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Abstract

We propose Monte Carlo methods to leverage both spar-

sity and quantization to compress gradients of neural net-

works throughout training. On top of reducing the com-

munication exchanged between multiple workers in a dis-

tributed setting, we also improve the computational effi-

ciency of each worker. Our method, called Monte Carlo

Gradient Quantization (MCGQ), shows faster convergence

and higher performance than existing quantization meth-

ods on image classification and language modeling. Us-

ing both low-bit-width-quantization and high sparsity lev-

els, our method more than doubles the rates of existing com-

pression methods from 200× to 520× and 462× to more

than 1200× on different language modeling tasks.

1. Introduction

Much of the workload in current deep neural networks

are matrix-vector products, whose performance may be in-

creased by executing low-precision operations. This allows

for a more efficient use of available hardware as compared

to using full-precision values. In addition, computations on

zero-valued operands may be skipped to greatly improve

performance, depending on the sparsity levels. Moreover,

to improve the training speed, we may distribute computa-

tions over multiple workers or nodes.

Modern neural networks grow ever larger and more com-

plex. Hence, distributed training becomes more and more

important in order to keep training times reasonable. How-

ever, the distributed setting also introduces a communica-

tion overhead as the different workers have to synchronize

gradients. This overhead may grow significantly in larger

computing systems. Therefore, to improve training effi-

ciency at scale, it is essential to reduce the amount of com-

munication exchanged between workers.

Repeated random sampling approaches or Monte Carlo

methods, have shown great promise to initialize, regular-

ize [20, 24], and optimize [17] neural networks. Recently,

Monte Carlo Quantization (MCQ) [14] has been proposed,

which uses importance sampling to quantize both weights

and activations of pre-trained neural networks. We extend

this approach to quantize and sparsify gradients at training

time. By combining this approach with sparse tensor repre-

sentations, our method may also be used to lower the com-

putational load of each worker.

Our approach, called Monte Carlo Gradient Quantization

(MCGQ), offers several insights and modifications to the

originally proposed algorithm that greatly improve the per-

formance under severe gradient compression regimes. We

start by proposing dynamic sampling, a novel strategy to au-

tomatically learn optimal sampling hyperparameters at each

layer during training. Moreover, we propose sampling pro-

portional to the magnitude of the accumulated gradients at

each iteration, leveraging information from rarely sampled

gradients to reduce quantization losses even and especially

at high compression levels.

We evaluated MCGQ for several tasks, models, and op-

timizers. Our experiments show faster convergence than

existing quantization methods on logistic regression and

improved test and train performances on image classifica-

tion tasks, and higher compression rates at similar perfor-

mance as well as better compression for language model-

ing. MCGQ exhibits higher compression rates and less per-

formance degradation when compared to existing gradient

sparsification methods.

2. Related Work

The communication bandwidth of distributed training

may be reduced by gradient quantization and sparsification.

Current approaches mostly focus on one of the above or re-

quire two different algorithms to achieve both quantization

and sparsification. In contrast, MCGQ combines both nat-

urally, with different quantization and sparsity levels being

adjustable by the amount of sampling performed.

Focusing on existing gradient quantization approaches,

1-bit SGD [18] and signSGD [3] proposed to quantize all

gradients to 1-bit, with the latter work also introducing

signum which uses the sign of the momentum to perform

the updates. TernGrad [25] quantized to 2-bits, but used



full-precision gradients for the last layer and further train-

ing modifications on some of the experiments. QSGD [2]

proposed a family of compression schemes with several

bit-width levels, ranging from 2, 4 and 8 bits. Mem-

SGD [21] kept a record of the accumulated errors in mem-

ory to achieve a similar convergence rate as 32-bit SGD.

Ef-signSGD [7] improved convergence of sign based ap-

proaches by introducing error feedback in the next opti-

mization step.

