
Least squares binary quantization of neural networks

Hadi Pouransari, Zhucheng Tu, Oncel Tuzel

Apple Inc.

Cupertino, CA 95014, USA

{mpouransari,zhucheng tu,ctuzel}@apple.com

Abstract

Quantizing weights and activations of deep neural net-

works results in significant improvement in inference effi-

ciency at the cost of lower accuracy. A source of the ac-

curacy gap between full precision and quantized models is

the quantization error. In this work, we focus on the bi-

nary quantization, in which values are mapped to -1 and 1.

We provide a unified framework to analyze different scaling

strategies. Inspired by the pareto-optimality of 2-bits versus

1-bit quantization, we introduce a novel 2-bits quantization

with provably least squares error. Our quantization algo-

rithms can be implemented efficiently on the hardware us-

ing bitwise operations. We present proofs to show that our

proposed methods are optimal, and also provide empirical

error analysis. We conduct experiments on the ImageNet

dataset and show a reduced accuracy gap when using the

proposed least squares quantization algorithms.1

1. Introduction

A major challenge in the deployment of Deep Neural

Networks (DNNs) is their high computational cost. Find-

ing effective methods to improve run-time efficiency is still

an area of research. We can group various approaches taken

by researchers into the following three categories.

Hardware optimization: Specifically designed hard-

wares are deployed to efficiently perform computations

in ML tasks. Compiler optimization: Compression and

fusion techniques coupled with efficient hardware-aware

implementations, such as dense and sparse matrix-vector

multiplication, are used. Model optimization: Run-time

performance can also be gained by modifying the model

structure and the underlying arithmetic operations. While

hardware and compiler optimization are typically lossless,

model optimization trades-off computational cost (memory,

runtime, or power) for model accuracy. For example, by

scaling the width of the network [53]. The goal of model

1Code will be available.

optimization is to improve the trade-off between computa-

tional cost and model accuracy. This work falls into this

category. We briefly explain different model optimization

techniques here.

Architecture optimization One strategy to construct ef-

ficient DNNs is to define a template from which efficient

computational blocks can be generated. SqueezeNet [29],

MobileNets [27, 45], ShuffleNets [39, 55], and ESPNets

[40, 41] fall into this category. Complementary to these

methods, NASNet [58] and EfficientNet [49] search for an

optimal composition of blocks restricted to a computational

budget (e.g., FLOPS) by changing the resolution, depth,

width, or other parameters of each layer.

Pruning and Compression: Several methods have been

proposed to improve runtime performance by detecting and

removing computational redundancies. Examples of meth-

ods in this category include low-rank acceleration [32], the

use of depth-wise convolution in Inception [48], sparsifica-

tion of kernels in deep compression [20], re-training redun-

dant neurons in DSD [21], depth-wise separable convolu-

tion in Xception [10], pruning redundant filters in PFA [47],

finding an optimal sub-network in lottery ticket hypothe-

sis [16], and separating channels based on the features res-

olution in octave convolution [8].

Low-precision arithmetic and quantization: Another

avenue to improve runtime performance, and the focus of

this work, is to use low-precision arithmetic. The idea is to

use fewer bits to represent weights and activations. Some

instances of these strategies already exist in AI compilers,

where it is common to cast weights of a trained model

from 32 bits to 16 or 8 bits. However, in general, post-

training quantization reduces the model accuracy. This can

be addressed by incorporating lower-precision arithmetic

into the training process (during-training quantization), al-

lowing the resulting model to better adapt to the lower pre-

cision [18, 31]. Additionally, to improve utilization, many

works considered mixed-precision quantization, where dif-

ferent number of bits are allowed at different layers of the

network [14, 50, 52].

Using fewer bits results in dramatic memory savings.

1

This has motivated research into methods that use a single

bit to represent a scalar weight: In [11] the authors train

models with weights quantized to the values in {−1, 1}.
While this results in a high level of compression, model

accuracy can drop significantly. [35] and [57] reduce the

accuracy gap between full precision and quantized mod-

els by considering ternary quantization (using the values in

{−1, 0, 1}), at the cost of slightly less compression.

To further improve the computational efficiency, the in-

termediate activation tensors (feature maps) can also be

quantized. When this is the case, an implementation can use

high-performance operators that act on quantized inputs, for

example a convolutional block depicted in Figure 1. This

idea has been explored in [7, 12, 28, 36, 42, 43, 44, 54, 56],

and many other works.

+1 -1 -1 +1

...

v1

v1

v2

+1 -1 -1 +1

...
+

x

+1 -1 -1 +1

...

XNor

Conv

XNor

Conv
x

x

w

x

Non

Lin

Batch

Norm
Quant

Quant

Figure 1. When both weights and activations are quantized us-

ing binary quantization, the convolution can be implemented effi-

ciently using bitwise XNor and bit-counting operations. See Sec-

tion 3.2 for more details.

We call a mapping from a tensor with full precision en-

tries to a tensor with the same shape but with values in

{−1, 1} a binary quantization. When both weights and

activations of a DNN are quantized using binary quantiza-

tion, called Binary Neural Network (BNN), fast and power-

efficient kernels which use bitwise operations can be im-

plemented. Observe that the inner-product between two

vectors with entries in {−1, 1} can be written as bitwise

XNor operations followed by bit-counting [12]. However,

the quantization of both weights and activations further re-

duces the model accuracy [28, 44].

The accuracy drop due to quantization can be compen-

sated by increasing model capacity through architecture

modifications, for example by increasing the number of fil-

ters as in [53]. In Figure 2 we show the trade-off between

computational cost (memory and flops) and classification

error for different quantization schemes by uniformly scal-

ing the number of filters in ResNet18 architecture trained

on CIFAR100 dataset [34]. We followed methodology in

[51] to approximate equivalent flops of BNNs. We use the

same training setup for quantized models without any tun-

ing. This empirical result suggests that for a given compu-

tational budget using 2-bits quantizations is pareto-optimal

when compared to the original BNN and the full-precision

network. [33] also observed much larger accuracy degrada-

tion when the bit precision is reduced from 2-bits to 1-bit

than other cases with >2-bits. This interesting observation,

although not necessarily a universal conclusion, motivates

deriving the optimal 2-bits quantization.

