
Constraint-Aware Importance Estimation for

Global Filter Pruning under Multiple Resource Constraints

Yu-Cheng Wu1,2, Chih-Ting Liu1,2, Bo-Ying Chen1,2, Shao-Yi Chien1,2

1NTU IoX Center, National Taiwan University
2Graduate Institute of Electronic Engineering, National Taiwan University

{yuchengwu, jackieliu, byc}@media.ee.ntu.edu.tw

sychien@ntu.edu.tw

Abstract

Filter pruning is an efficient way to structurally remove

the redundant parameters in convolutional neural network,

where at the same time reduces the computation, memory

storage and transfer cost. Recent state-of-the-art methods

globally estimate the importance of each filter based on its

impact to the loss and iteratively remove those with smaller

values until the pruned network meets some resource con-

straints, such as the commonly used number (or ratio) of

filter left. However, when there is a more practical con-

straint like the total number of FLOPs, they ignore its re-

lation to the estimation of filter importance. We propose a

novel method called Constraint-Aware Importance Estima-

tion (CAIE) that integrates information of the impact on the

given resource into the original importance estimation only

based on loss when pruning each filter. Moreover, our CAIE

can be generalized to the pruning problem under multiple

resource constraints simultaneously. Extensive experiments

show that under the same multiple resource constraints, the

model pruned with our CAIE method can not only accu-

rately meet the constraints but also achieve the optimal per-

formance results when comparing to existing state-of-the-

art methods.

1. Introduction

In recent years, Convolutional Neural Networks (CNN)

have been widely adopted in many computer vision tasks,

such as image recognition [6], object detection [18] or se-

mantic segmentation [1]. To achieve better performance in

these tasks, CNNs are designed to be deeper and more com-

plex, which are accordingly more computation demanding.

Although it can be achieved by performing on multiple

powerful GPUs, nonetheless, in the real-world applications

on mobiles or embedded devices, the limited computation

resources and constraints, such as the total number of oper-

ations, latency or energy consumption, will hinder the de-

ployment of those CNN models. Thus, how to optimize and

accelerate the heavy network but maintain the performance

at the same time would be a critical issue to solve.

Network pruning is a common solution for optimizing

the model. Given a large and deep neural network, the goal

of pruning is trying to obtain an optimal sub-network with

acceptable performance drop, or even sometimes resulting

in a small gain, by exploring and removing the redundant

parts of the model. Based on the categories of a unit being

pruned at a time, filter pruning [12], also known as channel

pruning [9], is one promising technique which effectively

reduces the computation cost by regarding a structural por-

tion, such as a convolutional filter or a channel in output fea-

turemaps, of the model as an unit when performing network

pruning. Furthermore, among all the relevant approaches of

filter pruning, the global method [17, 14, 16, 23] which de-

termines the redundant filters based on the whole network is

usually more popular than those pruning the filters layer-by-

layer [15, 9, 25] because globally removing the redundancy

is more flexible and time-efficient. In detail, the procedure

of global method can be described as follow: the pruning

algorithm first repeatedly removed unimportant filters in a

given trained CNN until the pruned network satisfied given

pruning objectives. Then, the fine-tuning training process

will be conducted to retain the performance.As for the prun-

ing objective, commonly it would be the number (or ratio)

of filters left, or other computation resource constraints such

as floating point operations (FLOPs), number of total pa-

rameters, inference latency, and so on.

The core component of global filter pruning is the pro-

cess to determine the “importance” of each filter and thus

iteratively remove the least important one in the whole net-

work. The correctness of the importance estimation will ex-

plicitly affect the final performance results. In the past, the

L1-norm [12] or sparsity [13] of a filter is used, while re-

cently, most works [17, 16, 23] achieve outstanding results

by estimating the importance of a filter based on its impact

on the loss when being removed. However, we found that

1

the “pruning objective” at hands is not taken into consider-

ation during importance estimation in those works, which

reduces the correlation between the estimated importance

of filters and the optimal solution for pruning the network

under the specific objective. Molchanov et al. [17] has pro-

posed a method to consider the given pruning objective dur-

ing importance estimation, but the integration method can-

not be proved to achieve an optimal result. In addition,

when the objective contains multiple resource constraints,

which is practical in the real-world scenario, previous meth-

ods can only keep pruning the model until it separately

matches all constraints. Because they cannot jointly con-

sider all objectives, the pruning results will not meet all con-

straints accurately at the same time and consequently lead

to a worse performance.