Gradient sparsification approaches often allow for

greater degrees of compression by using encoded commu-

nication, such as run-length encoding (RLE) or Elias cod-

ing. Most existing methods rely on thresholds to sparsify

gradients [22, 1, 10], which may be hard to determine in

practice. Deep Gradient Compression or DGC [10] used

thresholding on the accumulated gradients to achieve high

compression rates. However, they require multiple training

tricks to achieve the floating-point gradient baseline’s per-

formance, such as warm-up training for a varied amount of

epochs depending on the data set. [5] extended 1-bit SGD,

and manually chose a fixed fraction of the gradients to be

nonzero. Finally, AdaComp [4] proposed to dynamically

control the rate of parameter updates by analyzing their lo-

cal gradient activity.

In contrast to most of the aforementioned methods, we

use the exact same training setup as the floating-point gra-

dient training. This significantly simplifies the adoption of

MCGQ and sparse gradient training for existing models and

respective training procedures.

3. Monte Carlo Gradient Quantization

In this work, we propose to use importance sampling

proportional to the gradient magnitude to approximate

floating-point gradients. Similar to sampling discrete prob-

ability densities, the quality of the approximation increases

with the amount of sampling performed [13].

3.1. Gradient Quantization and Sparsification

In standard stochastic gradient descent (SGD), a loss

function f : R
d → R is minimized w.r.t parameter x at

iteration t using a learning rate γ by the following update

rule: xt+1 := xt − γgxt
, where gxt

is the stochastic gradi-

ent such that E[gxt
] = ∇xt

f .

In our approach, we first compute all stochastic gradi-

ents for all layers and then use importance sampling to ap-

proximate the floating-point values in a layer-wise man-

ner. Given layer l at a certain iteration, we first normal-

ize the n gradient components by their l1-norm such that
∑n−1

k=0 |gl,k| = ‖gl‖1 = 1. From this probability density

function (PDF) we construct the respective cumulative den-

sity function (CDF) to define a partition of the unit interval

by Pm :=
∑m−1

k=0 |gl,k|:

(1)

Finally, given N uniformly distributed samples xi in

[0, 1), we approximate each gl,k by counting the number

of times its corresponding interval has been selected dur-

ing the sampling process. The value gl,ki
corresponding to

sample xi is denoted as gl,ki
∈ {−1, 0, 1}, where 0 means

the sample xi missed the interval of gl,k and ±1 represents

a hit, i.e. Pk ≤ xi < Pk+1, with the sign corresponding

to the sign of the respective component gl,k of the gradient.

We have:

gl,k ≈
1

N

N−1∑

i=0

gl,ki
. (2)

Our importance sampling technique is further described in

Algorithm 1. The number of samples N is controllable by

the hyperparameter K. We denote the quantized (integer)

gradient as glint
. To reduce the cost of finding the index of

the interval hit by a sample, we make use of the fact that the

CDF is monotonically increasing. We use startidx to keep

track of the index of the value hit by the last sample. For

the next sample, we need to search only over the values in

the CDF with an index larger than or equal to startidx. The

full quantization requires only a single pass over the CDF,

thus reducing the search cost from O(S2) to O(S) where

S = len(gl).
In contrast to the original MCQ algorithm [14], we do

not sort the values before constructing the PDF to reduce

the approximation noise since such noise proved to be ben-

eficial for convergence speed in practice. This was also pre-

viously observed by [15].

Algorithm 2 describes the importance sampling tech-

nique to quantize and sparsify gradients during training. For

simplicity, we assume an optimizer invariant to gradient

scale, e.g. ADAM or Lazy ADAM. When using a scale-

sensitive optimizer like SGD or RMSProp, the quantized

gradients glint
or, alternatively, the learning rate, must be

scaled by
‖gl‖1

len(gl)×K
.

Note that even when training in a single worker environ-

ment, i.e. not using a distributed setting, with a scale-variant

optimizer, MCGQ still reduces the computational cost of

the parameter updates by inducing high levels of sparsity.