Figure 2. The trade-off between computational cost model error

for ResNet18 trained on CIFAR100. Left plot show memory foot-

print, and right plot shows flop counts. ka/kw refers to using ka

bits for activations and kw bits for weights.

Note that there are many other directions to improve the

accuracy of BNNs. For example, using learned clipping

in PACT [9], double skip-connection in BiRealNet [37],

parametric ReLU in [6], multi-stage knowledge distillation

in [2, 6], and tailored binary optimization in [24]. These are

all orthogonal improvements to the proposed provably least

squares error 2-bits quantization, and can be used together

to further improve the model accuracy.

1.1. Main contributions

In this work, we analyze the accuracy of binary quantiza-

tion when applied to both weights and activations of a DNN,

and propose methods to improve the quantization accuracy:

• We present a unified framework to analyze different

scaling strategies for BNNs, and show that scaled bi-

nary quantization is a good approximation (Section 2).

• We derive 2-bits (Section 3.2.2) and ternary (Section

3.2.3) scaled binary quantization algorithms with least

squares error. We also propose greedy variants of these

algorithms (Section 3.2.4).

• Experiments on the ImageNet dataset show that the op-

timal algorithms have reduced quantization error, and

lead to improved classification accuracy (Section 5).

2. Low-rank binary quantization

Binary quantization (that maps entries of a tensor to

{−1, 1}) of weights and activation tensors of a neural net-

work can significantly reduce the model accuracy. A rem-

edy to retrieve this accuracy loss is to scale the binarized

tensors with few full precision values. For example, [28]

learn a scaling for each channel from the parameters of

2

batch-normalization, and [44] scale the quantized activation

tensors using the channel-wise average of pixel values.

In this section, using low-rank matrix analysis, we ana-

lyze different scaling strategies. We conclude that multiply-

ing the quantized tensor by a single scalar, which is compu-

tationally the most efficient option, has approximately the

same accuracy as the more expensive alternatives.

We introduce the rank-1 binary quantization– an approx-

imation to a matrix X ∈ R
m×n:

X ≃X1 ⊙ S, (1)

where X1 ∈ R
m×n is a rank-1 matrix, S ∈

{−1, 1}m×n, and ⊙ is element-wise multiplication

(Hadamard product). Note that this approximation is also

defined for tensors, after appropriate reshaping. For exam-

ple, for an image classification task, we can reshape the out-

put of a layer of a DNN with shape h×w× n, where h, w,

and n are height, width, and number of channels, respec-

tively, into an m × n matrix with m = hw rows and one

column per channel.

We define the error of a rank-1 binary quantization as

‖X −X1 ⊙ S‖F , where ‖ ‖F is the Frobenius norm. En-

tries of S are in {−1, 1}, therefore, the quantization error is

equal to ‖X ⊙ S −X1‖F . Note that ‖X ⊙ S‖2F (the total

energy), which is equal to sum of the squared singular val-

ues, is the same for any S. Different choices of S change

the distribution of the total energy among components of

the Singular Value Decomposition (SVD) of X ⊙ S. The

optimal rank-1 binary quantization is achieved when most

of the energy of X ⊙ S is in its first component.

In [44], the authors proposed to quantize the activa-

tions by applying the sign function and scale them by

their channel-wise average. We can formulate this scal-

ing strategy as a special rank-1 binary quantization X ≃
a1

⊤ ⊙ sign(X), where

ai =

∑n

j=1
|Xi,j |
n

for 1 ≤ i ≤ m,

sign(x) =

{

−1 if x < 0

1 if x ≥ 0
,

(2)

and 1 is an n-dimensional vector with all entries 1.

In Appendix A we show that the optimal rank-1 bi-

nary quantization of an arbitrary X ∈ R
m×n is given

by S = sign(X) and X1 = truncated1-SVD(|X|),
where sign(X) is the element-wise sign of X , and

truncated1-SVD(|X|) = σ1u1v
⊤
1 is the first component of

the SVD of X ⊙ sign(X) = |X|. Moreover, if entries of

X are i.i.d. ∼ N (0, 1), the first singular value of |X| cap-

tures most of the energy σ2
1(|X|)/‖X‖2F ≃ 0.64, and the

first left and right singular vectors are almost constant vec-

tors. Normal distribution assumption for entries of X is rel-

evant due to application of Batch Normalization (BN) [30].

Therefore, a scalar multiple of sign(X) approximates X

well: X ≃ σ1u1v
⊤
1 ⊙ sign(X) ≃ v 11

⊤ ⊙ sign(X) =
v sign(X), where v ∈ R≥0. We call this computationally

efficient approximation scaled binary quantization.

3. Scaled binary quantization

In Section 2 we showed that scaled binary quantization

is a good approximation to activation and weight tensors of

a DNN. Next we show how we can further improve the ac-

curacy of scaled binary quantization using more bits. To

simplify the presentation (1) we flatten matrix X ∈ R
m×n

in to a vector x ∈ R
N with N = mn, and (2) we assume

the entries of x are different realizations of a random vari-

able x with an underlying probability distribution p(x). In

practice, we compute all statistics using their unbiased es-

timators from vector x (e.g.,
∑

i xi/N is an unbiased esti-

mator of Ex∼p[x]). Furthermore, for f : R→ R, we denote

entrywise application of f to x by f(x). The quantized ap-

proximation of x is denoted by x
q , and the error (loss) of

quantization is ‖x − x
q‖2. All optimal solutions refers to

the least squares error and hold for an arbitrary distribution

p(x).