To solve the problems mentioned above, we propose a

novel method called Constraint-Aware Importance Estima-

tion (CAIE) to integrate the information of given resource

constraints into the original importance estimation of filters.

Given any single resource constraint as in other works, we

first need to define the “resource impact” of a filter, which is

the normalized amount of resource reduction in the whole

network when the specific filter is removed. Then, by math-

ematical derivation, we can simply combine the original im-

pact based on the loss function and the impact based on the

specific constraint to estimate a new constraint-based im-

portance of a filter. Additionally, when we encounter multi-

ple resource constraints, our integration method can be eas-

ily generalized to the formulation with multi-constraints.

With our CAIE, in each pruning iteration, we can remove

the filters that will make the pruned sub-network most close

to the objective but with least impact on the loss function,

which is therefore the optimal solution compared to oth-

ers. Moreover, when applying our generalized estimation

method under multi-constraints, we can thus achieve the

best performance over state-of-the-arts and simultaneously

meet all the given constraints accurately. We now highlight

the contributions of this work:

• We propose a novel method called Constraint-Aware

Importance Estimation (CAIE) to estimate the impor-

tance of filters in combination with given resource con-

straint, which can obtain the best results when compar-

ing to those only based on the loss function.

• The proposed method can be easily generalized into

the pruning problem under multiple constraints, which

is practical to real-world scenarios.

• Under the same amount of resource consumption of

the pruned model, we can achieve the state-of-the-art

performance results with our proposed CAIE method.

2. Related Work

2.1. Filter Pruning
Network pruning is a common method to obtain a com-

pact network from a large one by removing the redundant

parts. Comparing to the traditional weight pruning [5],

which only removes the redundant parameter individually,

in CNNs, filter pruning can effectively reduce the compu-

tation consumption by treating a convolutional filter in the

model as the unit for pruning. To determine the redundant

filters, some works focus on evaluating the importance of

filters in a single layer and remove unimportant ones “layer-

by-layer” while others are interested in the global method

that evaluate and prune filters based on the whole network.

Layer-wise filter pruning. Among the methods pruning

layer-by-layer, some works [12, 7, 13, 8] believe that there

is a strong correlation between the importance of a filter

and its corresponded parameter-dependent values, such as

its L1-norm [12], L2-norm [7], sparsity [13] or the dis-

tance to the geometric median of filters in a single layer [8].

On the other hand, some works introduce using training

data to yield the criterion for filter removal [15, 9, 25].

Thinet [15] and CP [9] select filters that can minimize

the feature reconstruction error layer-by-layer by solving

LASSO problem [21]. Moreover, DCP [25] adopt addi-

tional discrimination-aware losses to not only guide the se-

lection of redundant filters but also enhance the discrimina-

tion ability of features. However, all of the methods men-

tioned above can only compare filters in the same layer, in

other words, cross-layer comparison is not available. Fur-

thermore, layer-wise filter pruning is time-consuming and

requires pre-defined pruning ratio for each layer which may

reduce the flexibility of the left network and cause a worse

performance result. Therefore, we focus on solving filter

pruning problem with the global method.

Global filter pruning. To make the estimated values

for filter importance be globally comparable, Molchanov

et al. [17] utilizes layer-wise normalization technique to

rescale the original importance score which is generated by

Taylor expansion of the impact on the loss function caused

by the removal of filters. NISP [24] measures the impor-

tance of features in the final response layer then propa-

gates the importance score for each filter in the whole net-

work from the final response layer to the first layer. Some

works [14, 22] try to take advantage of batch-normalization

(BN) layers [10]. They enforce the sparsity of the scaling

factor γ in the BN layer by adding a regularization term in

training, and then prune filters depending on a global thresh-

old over the value of γ. Recently, to assess the importance

of a filter more accurately, Molchanov et al. [16] modifies

the Taylor expansion method in [17] so that the additional

normalization is not required. Combining Taylor expansion

method and the sparsity enforcement technique, GBN [23]

introduces “Gate Decorator” and apply it on BN layers for

importance estimation and sparsity training. Although they

can obtain a promising performance, except the work [17],

none of these methods consider the given constraint during

importance estimation of filters.