3.2. Dynamic Sampling

Since our algorithm is performed in a layer-wise manner,

different layers may require different sparsity or quantiza-

tion levels, which depend on the sampling hyperparameter

K. To lower the computational cost, it is desirable to set K

as low as possible on each layer while minimizing perfor-

mance loss. By using the distance between quantized and



Algorithm 1: Monte Carlo Gradient Quantization

(MCGQ).

Input: gradients of layer l gl, sampling amount K

Init.: ξ ← random(0, 1),
N ← ⌈len(gl)×K⌉,
glint

← [0]× len(gl),
startidx ← 0

// construct PDF and CDF

glPDF
←
|gl|

‖gl‖1
;

glCDF
← cumsum(glPDF

);
// perform importance sampling

for i = 0, . . . , N − 1 do

// get sample xi on interval [0, 1]

xi ←
ξ + i

N
;

// find hit index

hitidx ← argmax(glCDF
[startidx :]|glCDF

≥
xi);
startidx ← hitidx;

// count according to the

original sign

glint
[hitidx]← glint

[hitidx] + sign(gl[hitidx]);

end

Output: glint

Algorithm 2: Gradient quantization and sparsifica-

tion.

Input: learning rate δ, n parameters of layer l xl,

sampling amount K

Init.: gl ← [0]× n

// compute gradients

for i = 0, . . . , n− 1 do

gl[i]← StochasticGradient(xli);
end

// quantize and sparsify

glint
← MCGQ(gl,K);

// update parameters

xl ← xl − δglint
;

full-precision distributions, we propose to learn different K

values automatically for each layer during training. We used

the Wasserstein-1 distance, also known as the Earth-Mover

distance [23], due to the inherent relation between quanti-

zation errors and Wasserstein distances [8].

The first Wasserstein distance represents the minimum

cost needed to transform one probability distributions into

another, with a transformation cost function γ and using in-

finitesimal random mass transfers. The joint distribution of

X and Y corresponds to the space where mass is transferred

between floating-point and quantized probability distribu-

tions Pf and Pq , respectively, with Π(Pf ,Pq) the set of all

joint distributions of random variables X and Y:

Wasserstein(Pf ,Pq) = inf
γ∈Π(Pf ,Pq)

E(X,Y )∼γ [‖X − Y ‖],

(3)

The dynamic sampling method is demonstrated in algo-

rithm 3. The key idea is that each layer learns a number of

samples to approximate the floating-point distribution up to

a sufficient degree, controlled by the step-size δK and the

initial value given to K. For increased performance, a grid-

search over possible δK and initial K values is advised.

Algorithm 3: Dynamic sampling.

Input: learning rate δK , floating-point gradients of

layer l gl, quantized gradients of layer l

glint
, Wasserstein dist. d′ and sampling

amount K from previous iteration

// compute distance between PDFs

d←Wasserstein( gl
‖gl‖1

,
glint

‖glint
‖1

);

// calculate distance difference

∆d = d′ − d;

// update K

K ← K + δK ×∆d;

3.3. Local Gradient Accumulation

Due to the use of importance sampling, parameters with

consistently small gradients might rarely be updated during

training. Gradient information is lost when not sampling

such gradients at a given iteration, which we found to cause

convergence issues when using low sampling rates. To ame-

liorate this, we propose to sample proportional to the ac-

cumulated gradients instead, retaining gradient information

throughout different iterations.

Accumulating gradients throughout training was pro-

posed by [10], where parameters with smaller gradients are

updated less frequently during training. In our use case,

this allows us to use less sampling, promoting higher spar-

sity and lower bit-width quantization at each iteration, while

smaller gradient updates are still considered over time. The

accumulated gradients variant of MCGQ is described in Al-

gorithm 4. Note that, similarly to Algorithm 2, the quan-

tized gradients must be scaled when using an optimizer sen-

sitive to gradient scale.