3.1. 1Bit quantization

A 1-bit scaled binary quantization of x is:

x ≃ x
q = vs(x), (3)

which is determined by a scalar v ∈ R≥0 and a function

s : R → {−1, 1}. Finding the least squares 1-bit scaled

binary quantization can be formulated as the following op-

timization problem:

minimize
v,s

∫ +∞

−∞
p(x)(vs(x)− x)2dx

s.t. s : R→ {−1, 1}, v ∈ R≥0

(4)

3.1.1 Least squares 1-Bit algorithm

The solution of problem (4) is given by v = Ex∼p[|x|] and

s(x) = sign(x) (for the proofs see Appendix B). There-

fore, for a vector x the optimal scaled binary quantization

is given by

x ≃ x
q =

∑

i |xi|
N

sign(x), (5)

where
∑

i
|xi|

N
is an unbiased estimator of Ex∼p[|x|].

3.2. kBits quantization

We can further improve the accuracy of scaled binary

quantization by adding more terms to the approximation (3).

3

A k-bits scaled binary quantization of x is

x ≃ x
q =

k
∑

i=1

visi(x), (6)

which is determined by a set of k pairs of scalars vi’s and

functions si : R → {−1, 1}. Observe that any permutation

of (vi, si)’s results in the same quantization. To remove

ambiguity, we assume v1 ≥ . . . ≥ vk ≥ 0.

When both weights, w, and activations, x, are quantized

using (6), their inner-product can be written as:

〈xq,wq〉 =
ka

∑

i=1

kw

∑

j=1

vai v
w
j 〈sai , swj 〉, (7)

where x
q =

∑ka

i=1
vai s

a
i and w

q =
∑kw

j=1
vwj s

w
i are quan-

tized activations and weights with ka and kw bits, respec-

tively, sai = sai (x), and s
w
j = swj (w). This inner-product

can be computed efficiently using bitwise XNors followed

by bit-counting (see Figure 1 with ka = 2 and kw = 1).

Finding the least squares k-bits scaled binary quantiza-

tion can be formulated as:

minimize
si,vi

∫ +∞

−∞
p(x)

((

k
∑

i=1

visi(x)

)

− x

)2

dx

s.t. ∀ 1 ≤ i ≤ k si : R→ {−1, 1},
v1 ≥ v2 ≥ . . . ≥ vk ≥ 0

(8)

This is an optimization problem with a non-convex domain

for all k ≥ 1. We solve the optimization for k = 1 in Sec-

tion 3.1 and k = 2 in Section 3.2.2 for arbitrary distribution

p(x). We also provide an approximate solution to (8) in

Section 3.2.4 using a greedy algorithm.

Discussion: A general k-bits quantizer maps full preci-

sion values to an arbitrary set of 2k numbers, not necessar-

ily in the form of (6). The optimal quantization in this case

can be computed using the Lloyd’s algorithm [38]. While a

general k-bits quantization has more representation power

compared to k-bits scaled binary quantization, it does not

allow an efficient implementation based on bitwise oper-

ations. Fixed-point representation (as opposed to floating

point) is also in the form of (6) with an additional constant

term. However, fixed-point quantization uniformly quan-

tizes the space, therefore, it can be significantly inaccurate

for small values of k.

3.2.1 Foldable quantization

In this section, we introduce a special family of k-bits

scaled binary quantizations that allow fast computation of

the quantized values. We name this family of quantiza-

tions foldable. A k-bits scaled binary quantization given

by (vi, si)’s is foldable if the following conditions are satis-

fied:

si(x) = sign(x−
i−1
∑

j=1

vjsj(x)) for 1 ≤ i ≤ k (9)

When the foldable condition is satisfied, given vi’s, we can

compute the si(x)’s in (6) efficiently by applying the sign

function.

3.2.2 Least squares 2-bits algorithm

In this section, we present the least squares 2-bits binary

quantization algorithm, the solution of (8) for k = 2. In

Appendix C we show that the least squares 2-bits binary

quantization is foldable and the scalars v1 and v2 should

satisfy the following optimality conditions:

v1 =
1

2
(Ex∼p[|x| | |x| > v1] + Ex∼p[|x| | |x| ≤ v1]) (10)

v2 =
1

2
(Ex∼p[|x| | |x| > v1]− Ex∼p[|x| | |x| ≤ v1]) (11)

In Figure 3 we visualize the conditional expectations that

show up in (10) for a random variable x with standard nor-

mal distribution. The optimal v1 lies on the intersection of

the identity line and average of the conditional expectations

in (10).

For a given vector x ∈ R
N we can solve for v1 in

(10) efficiently. We substitute the conditional expectations

in (10) by conditional average operators as their unbiased

estimators. (10) implies that for the optimal v1, the aver-

age of the entries in |x| smaller than v1 (an estimator of

Ex∼p[|x| | |x| ≤ v1]) and the average of the entries greater

than v1 (an estimator of Ex∼p[|x| | |x| > v1]) should be

equidistant form v1. Note that (10) may have more than

one solution, which are local minima of the objective func-

tion in (8). We find all the values that satisfy this condi-

tion in O(N logN) time. We first sort entries of x based

on their absolute value and compute their cumulative sum.

Then with one pass we can check whether (10) is satisfied

for each element of x. We evaluate the objective function

in (8) for each local minima, and retain the best. After

v1 is calculated v2 is simply computed from (11). As ex-

plained in Section 4, this process is only done during the

training. In our experiments, finding the least squares 2-

bits quantization was as fast as the 2-bits greedy algorithm

(see Section 3.2.4). Since the least squares 2-bits binary

quantization is foldable, after recovering v1 and v2, we have

s1(x) = sign(x) and s2(x) = sign(x− v1sign(x)).

