shown in magenta, blue and orange colors, respectively.

The hyper-parameter λ controls the intensity of the network sparsification, i.e., how many full-precision weight elements are assigned with

the value w0. When λ=0, the weights are quantized to their nearest neighbor centroids. Using small values for λ (see the histogram with

λ=0.05) results in quantized parameters with low sparsity (i.e., few parameters are set to zero). As λ is increased (see histograms with

λ=0.10 and 0.15), the sparsity of the quantized parameters is promoted (i.e., most parameters are set to zero). Eventually, as this process

continues, there is a value λ = λmax, at which the network parameters are binarized. In this special case, one of the two clusters of values

(represented by wn and wp) is completely assigned to w0 (see the histogram with λ=λmax).

of ternary values (i.e., only two scalar values per layer are

learned, while the third quantized value, which is zero, is

excluded from the learning process). On the other hand, the

latter parameter update promotes the learning of ternary as-

signments (i.e., by adapting the full-precision parameters to

the quantization process). Nonetheless, this approach does

not allow explicit control of the sparsification process. To

overcome this limitation, we introduce the assignment cost

function shown in Equation (2), which guides the assign-

ment (with centroid indices) of ternary values (or centroid

values) in the quantized network, in terms of distance and

entropy constraints.

C(l)
c = d(W(l), w(l)

c )− λ(l) log2(P
(l)
c ) (2)

dWij ,wc
= (Wij − wc)

2 (3)

In Equation (2), C(l)
c stands for the assignment cost for the

full-precision weights W(l) at layer l, given the centroid

values w
(l)
c , indexed by c. Therefore, if W(l) has m × n

dimensions and there are nc centroid values in that layer,

then C(l)
c ∈ ℜnc×m×n. The first term in Equation (2) mea-

sures the distance between every full-precision weight el-

ement W
(l)
ij ∈ W(l) (where i andj are indices along the

dimensions of W(l)) and the centroid values w
(l)
c ∈ ℜ, ac-

cording to Equation (3). The second term in Equation (2),

weighted by the scalar λ(l) ∈ ℜ, is an entropy constraint

which promotes sparsity in the quantized model. This is

achieved by measuring the information content of the quan-

tized weights, i.e., I = − log2(P
(l)
c ) ∈ ℜ, where the

probability P
(l)
c ∈ [0, 1] defines how likely a weight ele-

ment W
(l)
ij ∈ W(l) is going to be assigned to the centroid

value w
(l)
c . This probability is calculated for each layer l

as P
(l)
c = N

(l)
wc/N

(l)
W , with N

(l)
wc being the number of full-

precision weight elements assigned to the centroid value

w
(l)
c , and N

(l)
W the total number of parameters in W(l).

After computing Equation (2) (for all layers and centroid

values), the quantized model is updated at layer l, by assign-

ing the current centroid values (w
(l)
c ), using the new cen-

troid indices (c) obtained from Equation (4). In this equa-

tion, the assignment matrix A(l) has the dimensions of the

full-precision weights W(l). For ternary networks, we de-

fine the centroid values as w
(l)
c ∈ {wn, w0, wp}, and their

assignments with the indices c ∈ {n, 0, p}. In this notation,

the indices n, 0, and p, correspond to negative, zero, and

positive values, respectively.

A(l) = argmin
c

C(l)
c (4)

During the ternary quantization process, the strength of the

sparsification (at layer l) is modulated by the scalar λ(l)



Figure 3. Performance of the C10-MicroNet network evaluated in the CIFAR-10 dataset, using TTQ vs our proposal (EC2T). Every data

point in this plot represents a quantized model, trained with a specific level of sparsity, and initialized with different centroid values. In the

TTQ approach, the sparsity is controlled via simple thresholding as described in [9], whereas in the EC2T approach, it is modulated by γ,

which was increased from 0.0 (low sparsity) to 0.4 (high sparsity), in steps of 0.1. Notice that beyond 70% sparsity, the accuracy of the

quantized models degrades quickly. However, this effect is more evident when using TTQ than EC2T.

(shown in Equation (2)). As a concrete example, Figure 2

illustrates the effect of using different values for λ(l) during

the quantization of the parameters (in the first block) of the

EfficientNet-B1 network. In practice, λ(l) is computed as

λ(l) = γ δ(l) λ
(l)
max. In this expression, γ is a global hyper-

parameter that controls the intensity of the sparsification,

while δ(l) and λ
(l)
max are scalars computed layer-wise. The

scaling factor δ(l), renders higher values for layers with lots

of parameters. Analogously, it renders lower values for lay-

ers with few parameters. Finally, λmax is updated during

training and avoids a binary quantization process (see the

histogram with λ=λmax in Figure 2).