3.4. Compression Scheme

After sparsification and quantization, one may use com-

pression schemes to further reduce the communication cost,

which is important in a distributed training environment

with multiple workers. Examples of such techniques are

run-length encoding (RLE) [10] or Elias coding [2].



Algorithm 4: Gradient quantization and sparsifica-

tion using accumulated gradients.

Input: learning rate δ, n parameters of layer l xl,

accumulated gradients of layer l agl,

sampling amount K

// compute gradients

for i = 0, . . . , n− 1 do

gl[i]← StochasticGradient(xli);
end

// accumulate gradients

agl ← agl + gl;

// quantize and sparsify

glint
← MCGQ(agl,K);

// update parameters

xl ← xl − δglint
;

// reset used accumulated gradients

agl[glint
6= 0]← 0

Since MCGQ enables both low bit-width as well as

highly sparse gradient representations, RLE is a good

choice to deal with zero values, by compressing a sequence

of zeros with a counter and sending only the number of bits

required to represent the non-zero quantized values.

Our compression scheme for the tensor of n quantized

gradients of layer l, glint
= {glint0

, glint1
, . . . , glintn−1

}, is

as follows:

1. Send the Bg ∈ N bits required to represent the signed

quantized representation of the gradient with maxi-

mum magnitude:

Bg = 1 +

⌊

log2

(

max
0≤i≤n−1

|glinti
|

)

+ 1

⌋

.

2. Send the BRLE ∈ N bits required to represent the

highest count c0 ∈ N of consecutive zeros:

BRLE = ⌊log2 (c0) + 1⌋ .

3. Send non-zero values and first zero occurrences using

Bg-bits, and send the count of each zero-valued se-

quence using BRLE-bits.

For illustration purposes, let us consider glint
=

[2,−1, 0, 0, 0, 3, 0, 1]. Following the aforementioned

nomenclature, we have Bg = 3, c0 = 3, and BRLE = 2,

with the following compression data transmitted:

0 · · ·31 32· · ·63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85

3
︸ ︷︷ ︸

Bg

2
︸ ︷︷ ︸

BRLE

2 -1 0 3
︸ ︷︷ ︸

RLE

3 0 1
︸ ︷︷ ︸

RLE

1

Thus, in total, 86 bits are used to represent glint
instead

of len(glint
) × 32 = 256 bits, achieving a compression

of ≈ 2.97×. The compression rates reported in our ex-

perimental results (Section 4) are calculated at each itera-

tion and are relative to the total number of bits required to

represent the floating-point gradients for all L layers, i.e.
∑L−1

l=0 len(gl)× 32.

Note that, when using an optimizer sensitive to gradient

scale, scaling of the gradients to their original form is neces-

sary before updating the parameters. In this case, one extra

float (32 bits) with the gradient norm ‖gl‖1 is required to be

communicated for each layer l.

3.5. Distributed Setting

Gradient compression may be used in a distributed envi-

ronment to reduce the communication between workers in

the communication phase. In this use case, each worker cal-

culates its gradients separately and then all gradients com-

puted by the different workers are merged by using all-

reduce [6]. The parameters stored locally in each worker

can then be updated by averaging the total sum of the gra-

dients. Note that each worker will accumulate gradients in-

dependently. In the case dynamic sampling is used (Sec-

tion 3.2), each worker can have a different K so appropriate

rescaling may be necessary.

On a single node, MCGQ achieves faster computation

time than the floating-point baseline when using sparse

tensor representations on a high-sparsity level, despite the

additional computation needed for the sampling process.

When scaling a multi-worker system, communication be-

comes more of a bottleneck than compute, so even at high

sample counts trading some extra compute for lower com-

munication cost is a favorable trade-off.

4. Experimental Results

We evaluated MCGQ’s performance on a variety of

tasks: logistic regression (Section 4.1), image classifica-

tion (Section 4.2), and language modeling (Section 4.3).