3.2.3 Least squares ternary algorithm

The boundaries of the optimization domain in (8) for k = 2,

v2 = 0 and v1 = v2 = v, correspond to 1-bit binary

4

0.0 0.5 1.0 1.5 2.0 2.5
v

0

1

2

3
El = E[|x| | |x| < v]

Er = E[|x| | |x| > v]

(El + Er)/2

v

v
1

Figure 3. The conditional expectations in (10) for a random vari-

able x with standard normal distribution. The optimal value for

2-bits quantization is shown with a solid dot.

and ternary [35] quantizations, respectively. The scaled

ternary quantization maps each full precision value x to

{−2v, 0, 2v}. Ternary quantization needs 2-bits for repre-

sentation. However, when a hardware with sparse calcula-

tion support is available, for example as in EIE [19], using

ternary quantization can be more efficient compared to a

general 2-bits quantization. Setting v1 = v2 = v in (10)

and (11) we get the ternary optimality condition:

v =
1

2
Ex∼p[|x| | |x| > v] (12)

The process of solving for v in (12) is similar to that of

solving for v1 in (10) as described above. The optimality

condition in (12) has been also obtained in [26] using a dif-

ferent approach.

3.2.4 k-bits greedy algorithm

In this section, we propose a greedy algorithm to compute

k-bits scaled binary quantization, which we call Greedy

Foldable (GF). It is given in Algorithm 1.

Algorithm 1: k-bits Greedy Foldable (GF) binary

quantization: compute x
q given x

r ← x

for i← 1 to k do
vi ← mean(abs(r))

si ← sign(r) // element-wise sign.

For gradient of sign use STE.

r← r − visi // compute new

residual.

end

return x− r

In GF algorithm we compute a sequence of residuals. At

each step, we greedily find the best si and vi for the current

residual using the least squares 1-bit binary quantization (5).

Note that for k = 1 the GF is the same as the least squares

1-bit binary quantization.

Few of the other papers that have tackled the k-bits bi-

nary quantization to train quantized DNNs are as follows.

In ReBNet [17], the authors proposed an algorithm similar

to Algorithm 1, but considered vi’s as trainable parameters

to be learned by back-propagation. [36] and [54] find k-

bits binary quantization via alternating optimization for si’s
and vi’s. Note that, all these methods produce sub-optimal

solutions.

4. Training binary networks

The loss functions in our quantized neural networks are

non-differentiable due to the sign function in the quantiz-

ers. To address this challenge we use the training algo-

rithm proposed in [11]. To compute the gradient of the sign

function we use the Straight Through Estimator (STE) [3]:

d/dx sign(x) = 1|x|≤1. During the training we keep the

full precision weights and use Stochastic Gradient Descent

(SGD) to gradually update them in back-propagation. In the

forward-pass, only the quantized weights are used.

During the training we compute quantizers (for both

weights and activations) using the online statistics, i.e., the

scalars in a k-bits scaled binary quantization (6) are com-

puted based on the observed values. During the training we

also store the running average of these scalars. During in-

ference we use the stored quantized scalars to improve the

efficiency. This procedure is similar to the update of the

batch normalization parameters in a standard DNN train-

ing [30].

5. Experiments

We conduct experiments on the ImageNet dataset [13]

using the ResNet-18 architecture [23]. The details of the

architecture and training are provided in Appendix D.

We conduct three sets of experiments: (1) evaluate quan-

tization error of activations of a pre-trained DNN, (2) eval-

uate the quantization error based on the classification accu-

racy of a post-training quantized network, and (3) evaluate

the classification accuracy of during-training quantized net-

works. We report the quantization errors of the proposed

binary quantization algorithms (least squares 1-bit, 2-bits,

ternary, and the greedy foldable quantizations) and compare

with the state-of-the-art algorithms BWN-Net [44], XNor-

Net [44], TWN-Net [35], DoReFa-Net [56], ABC-Net [36],

and LQ-Net [54].

5.1. Quantization error of activations

To quantify the errors of the introduced binary quanti-

zation algorithms we adopt the analysis performed by [1].

They show that the angle between x and x
q can be used

as a measure of accuracy of a quantization scheme. They

prove that when x
q = sign(x) and elements of x are i.i.d.

∼ N (0, 1), ∠(x,xq) converges to ∼ 37◦ for large N .

5

Method ka kw Top-1 Top-5

Post Greedy Foldable 32 1 0.1 0.5

Post Greedy Foldable 32 2 0.3 1.1

Post Greedy Foldable 32 3 1.4 4.6

Post Greedy Foldable 32 4 5.3 14.1

Post Least Squares 32 2 5.3 13.9
Table 1. Validation accuracy of a quantized ResNet-18 trained on

ImageNet. ka and kw are number of bits to quantize activations

and weights, respectively.

Here we use the real data distribution. We trained a full

precision network, and computed the activation tensors at

each layer for a set of 128 images. In Figure 4 we show

the angle between the full precision and quantized activa-

tions for different layers. When the least squares quantiza-

tion is used, a significant reduction in the angle is observed

compared to the greedy algorithm. The least squares 2-bits

quantization is even better than the greedy 4-bits quantiza-

tion for later layers of the network, for which activation

tensors have more skewed distribution, make it harder for

quantization in form of (6). Furthermore, the accuracy of

the least squares quantization has less variance with respect

to different input images and different layers of the network.

2 4 6 8 10 12 14 16
layer index

0

10

20

30

40

50

60

70

6
(x

,x
q)

GF/LS-1

GF-2

GF-3

GF-4

LS-2

Figure 4. The angle between the full precision and the quantized

activations for different layers of a trained full precision ResNet-

18 architecture on ImageNet. The 95% confidence interval over

different input images is shown. LS and GF refer to Least Squares

and Greedy Foldable, respectively.