4. Experiments & Results

The experiments were conducted in a variety of networks

across different datasets (i.e., CIFAR-10, CIFAR-100, and

ImageNet), using multiple GPUs (NVIDIA Titan-V and

Tesla-V100).

First, to reveal the advantages of our proposal (EC2T)

over Trained-Ternary-Quantization (TTQ) [9], an image

classification network was designed for the CIFAR-10

dataset, by introducing the building blocks of Pyramid-

Net [33] in the ResNet-44 architecture [34]. This neural

network, termed C10-MicroNet, was derived from models

designed for the 2019 MicroNet Challenge 2 competition.

For a detailed description of the network architecture, see

Appendix A. The experimental results contrasting the two

mentioned approaches are depicted in Figure 3. In this il-

lustration, notice that as the sparsity of the quantized net-

2https://micronet-challenge.github.io

works increases, EC2T shows less accuracy degradation

than TTQ.

Subsequently, Table 1 provides a comparison of the

EC2T approach vs state-of-the-art ternary quantization

techniques, by applying them to ResNet-20 and ResNet-

18 networks, in CIFAR-10 and ImageNet datasets, respec-

tively. From these results, we have two main conclusions.

First, they suggest that disabling the entropy constraint in

Equation (2) (i.e., setting λ = 0), renders ternary mod-

els with low sparsity. Nonetheless, they are more efficient

than their full-precision counterparts and show little accu-

racy degradation. These ternary networks are referred to as

EC2T-1 in Table 1. Specifically, in the ImageNet dataset,

the EC2T-1 model reduces the parameter count in 92.25%

and the FLOPs in 79.73%, while in the CIFAR-10 dataset,

the reductions are 95.02% and 86.35% in parameter count

and FLOPs, respectively. In contrast, by enabling the en-

tropy constraint in Equation (2) (i.e., setting λ > 0), it re-

sults in ternary models with increased sparsity, and thus,

they are more efficient in terms of parameter size and math-

ematical operations. For instance, in the ImageNet dataset,

the model with the highest sparsity is EC2T-4, which re-

duces the number of parameters by 93.88% and the number

of FLOPs by 86.61%, while its accuracy is degraded only by

2.73%. Likewise, in the CIFAR-10 dataset, the model with

the highest sparsity is EC2T-3, with an accuracy degrada-

tion of 0.91%, while the parameter count and FLOPs are

reduced by 95.91% and 91.88%, respectively. The sec-

ond conclusion is that the EC2T approach renders accurate

ternary models, which are competitive with state-of-the-art

techniques. Regarding sparsity, only [9] provides an es-



Table 1. Comparison of the EC2T approach vs state-of-the-art ternary network quantization techniques, applied to ResNet-20 and ResNet-

18 networks, in CIFAR-10 and ImageNet datasets, respectively.

Model Top-1 Acc. (%)
|W=0|
|W | (%)‡ #Params. #+ #× #FLOPs

ImageNet

ResNet-18a 69.75 0.00 11M 1795M 1797M 3592M

EC2T-1 (λ = 0)b 67.30 26.80 852K 669M 59M 728M

EC2T-2 (λ > 0)c 67.58 59.00 734K 560M 61M 622M

EC2T-3 (λ > 0)c 67.26 72.09 686K 528M 57M 585M

EC2T-4 (λ > 0)c 67.02 75.62 673K 424M 57M 481M

TTQ [9] 66.60 30-50 ⊘ ⊘ ⊘ ⊘

ADMM [21] 67.00 ⊘ ⊘ ⊘ ⊘ ⊘

TGA [20] 66.00 ⊘ ⊘ ⊘ ⊘ ⊘

CIFAR-10

ResNet-20a 91.67 0.00 269K 40.6M 40.7M 81.3M

EC2T-1 (λ = 0)b 91.16 45.17 13.4K 10.6M 0.5M 11.1M

EC2T-2 (λ > 0)c 91.01 63.90 11.8K 8.0M 0.5M 8.5M

EC2T-3 (λ > 0)c 90.76 73.26 11.0K 6.1M 0.5M 6.6M

TTQ [9] 91.13 30-50 ⊘ ⊘ ⊘ ⊘

TGA [20] 90.39 ⊘ ⊘ ⊘ ⊘ ⊘

MLQ [22] 90.02 ⊘ ⊘ ⊘ ⊘ ⊘

a Baseline model. b EC2T approach with the entropy constraint disabled (λ = 0).
c EC2T approach with the entropy constraint enabled (λ > 0).