For each task, we compare to previous work that quantizes

and/or sparsifies gradients. Note that we did not perform

multi-node training, however, when comparing to methods

that did train in a distributed setting, we used the same total

batch size as in their experiments.

4.1. Logistic Regression

First, we followed the experiments on logistic regression

presented in Mem-SGD ([21]) in order to compare MCGQ

to their method, QSGD [2], and 32-bit SGD on the ep-

silon data set [19]. We used the following objective func-

tion:
1

NT

∑NT−1
i=0 log(1 + exp(−bia

T
i x)) +

λ

2
‖x‖2, where

ai ∈ R
d and bi ∈ {−1,+1} are the samples, and NT is the

number of training samples. L2-regularization (λ =
1

NT

)



was used and the initial learning rate was set to 1.0 and up-

dated at each iteration t of epoch ep ∈ {0, 1, . . . , 10} by
1

1 + λ× (ep×NT + t)
.

The epsilon dataset contains 400k samples with 2k non-

zero dimensions, i.e. no sparsity. Comparison results us-

ing MCGQ (K = 1.0) are shown in Figure 1. Under

similar training settings, we observe that both MCGQ with

and without gradient accumulation converges faster than all

compared methods, including 32-bit SGD.
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Figure 1: Comparison results on the epsilon data set. Both

variants of MCGQ show a faster convergence rate than all

the compared methods, even more so when using accumu-

lated gradients.

To study the effects of using different sampling rates and

accumulated gradients, we take a look at the convergence

of MCGQ with K = {0.1, 0.2, . . . , 1.0} in Figure 2. Us-

ing the variant without gradient accumulation, with higher

sampling rates most gradient information is still maintained

at each iteration, resulting in overall convergence. Note that

using lower sampling rates has less negative effects when

accumulating gradients since no information is lost during

each iteration. The baseline results in Figures 1 and 2 are

the scikit-learn’s LogisticSGD [16] results as reported by

Mem-SGD.

4.2. Image Classification

We further tested our approach on image classifica-

tion, specifically using ResNet-110 and ResNet-18 on the

CIFAR-10 and CIFAR-100 datasets [9], respectively.
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Figure 2: MCGQ on the epsilon data set with different sam-

pling rates and gradient variants. Using larger sampling

rates and accumulating the gradients improves convergence

over time.

4.2.1 CIFAR-10

For CIFAR-10 we used ResNet-110 with the training details

described in 1, reaching 91.72% accuracy with batch size

128, learning rate decaying by a factor of 10 at epochs 81

and 122, and Lazy Adam as the optimizer.

Instead of reporting absolute accuracy for the quantized

variants, we use the accuracy difference relative to the base-

line models of each respective work. Due to the flexible

quantization level of our approach, we report the average

of the maximum number of bits (’# max bits’) required to

represent all gradients in a given layer at each iteration. We

used dynamic sampling for both variants of MCGQ, using

the same initial value for K for all layers. We note that

dynamic sampling was not used for any of the further ex-

periments of this paper due to the increased performance of

using accumulated gradients with a static K.

Figure 3 shows the comparison results against QSGD

and sparsity methods, i.e. Gradient Dropping and Deep

Gradient Compression (DGC). Regarding QSGD, the accu-

mulated gradients variant of MCGQ achieves equivalent 2-

bit QSGD performance at ≈ 2.1 bits. At higher bit-widths,

however, MCGQ outperforms QSGD, especially with gra-

dient accumulation. This variant of MCGQ also reaches

close to floating-point performance at around 3 bits instead

of QSGD’s 4 bits. Moreover, both accumulated gradients

and gradient magnitude variants improve the baseline’s ac-

curacy by +0.51% and +0.50% at ≈ 5 and ≈ 6 bits, re-

spectively, outperforming 8-bit QSGD’s +0.33%. We also

observe that at higher bit-width, i.e. with sufficient sam-

1https://github.com/bearpaw/pytorch-classification



pling, both MCGQ variants perform similarly. We further

note that although the gradients of DGC and Gradient Drop-

ping are highly sparse, they are not quantized. We perform

a thorough comparison to sparsity methods in Section 4.3.
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Figure 3: Test accuracy for ResNet-110 on CIFAR-10, vary-

ing bit-width of the gradients. Both variants of MCGQ gen-

erally outperform QSGD at similar gradient bit-widths, with

gradient accumulation improving the overall performance.