5.2. Posttraining quantization

In this section we apply post-training quantization to the

weights of a pre-trained full precision network. We then use

the quantized network for inference and report the classifi-

Method ka kw top-1 top-5

XNor-Net [44] 1 1 51.2 73.2

Bi-Real Net [37] 1 1 56.4 79.5

XNor-Net++ [5] 1 1 57.1 79.9

Least Squares (ours) 1 1 58.9 81.4

Least Squares (ours) T 1 62.0 83.6

HWGQ-Net [7] 2 1 59.6 82.2

LQ-Net [54] 2 1 62.6 84.3

Greedy Foldable (ours) 2 1 62.6 84.0

Least Squares (ours) 2 1 63.4 84.6

DoReFa-Net [56] 4 1 59.2 81.5

SYQ [15] 8 1 62.9 84.6

DoReFa-Net [56] 2 2 62.6 84.4

ABC-Net [36] 3 3 61.0 83.2

BWN-Net [44] 32 1 60.8 83.0

Least Squares (ours) 32 1 66.1 86.5

TWN-Net [35] 32 T 61.8 84.2

Full precision baseline 32 32 69.6 89.2
Table 2. Validation accuracy of ResNet-18 architecture on the Im-

ageNet dataset. T refers to ternary quantization.

cation accuracy. This procedure can result in an acceptable

accuracy for a moderate number of bits (e.g., 16 or 8). How-

ever, the error significantly grows with a lower number of

bits, which is the case in this experiment. Therefore, we

only care about the relative differences between different

quantization strategies. This experiment demonstrates the

effect of quantization errors on the accuracy of the quan-

tized DNNs. The results are shown in Table 1. When the

least squares 2-bits quantization is used, significant accu-

racy improvement (more than one order of magnitude) is

observed compared to the greedy 2-bits quantization, which

illustrate the effectiveness of the optimal quantization.

5.3. Duringtraining quantization

To achieve higher accuracy we apply quantization dur-

ing the training, so that the model can adapt to the quan-

tized weights and activations. In Table 2 we report results

from the related works in which ResNet-18 architecture

with quantized weights and/or activations is trained on the

ImageNet dataset for the classification task. The proposed

least-squares quantization algorithms improve the classifi-

cation accuracies when compared with the state-of-the-art

(with even more number of bits) significantly. For all of our

results we use some of the suggested training setups dis-

cussed in the literature (see Appendix D) to train the BNNs.

These changes improved the performance of the baseline

1-bit XNor-Net [44] from 51.2% to 59.0%. With 2-bits

the least squares quantization algorithm achieves a signif-

icantly better accuracy compared to the 2-bits greedy and

1-bit, with an identical training setup.

6

6. Conclusion

In this work, we analyze the accuracy of binary quantiza-

tion to train DNNs with quantized weights and activations.

We discuss methods to improve the accuracy of quantiza-

tion, namely scaling and using more bits.

We introduce the rank-1 binary quantization, as a gen-

eral scaling scheme. Based on a singular value analysis we

motivate using the scaled binary quantization, a computa-

tionally efficient scaling strategy. We define a general k-

bits scaled binary quantization. We provide provably least

squares 1-bit, 2-bits, and ternary quantizations. In addi-

tion, we propose a greedy k-bits quantization algorithm.

We show results for post and during-training quantization,

and demonstrate significant improvement in accuracy when

least squares quantization is used. We compare the pro-

posed quantization algorithms with state-of-the-art BNNs

on the ImageNet dataset and show improved classification

accuracies.

A. Optimal rank-1 binary quantization

In this section, we find the optimal rank-1 binary quanti-

zation of an m by n matrix X discussed in Section 2:

minimize
X1,S

‖X −X1 ⊙ S‖F

s.t. S ∈ {−1, 1}m×n

X1 ∈ R
m×n, rank(X1) = 1

(13)

First, observe that the element-wise multiplication by −1
and +1 does not change the Frobenius norm. Therefore:

min
S,X1

‖X −X1 ⊙ S‖F = min
S,X1

‖(X −X1 ⊙ S)⊙ S‖F

= min
S,X1

‖X ⊙ S −X1‖F
(14)

Furthermore, note that

min
S,X1

‖X ⊙S −X1‖2F = σ2
2(X ⊙S) + . . .+ σ2

r(X ⊙S)

(15)

Here σi(X ⊙ S) is the i’th singular value of X ⊙ S and r
is its rank. In addition for any S:

r
∑

i=1

σ2
i (X ⊙ S) = ‖X ⊙ S‖2F = ‖X‖2F (16)

Hence, to minimize the sum in (15) we need to find an S

for which σ2
1(X ⊙ S) is maximized:

min
S,X1

‖X⊙S−X1‖2F = ‖X‖2F −max
S

σ2
1(X⊙S) (17)

σ1(X⊙S) = ‖X⊙S‖2 is the 2-norm of X⊙S. Therefore:

max
S

σ2
1(X ⊙ S) = max

S

max
‖r‖2=1

‖(X ⊙ S)r‖22 (18)

For any S and r ∈ R
n we have ‖(X⊙S)r‖22 ≤ ‖|X||r|‖22

since for 1 ≤ i ≤ m we have |∑j Si,jXi,jrj | ≤
∑

j |Xi,j | |rj |. Here |X| = X ⊙ sign(X) is the element-

wise absolute value of X . Note that for S = sign(X) and

r with positive values the inequality becomes an equality.

Therefore:

max
S

max
‖r‖2=1

‖(X ⊙ S)r‖22 = max
‖r‖2=1

‖|X| |r|‖22 (19)

Observe that the element-wise absolute value does not

change the vector norm, i.e. ‖ |r| ‖2 = ‖r‖2, and hence

|r| is a unit vector when r is. Also for any r we have

‖ |X| r ‖22 ≤ ‖ |X| |r| ‖22 since for 1 ≤ i ≤ m we have

|∑j |Xi,j |rj | ≤
∑

j |Xi,j ||rj |. So we have

max
‖r‖2=1

‖|X| |r|‖22 = max
‖r‖2=1

‖|X|r‖22 = σ2
1(|X|) (20)

Therefore, we showed that S = sign(X) and X1 equal to

the best rank-1 approximation of |X| (i.e. the first term in

its SVD) is a solution of (13). �

Now consider the case that entries of X are i.i.d. ∼
N (0, 1). In [4, 46] the authors show that the largest singular

value of a random matrix with i.i.d. entries from a distribu-

tion with mean µ and bounded 4th moment (which is the

case for standard folded normal distribution) asymptotes to√
mnµ as m and n are increased (with m/n →constant).