‡ Sparsity, measured as the percentage of zero-valued parameters in the whole neural network.

⊘: Not reported by the authors.

timated value for the ternary models after applying TTQ

(30%-50%). For the remaining techniques (ADMM [21],

TGA [20], and MLQ [22]), only the quantized model accu-

racy is reported.

Finally, Table 2 contrasts efficient state-of-the-art neu-

ral networks vs sparse and ternary networks rendered with

our proposal, in three distinct datasets (CIFAR-10, CIFAR-

100, and ImageNet). The former models include Con-

denseNet [35], Mobilenet-V2 [29], and Mobilenet-V3 [32].

The latter models result from applying the EC2T ap-

proach to the pre-trained networks, C10-MicroNet, C100-

MicroNet, and EfficientNet-B1 [10]. In particular, the C10-

MicroNet and C100-MicroNet networks were designed and

improved based on our submissions to the 2019-MicroNet

Challenge. Both share the same topology, except in the last

layer (i.e., the softmax layer), which is adapted to the num-

ber of output classes (see Appendix A). From the results in

Table 2, we highlight two points. First, the ternary networks

found by our proposed technique (see models indicated

with EC2T), are more efficient in terms of parameter size

and FLOPs than their respective baselines (C10-MicroNet,

C100-MicroNet, and EfficientNet-B1). Moreover, using the

tree adder [36] and efficient matrix representations (includ-

ing Compressed-Entropy-Row (CER)/Compressed-Sparse-

Row (CSR) formats [11] and the method described in Ap-

pendix B), leads to further savings in mathematical op-

erations and storage (see models referred with Improve-

ments). Second, these ternary models are competitive with

current state-of-the-art efficient neural networks (i.e., Con-

denseNet, Mobilenet-V2, and Mobilenet-V3), offering sim-

ilar advantages in terms of memory and computational re-

sources.

5. Conclusions

In this work, we presented Entropy-Constrained Trained

Ternarization, an approach that relies on compound model

scaling and ternary quantization to design efficient neural

networks. By incorporating an entropy constraint during the

network quantization process, a sparse and ternary model is

rendered, which is efficient in terms of storage and math-

ematical operations. The proposed approach has shown to

be effective in image classification tasks in both, small and

large-scale datasets. As future work, this method will be

investigated in other tasks and scenarios, e.g., federated-

learning [37]. Moreover, interpretability techniques [38]

will help us to understand how these models make predic-

tions given their constrained parameter space.



Table 2. Ternary models rendered with the EC2T approach vs efficient state-of-the-art neural networks, in CIFAR-10, CIFAR-100, and

ImageNet datasets.

Model Top-1 Acc. (%)
|W=0|
|W | (%)‡ #Params. #+ #× #FLOPs

ImageNet

EfficientNet-B1a 78.43 0.00 7.72M 654M 670M 1324M

+EC2T (λ = 0)b 75.05 60.73 1.07M 338M 50M 387M

+Improvementsc - - 972K 212M 50M 261M

MobileNet-V2 (d=1.4) 74.70 ⊘ 6.90M ⊘ ⊘ 585M⋆

MobileNet-V3 (Large) 75.20 ⊘ 5.40M ⊘ ⊘ 219M⋆

CIFAR-100

C100-MicroNeta 81.47 0.00 8.03M 1243M 1243M 2487M

+EC2T (λ = 0)b 80.13 90.49 412K 126M 3M 129M

+Improvementsc - - 226K 67M 3M 71M

CondenseNet-86 76.36 ⊘ 520K ⊘ ⊘ 65M⋆

CondenseNet-182 81.50 ⊘ 4.20M ⊘ ⊘ 513M⋆

CIFAR-10

C10-MicroNeta 97.02 0.00 8.02M 1243M 1243M 2487M

+EC2T (λ = 0)b 95.87 95.64 295K 72M 3M 75M

+Improvementsc - - 133K 39M 3M 42M

CondenseNet-86 95.00 ⊘ 520K ⊘ ⊘ 65M⋆

CondenseNet-182 96.24 ⊘ 4.20M ⊘ ⊘ 513M⋆

a Baseline model. b EC2T approach with the entropy constraint enabled (λ > 0).
c Improved representation of the neural network parameters by applying the tree adder,

the Compressed-Entropy-Row (CER)/Compressed-Sparse-Row (CSR) formats, and the method described Appendix B.
‡ Sparsity, measured as the percentage of zero-valued parameters in the whole neural network.

⋆ Reported as Multiply-Additions (MAdds). The number of FLOPs is approximately twice this value.

⊘: Not reported by the authors.
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