2.2. Constraintbased Network Optimization
Some works try to integrate the information of given

constraints when optimizing the network. Molchanov et

al. [17] add a regularization term about the given constraint

to the original score of the filter importance. However,

this method introduce an extra parameter λ to control the

amount of regularization, which is selected empirically and

sensitive to the magnitude of regularization term and the

original importance score. LCP [2] adopt evolutionary al-

gorithm to offset the importance of a filter with the given

constraints which is originally evaluated by the impact on

the loss. Though LCP also consider the given constraints

when searching the offset value, their belief that the optimal

importance estimation of filters is based on the impact on

loss is incorrect since it should also be related to the given

constraint. Morphnet [4], a work about network architec-

ture search, introduce the resource-weighted regularizer in

the loss function to search the proper width of each layer

that is optimal to the targeted resource. Even though, Mor-

phnet can only concern about a single resource at a time.

To sum up, our method can easily merge the information of

the given constraints during importance estimation in global

filter pruning.

3. Proposed Methods

To clearly unify and compare to the works with filter

pruning, we will first introduce the preliminaries and de-

fine the optimization problem of original filter pruning in

the global method. Then, in order to solve the problem

under a single constraint, we re-formulate the global filter

pruning problem and solve it with our proposed Constraint-

Aware Importance Estimation (CAIE), which is then gen-

eralized to deal with problems under multiple constraints.

At last, we will summarize our iterative pruning and fine-

tuning scheme with CAIE in.

3.1. Preliminaries of filter pruning

Given a network with parameters θ and a dataset D =
{(xi, yi)}

N
i=1 with N training data and label pairs (xi, yi),

the goal of network training is to minimize the given loss

function L(D; θ). In filter pruning, we first define the set

of removable filters in the network with parameters θ as

F(θ). Then, the pruning algorithm will aim to yield a

smaller model with left parameters θF ′ that can also min-

imize the loss function L(D; θF ′) by removing a subset of

filters F ⊂ F(θ) in the network under a specific constraint,

which can be formulated as follow:

argmin
F

L(D; θF ′) s.t. C(θF ′) ≤ C (1)

where F ∪ F ′ = F(θ), C is the given pruning constraint

and C(θ) is the amount of concerned resource consumption

for the network with parameters θ. In typical filter pruning

problem, the common pruning constraint C is the maximum

expected number of filters left, and the corresponded mea-

surement C(·) would be the total number of filters |F(·)|.
Specifically, when under the setting of pruning in global

method, we would first obtain a well-trained network with

parameters θ∗. Thus, the objective for the optimization

problem can be change into minimizing the difference of

performance caused by removing the filters in the network

whose parameters are initialized with θ = θ∗. This dif-

ference is commonly evaluated by calculating the loss im-

pact [17, 16, 23], defined as ℓ(F), when removing the filter

set F for θ. The ℓ(F) can be formulated as:

ℓ(F) = M(L(D; θ), L(D; θF ′)), (2)

where M(·) is a distance metric function such as squared

difference [16] or absolute difference [17, 23]. Therefore,

with ℓ(F), the optimization problem is re-formulated as:

argmin
F

ℓ(F) s.t. C(θF ′) ≤ C. (3)

This problem would then be solved with greedy strategy:

iteratively estimating the importance of each filter f , I(f),
in the network left and pruning those least important ones

that can minimize the loss impact until the given constraint

is satisfied. Commonly, the importance of a filter I(f) is

assigned as its loss impact in this greedy process:

I(f) = ℓ(f) . (4)

During implementation, instead of evaluating I(f) for all

filters in F(θ) with |F(θ)| pruned models in total, which

is time-consuming, I(f) is usually estimated by first-order

Taylor approximation [16], where all required gradients can

be obtained by back-propagation at once.

The effectiveness of the criterion “selecting the least im-

portant filter” is based on the assumption that the impact

of a single filter in the removed filter set can be considered

individually, which is only true when a small number of fil-

ters are removed. This is why in the solution to problem (3),

they iteratively remove part of the most unimportant filters

and then re-settle the problem with the network left as a new

initialization.

3.2. Singleconstraint Importance Estimation

Among previous works, we found that the estimation

of filter importance with (4) is lack of information about

the given constraint or the concerned resource, which de-

creases the credibility of acquiring the best pruning result.