Note that E[1
T

√
m
|X| |X|T 1√

m
] = E[1

T

√
n
|X|T |X| 1√

n
] =

mnµ2 (with convergence given by the central limit theo-

rem), and therefore, for large matrices the first left and right

singular vectors are expected to be almost constant, that is:

truncated-SVD-1(|X|) ≈ µ11T where µ =
√

2/π. This

is shown empirically in Figure 5. Therefore, the optimal

rank-1 binary quantization captures 2/π ≃ 0.64 of the total

energy of X , making it a good approximation, and can be

written as a scalar times a binary matrix.

0 10 20 30
i

0.0

0.2

0.4

0.6

σ
2 i
(|X
|)
/
‖X
‖2 F

0 10 20 30
i

−1.0

−0.5

0.0

0.5

1.0
u1

v1

u2

v2

Figure 5. Left: Distribution of energy for |X|, where X ∈
R

30×30 is a standard normal random matrix. Right: Entries of

the first left and right singular vectors of |X| (shown in green and

blue) are almost constant.

B. Least squares 1-bit binary quantization

In this section, we solve (4). First, observe that:

∀x ∈ R : (v − x)2 < (−v − x)2 iff x > 0 (21)

7

Therefore, the optimal choice for function s in (4) is s(x) =
sign(x). We can rewrite (4) as follows:

minimize
v

∫ +∞

−∞
p(x)(v − |x|)2dx

s.t. v ∈ R≥0

(22)

Setting the gradient of the objective function in (22) with

respect to v to zero, we get:

v =

∫ +∞
−∞ p(x)|x|dx
∫ +∞
−∞ p(x)dx

= Ex∼p[|x|] � (23)

C. Least squares 2-bits binary quantization

In this section, we solve the following optimization prob-

lem corresponding to the least squares 2-bits binary quanti-

zation as discussed in Section 3.2.2:

minimize
v1,v2,s1,s2

∫ +∞

−∞
p(x) (v1s1(x) + v2s2(x)− x)

2
dx

s.t. s1, s2 : R→ {−1, 1}, v1 ≥ v2 ≥ 0
(24)

First, we show that the optimal 2-bits binary quantization

is foldable, i.e., ∀x ∈ R s1(x) = sign(x) and s2(x) =
sign(x− v1s1(x)). Observe that

f(x) = (v1s1(x) + v2s2(x)− x)
2

= v21

(

1 +
v2
v1

s1(x)s2(x)−
s1(x)x

v1

)2

≥ v21

(

1 +
v2
v1

s1(x)s2(x)−
|s1(x)x|

v1

)2

= g(x)

(25)

The inequality in (25) holds because v1 ≥ v2, and therefore,

1 + v2

v1

s1(x)s2(x) ≥ 0. The objective function in (24) is a

weighted average of f(x) with non-negative weights. For

x ∈ R the inequality is strict if s1(x) 6= sign(x). In that

case, flipping the value of both s1(x) and s2(x) reduces

f(x) to a strictly smaller g(x). Hence, the optimal solution

of (24) should satisfy s1(x) = sign(x) for all x ∈ R.

For any v1 and s1 if we consider y = x − v1s1(x),
the problem reduces to the 1-bit binary quantization for y.

Based on the result showed in Appendix B for the optimal

solution we have s2(x) = sign(y) = sign(x − v1s1(x)).
This completes the proof to show that the optimal 2-bits bi-

nary quantization is foldable.

Next, we find the optimal values for v1 and v2. Substitute

s1(x) = sign(x) and s2(x) = sign(x− v1s1(x)) in (24):

e(v1, v2) =

∫ +∞

−∞
p(x) (v1s1(x) + v2s2(x)− x)

2
dx =

∫ v1

0

q(x)(x− v1 + v2)
2dx+

∫ +∞

v1

q(x)(x− v1 − v2)
2dx

(26)

Here e(v1, v2) is the error as a function of v1 and v2, and

q(x) = p(−x) + p(x) is the folded distribution func-

tion. Assuming the optimal point occurs in the interior of

the domain, it should satisfy the zero gradient condition:

∂e/∂v1 = ∂e/∂v2 = 0. Taking derivative from (26) with

respect to v1 and v2 and set it to zero we get:

v1 =

∫ v1

0

xq(x)dx +

∫ +∞

v1

xq(x)dx

+ v2

(
∫ v1

0

q(x)dx−
∫ +∞

v1

q(x)dx

)

v2 = −
∫ v1

0

xq(x)dx+

∫ +∞

v1

xq(x)dx

+ v1

(
∫ v1

0

q(x)dx−
∫ +∞

v1

q(x)dx

)

(27)

Simplifying (27) results in (10) and (11). �

D. Details of training ResNet on ImageNet

In this section, we explain the details of how the DNN re-

sults reported in this paper are produced using some of the

stable good practices from the literature. We use the stan-

dard training and validation splits of the ImageNet dataset,

without hyper parameters search. We followed a similar ar-

chitecture as XNor-Net [44]. The convolutional block that

we use is depicted in Figure 1. We use PReLU [22, 6]

non-linearity before the batch normalization as suggested

by [44]. Also, we find it important to use bounded dynamic

range, and therefore clip the values to [−d, d]. Without tun-

ing, we picked d = 2, 3, 5, and 8 for k = 1, 2/T, 3, and 4

bits quantizations, respectively. Similar to the other BNNs

for the first and last layers we use full precision. Also,

as suggested by [37] we use full precision double short-

cuts in ResNet architecture, which adds a small computa-

tional/memory overhead. We quantize weights per filter

and activations per layer. As [7] we use first-order poly-

nomial learning-rate annealing schedule (from 2.0e − 4 to

2.0e − 7) and train for 240 epochs with Adam optimizer.