Figure 4 compares the training characteristics of MCGQ

to full-precision SGD. Both MCGQ variants show an iden-

tical training loss at the baseline while achieving higher test

accuracy.

4.2.2 CIFAR-100

We compared MCGQ with gradient accumulation to sev-

eral binary quantization methods: signSGD, signum, and

ef-signSGD, using ResNet-18 on CIFAR-100. We follow

the experimental setup 2 from ef-signSGD [7], with a batch

size of 128 and averaging the results over 3 runs. We eval-

uated MCGQ at the same compression level of 32× as the

compared binary methods, using the compression scheme

described in Section 3.4.

Contrary to [7], we did not grid-search for the best learn-

ing rate (LR) for our method and simply use the best learn-

ing rate reported by signSGD and ef-signSGD. We also use

this LR for the 32-bit SGD baseline. Moreover, we compare

to the best reported values for each method in the original

paper. The results in Table 1 show that MCGQ outperforms

the compared methods in terms of accuracy at the similar

compression rates. Figure 5 illustrates the train and test ac-

curacy throughout training, where we observe that MCGQ

converges faster than the rest of the methods.

2https://github.com/epfml/error-feedback-SGD
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Figure 4: Training loss and accuracy for ResNet-110 on

CIFAR-10. Line styles denote the different MCGQ variants.

Red lines denote top-1 test accuracy, while black lines rep-

resent train loss. All MCGQ variants show similar training

loss and better test accuracy than the 32-bit gradient base-

line.

ResNet-18 on CIFAR-100

Method Acc. (%) Comp. LR

SGD (baseline) 74.02 1× 5.6e−2

MCGQ 74.89 ≈ 32× 5.6e
−2

ef-signSGD 74.43 32× 5.6e−2

signSGD 73.14 32× 5.6e−2

signum 72.20 32× 3.2e−4

Table 1: Comparison results on CIFAR-100 using the best

learning rate for the compared methods.

ResNet-18 on CIFAR-100

Method Acc. (%) Comp. LR

SGDm 75.20 1× 1.0e−2

SGD (baseline) 69.75 1× 1.0e−2

MCGQ 72.57 ≈ 32× 1.0e
−2

ef-signSGD 69.69 32× 1.0e−2

signSGD 67.13 32× 1.0e−2

signum 58.90 32× 1.0e−2

Table 2: Comparison results on CIFAR-100 with the same

learning rates.

It is a significant advantage if a compression method will

not require the modification of any hyperparameter. Hence,

we analyze the sensitivity of the aforementioned methods

by measuring their performance with the optimal learning

rate for SGD with momentum (SGDm) reported in [7] of

1.0e−2. Results are shown in Table 2. We observe that
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Figure 5: Comparison results on CIFAR-100 of the learning ability while using the searched best learning rates of the

compared methods. MCGQ achieves faster convergence than all the compared methods, while ef-signSGD matches the

baseline. On the other hand, signSGD and signum show poorer performance.
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Figure 6: Comparison results on CIFAR-100 of the learning ability with all methods using the best learning rate of SGDm.

MCGQ achieves faster training convergence than all the compared methods, including SGDm, while signum fails to be

competitive with the rest of the methods under the same number of iterations.

MCGQ is least affected by the suboptimal learning rate,

outperforming the 32-bit SGD baseline by +2.82% accu-

racy. The learning evolution is illustrated in Figure 6, where

we observe faster convergence for MCGQ as compared to

all other methods.

4.3. Language Modeling

We further compared the accumulated gradients variant

of our approach to high-compression sparsity approaches.