When use 120 epochs, with identical setup, we get top-1

accuracies for different activations quantizations (with ls-1

binary weights) as follows: ls-1: 58.1, T:61.1, gf-2:61.1,

ls-2:62.4, and fp:65.2. We use smooth labels from a pre-

trained full precision teacher [25] with unit temperature.

Quantized networks are initialized randomly. We do not

use weight decay. For the data augmentation we use the

standard methods used to train full precision ResNet archi-

tecture. For training we apply random resize and crop to

224×224, followed by random horizontal flipping, color

jittering, and lightening. For test we resize the images to

256×256 followed by a center cropping to 224×224.

8

References

[1] Alexander G Anderson and Cory P Berg. The high-

dimensional geometry of binary neural networks. arXiv

preprint arXiv:1705.07199, 2017.

[2] Hessam Bagherinezhad, Maxwell Horton, Mohammad

Rastegari, and Ali Farhadi. Label refinery: Improving ima-

genet classification through label progression. arXiv preprint

arXiv:1805.02641, 2018.

[3] Yoshua Bengio, Nicholas Léonard, and Aaron Courville.

Estimating or propagating gradients through stochastic

neurons for conditional computation. arXiv preprint

arXiv:1308.3432, 2013.

[4] Włodek Bryc and Jack W Silverstein. Singular values of

large non-central random matrices. Random Matrices: The-

ory and Applications, page 2050012, 2019.

[5] Adrian Bulat and Georgios Tzimiropoulos. Xnor-

net++: Improved binary neural networks. arXiv preprint

arXiv:1909.13863, 2019.

[6] Adrian Bulat, Georgios Tzimiropoulos, Jean Kossaifi, and

Maja Pantic. Improved training of binary networks for hu-

man pose estimation and image recognition. arXiv preprint

arXiv:1904.05868, 2019.

[7] Zhaowei Cai, Xiaodong He, Jian Sun, and Nuno Vasconce-

los. Deep learning with low precision by half-wave gaus-

sian quantization. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 5918–

5926, 2017.

[8] Yunpeng Chen, Haoqi Fang, Bing Xu, Zhicheng Yan, Yan-

nis Kalantidis, Marcus Rohrbach, Shuicheng Yan, and Jiashi

Feng. Drop an octave: Reducing spatial redundancy in con-

volutional neural networks with octave convolution. arXiv

preprint arXiv:1904.05049, 2019.

[9] Jungwook Choi, Zhuo Wang, Swagath Venkataramani,

Pierce I-Jen Chuang, Vijayalakshmi Srinivasan, and Kailash

Gopalakrishnan. Pact: Parameterized clipping activa-

tion for quantized neural networks. arXiv preprint

arXiv:1805.06085, 2018.

[10] François Chollet. Xception: Deep learning with depthwise

separable convolutions. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

1251–1258, 2017.

[11] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre

David. Binaryconnect: Training deep neural networks with

binary weights during propagations. In Advances in neural

information processing systems, pages 3123–3131, 2015.

[12] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran

El-Yaniv, and Yoshua Bengio. Binarized neural networks:

Training deep neural networks with weights and activations

constrained to+ 1 or-1. arXiv preprint arXiv:1602.02830,

2016.

[13] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In 2009 IEEE conference on computer vision and

pattern recognition, pages 248–255. Ieee, 2009.

[14] Zhen Dong, Zhewei Yao, Amir Gholami, Michael W Ma-

honey, and Kurt Keutzer. Hawq: Hessian aware quantization

of neural networks with mixed-precision. In Proceedings

of the IEEE International Conference on Computer Vision,

pages 293–302, 2019.

[15] Julian Faraone, Nicholas Fraser, Michaela Blott, and

Philip HW Leong. Syq: Learning symmetric quantization

for efficient deep neural networks. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 4300–4309, 2018.

[16] Jonathan Frankle and Michael Carbin. The lottery ticket hy-

pothesis: Finding sparse, trainable neural networks. arXiv

preprint arXiv:1803.03635, 2018.

[17] Mohammad Ghasemzadeh, Mohammad Samragh, and Fari-

naz Koushanfar. Rebnet: Residual binarized neural net-

work. In 2018 IEEE 26th Annual International Sympo-

sium on Field-Programmable Custom Computing Machines

(FCCM), pages 57–64. IEEE, 2018.

[18] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and

Pritish Narayanan. Deep learning with limited numerical

precision. In International Conference on Machine Learn-

ing, pages 1737–1746, 2015.

[19] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pe-

dram, Mark A Horowitz, and William J Dally. Eie: efficient

inference engine on compressed deep neural network. In

2016 ACM/IEEE 43rd Annual International Symposium on

Computer Architecture (ISCA), pages 243–254. IEEE, 2016.

[20] Song Han, Huizi Mao, and William J Dally. Deep com-

pression: Compressing deep neural networks with pruning,

trained quantization and huffman coding. arXiv preprint

arXiv:1510.00149, 2015.

[21] Song Han, Jeff Pool, Sharan Narang, Huizi Mao, Enhao

Gong, Shijian Tang, Erich Elsen, Peter Vajda, Manohar

Paluri, John Tran, et al. Dsd: Dense-sparse-dense training

for deep neural networks. arXiv preprint arXiv:1607.04381,

2016.

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Delving deep into rectifiers: Surpassing human-level perfor-

mance on imagenet classification. In Proceedings of the

IEEE international conference on computer vision, pages

1026–1034, 2015.

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016.

[24] Koen Helwegen, James Widdicombe, Lukas Geiger, Zechun

Liu, Kwang-Ting Cheng, and Roeland Nusselder. Latent

weights do not exist: Rethinking binarized neural network

optimization. In Advances in neural information processing

systems, pages 7531–7542, 2019.

[25] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-

ing the knowledge in a neural network. arXiv preprint

arXiv:1503.02531, 2015.

[26] Lu Hou and James T Kwok. Loss-aware weight quantization

of deep networks. arXiv preprint arXiv:1802.08635, 2018.

[27] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-

dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-

tional neural networks for mobile vision applications. arXiv

preprint arXiv:1704.04861, 2017.

9

[28] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-

Yaniv, and Yoshua Bengio. Quantized neural networks:

Training neural networks with low precision weights and

activations. The Journal of Machine Learning Research,

18(1):6869–6898, 2017.

[29] Forrest N Iandola, Song Han, Matthew W Moskewicz,

Khalid Ashraf, William J Dally, and Kurt Keutzer.

Squeezenet: Alexnet-level accuracy with 50x fewer pa-

rameters and¡ 0.5 mb model size. arXiv preprint

arXiv:1602.07360, 2016.

[30] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift. arXiv preprint arXiv:1502.03167, 2015.

[31] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu,

Matthew Tang, Andrew Howard, Hartwig Adam, and Dmitry

Kalenichenko. Quantization and training of neural networks

for efficient integer-arithmetic-only inference. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 2704–2713, 2018.

[32] Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman.

Speeding up convolutional neural networks with low rank

expansions. arXiv preprint arXiv:1405.3866, 2014.

[33] Hyungjun Kim, Kyungsu Kim, Jinseok Kim, and Jae-Joon

Kim. Binaryduo: Reducing gradient mismatch in binary ac-

tivation network by coupling binary activations. In Interna-

tional Conference on Learning Representations, 2020.

[34] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple

layers of features from tiny images. 2009.

[35] Fengfu Li, Bo Zhang, and Bin Liu. Ternary weight networks.

arXiv preprint arXiv:1605.04711, 2016.

[36] Xiaofan Lin, Cong Zhao, and Wei Pan. Towards accurate

binary convolutional neural network. In Advances in Neural

Information Processing Systems, pages 345–353, 2017.

[37] Zechun Liu, Baoyuan Wu, Wenhan Luo, Xin Yang, Wei Liu,

and Kwang-Ting Cheng. Bi-real net: Enhancing the per-

formance of 1-bit cnns with improved representational ca-

pability and advanced training algorithm. In Proceedings of

the European conference on computer vision (ECCV), pages

722–737, 2018.

[38] Stuart Lloyd. Least squares quantization in pcm. IEEE trans-

actions on information theory, 28(2):129–137, 1982.

[39] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun.

Shufflenet v2: Practical guidelines for efficient cnn architec-

ture design. In Proceedings of the European Conference on

Computer Vision (ECCV), pages 116–131, 2018.

[40] Sachin Mehta, Mohammad Rastegari, Anat Caspi, Linda

Shapiro, and Hannaneh Hajishirzi. Espnet: Efficient spatial

pyramid of dilated convolutions for semantic segmentation.

In Proceedings of the European Conference on Computer Vi-

sion (ECCV), pages 552–568, 2018.

[41] Sachin Mehta, Mohammad Rastegari, Linda Shapiro, and

Hannaneh Hajishirzi. Espnetv2: A light-weight, power ef-

ficient, and general purpose convolutional neural network.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 9190–9200, 2019.

[42] Asit Mishra, Eriko Nurvitadhi, Jeffrey J Cook, and Deb-

bie Marr. Wrpn: wide reduced-precision networks. arXiv

preprint arXiv:1709.01134, 2017.

[43] Eunhyeok Park, Sungjoo Yoo, and Peter Vajda. Value-aware

quantization for training and inference of neural networks.

In Proceedings of the European Conference on Computer Vi-

sion (ECCV), pages 580–595, 2018.

[44] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon,

and Ali Farhadi. Xnor-net: Imagenet classification using bi-

nary convolutional neural networks. In European Conference

on Computer Vision, pages 525–542. Springer, 2016.

[45] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-

moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted

residuals and linear bottlenecks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 4510–4520, 2018.

[46] Jack W Silverstein. The spectral radii and norms of large di-

mensional non-central random matrices. Stochastic Models,

10(3):525–532, 1994.

[47] Xavier Suau, Luca Zappella, and Nicholas Apostoloff. Net-

work compression using correlation analysis of layer re-

sponses. 2018.

[48] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,

Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent

Vanhoucke, and Andrew Rabinovich. Going deeper with

convolutions. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 1–9, 2015.

[49] Mingxing Tan and Quoc V Le. Efficientnet: Rethinking

model scaling for convolutional neural networks. arXiv

preprint arXiv:1905.11946, 2019.

[50] Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song

Han. Haq: Hardware-aware automated quantization with

mixed precision. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 8612–8620,

2019.

[51] Ziwei Wang, Jiwen Lu, Chenxin Tao, Jie Zhou, and Qi Tian.

Learning channel-wise interactions for binary convolutional

neural networks. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 568–577,

2019.

[52] Bichen Wu, Yanghan Wang, Peizhao Zhang, Yuandong Tian,

Peter Vajda, and Kurt Keutzer. Mixed precision quantiza-

tion of convnets via differentiable neural architecture search.

arXiv preprint arXiv:1812.00090, 2018.

[53] Sergey Zagoruyko and Nikos Komodakis. Wide residual net-

works. arXiv preprint arXiv:1605.07146, 2016.

[54] Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and Gang

Hua. Lq-nets: Learned quantization for highly accurate and

compact deep neural networks. In Proceedings of the Euro-

pean Conference on Computer Vision (ECCV), pages 365–

382, 2018.

[55] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun.

Shufflenet: An extremely efficient convolutional neural net-

work for mobile devices. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

6848–6856, 2018.

[56] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen,

and Yuheng Zou. Dorefa-net: Training low bitwidth convo-

lutional neural networks with low bitwidth gradients. arXiv

preprint arXiv:1606.06160, 2016.

10

[57] Chenzhuo Zhu, Song Han, Huizi Mao, and William J

Dally. Trained ternary quantization. arXiv preprint

arXiv:1612.01064, 2016.

[58] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V

Le. Learning transferable architectures for scalable image

recognition. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 8697–8710,

2018.

11