Since MCGQ provides both sparsity and quantization bene-

fits, we are able to achieve higher compression rates than ex-

isting methods with the communication scheme previously

described in Section 3.4.

4.3.1 Penn Treebank Corpus

We evaluated world-level language modeling on the well-

known Penn Treebank corpus (PTB) dataset [11], using

[12]’s implementation 3. We used vanilla SGD with gra-

dient clipping on a 2-layer LSTM with 1500 hidden neu-

rons and embedding size of 1430, decaying the learning

rate when validation loss does not improve, to replicate

the model and training details used by DGC [10]. Since

no further training details were provided in the compared

work, we used the recommended training configuration of

the aforementioned public implementation without weight

dropout and batch size 80.

Compression comparisons with DGC are shown in Ta-

3https://github.com/salesforce/awd-lstm-lm



2-LSTM on PTB

Method Perplexity ↓ Gradient size Comp.

Baseline 82.03 194.69 MB 1×
∆ MCGQ -0.21 0.16 MB 1218×

∆ MCGQ -4.30 0.42 MB 469×

∆ DGC -0.06 0.42 MB 462×

Table 3: Compression results on PTB. MCGQ outperforms

DGC, having lower perplexity for the same compression.

ble 3. Note that DGC’s results are relative to their reported

baseline of 72.30 perplexity, as we were unable to reproduce

this baseline using the training details in that work. At the

same compression rate, our method achieves ≈ −4 lower

perplexity than DGC. At ≈ 1200× compression, MCGQ

starts to match the floating-point baseline while still outper-

forming DGC at a much higher compression rate. Figure 7

compares the training loss of MCGQ with different com-

pression levels to the baseline.
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Figure 7: Training losses on PTB of MCGQ at different

compression levels. At 469× compression, MCGQ shows

significant reductions in the overall training loss. At 1200x

compression, the loss is similar to the baseline.

4.3.2 Shakespeare

We also evaluated training performance on character-level

language modeling on Shakespeare text, using Char-RNN’s

training settings 4. For a fair comparison to AdaComp’s [4]

experiments, we used a 2-layer LSTM of 512 neurons each,

trained for 45 epochs with batch size 10.

We used the validation cross-entropy loss of the model’s

predictions and the true future text as the comparison met-

ric. Table 4 shows the comparison of MCGQ and AdaComp

4https://github.com/karpathy/char-rnn

Char-RNN on Shakespeare

Method Val. loss ↓ Gradient size Comp.

Baseline 1.578 13.28 MB 1×
∆ MCGQ +0.020 0.03 MB 520×

∆ MCGQ -0.016 0.06 MB 215×

∆ AdaComp +0.020 0.07 MB 200×

Table 4: Compression results on Shakespeare. MCGQ

matches AdaComp at more than double the compression.
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Figure 8: Training losses on Shakespeare of MCGQ at dif-

ferent compression levels. At 215x gradient compression,

loss evolution is similar to the baseline. At over 500× com-

pression, the loss is only slightly higher than the baseline.

to our method achieving lower loss than the floating-point

gradient baseline at 215x compression level. At a simi-

lar loss, MCGQ achieves 520x compression compared to

200× for AdaComp. Figure 8 shows the evolution of the

loss during training, with MCGQ at different compression

rates showing similar behavior as the baseline.

5. Conclusion

In this work, we apply Monte Carlo methods to quantize

and sparsify gradients during training. When compared to

other quantization approaches, our method achieves faster

convergence rates and better test performance on the evalu-

ated tasks. Moreover, the accumulated gradients variant of

our method allows for higher gradient compression rates as

compared to existing sparsity methods due to both low-bit-

width-quantization and high-levels of sparsity. Our method

does not require any modification of the training hyperpa-

rameters, simplifying adoption. In future work, it would

be interesting to evaluate the scalability of MCGQ in a real

distributed setting by performing training across multiple

workers.
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