Hence, we propose a Constraint-Aware Importance Estima-

tion (CAIE) method which aims to combine both the infor-

mation of constraint and performance simultaneously dur-

ing importance estimation for a single filter. To better derive

our solution, we will first re-formulate the original pruning

Ours

Others

Total resource
impact

Total loss
impact

Figure 1: Comparison of our CAIE to others under the

single-constraint pruning problem. The paths colored in

red and blue denote the pruning process generated by our

method and others respectively. Each colored vector be-

tween two points illustrates the loss impact ℓ(f) (vertical

component) and the resource impact r(f) (horizontal com-

ponent) when removing the filter f . Our method which con-

siders the two components jointly can generate a better re-

sult with lower total amount of loss impact under the same

pruning objective R.

problem (3) into summation of the individual contribution

to performance change and resource reduction for a single

filter without losing authenticity.

First of all, those common choices of metric func-

tion M(·) ensure the linearity of loss impact, as a result,

problem (3) can be rewritten as:

argmin
F

∑

f∈F

ℓ(f) s.t. C(θF ′) ≤ C. (5)

In practical usage, the given constraint C could be the max-

imum value of a certain type of computation resource such

as FLOPs. To better solve the pruning problem under such

scenarios, we introduce the resource impact, r(F), of a fil-

ter set F , which is the proportion of the reduction in re-

source consumption while pruning F :

r(F) =
C(θ)− C(θF ′)

C(θ)
. (6)

Therefore, we can rewrite (5) with our defined resource im-

pact:

argmin
F

∑

f∈F

ℓ(f) s.t. r(F) ≥ R , (7)

where the pruning objective R = C(θ)−C

C(θ) is the minimum

proportion of total reduction given C.
Last, since we will resolve problem (7) iterativly dur-

ing the process of pruning, we can apply an useful assump-
tion when a small number of filters are removed at a time:
the resource impact of a filter set F is equal to the sum
of resource impact of individual filter f in the set F . Ac-
cordingly, we formulate the optimization problem of single-
constraint pruning as:

argmin
F

∑

f∈F

ℓ(f) s.t.
∑

f∈F

r(f) ≥ R . (8)

In particular, as in previous works, applying the constraint
C with the number (or ratio) of filters left is just a special
case of (8) with r(f) = 1

|F(θ)| :

argmin
F

∑

f∈F

ℓ(f) s.t.
∑

f∈F

r(f) =
|F |

|F(θ)|
≥ F0, (9)

where F0 = |F(θ)|−C

|F(θ)| is the minimum ratio of filters to be

removed to the total number of filters.

Now, given this new optimization problem (8), we want

to find the optimal solution through ranking filters by es-

timating suitable importance score function g, I(f) =
g(ℓ(f), r(f)), which contains information about the given

constraint. Intuitively, I(f) should possess the following

characteristics: 1) If two filters f1, f2 have the same value

of resource impact, r(f1) = r(f2), the importance should

be dominated by the corresponding loss impact. 2) If two

filters have the same loss impact value, ℓ(f1) = ℓ(f2), the

one with larger resource impact should have higher priority

of being pruned since removing the filter with higher re-

duction in resource consumption is more beneficial to the

progress of pruning.

To possess the property mentioned above, we pro-

pose the Constraint-Aware Importance Estimation (CAIE)

method under a single constraint, which is a feasible form

of importance I(f) to solve problem (8):

Ising(f) =
ℓ(f)

r(f)
. (10)

We first qualitatively illustrate the effectiveness of our

CAIE in Fig. 1, where the path colored in red is with our

method and the two axes represent the total number of loss

impact and resource impact. Because our importance esti-

mation Ising(f) represents the performance drop per unit of

resource reduction, comparing to the original I(f) that only

based on ℓ(f), greedily selecting those filters with lower

Ising(f) would lead to the smallest performance drop when

reaching the needed total amount of resource reduction R.

To confirm the correctness of our CAIE under single

constraint (10), we give a more rigorous proof as follow:

Proof. FI and F ∗ indicate our solution and the optimal so-

lution respectively. In general, resource impact of a single

filter r(f) is far less than the pruning objective R, which

implies that we can neglect the difference between total re-

source reduction
∑

f r(f) and pruning objective R in both

solutions, hence,
∑

f∈FI
r(f) =

∑
f∈F∗ r(f).

Let S0 := FI ∩ F ∗ and suppose that FI 6= F ∗, we have
S1 := FI \ (S0) 6= ∅ and S2 := F ∗ \ (S0) 6= ∅. Then,

∑

f∈S1

r(f) =
∑

f∈FI

r(f)−
∑

f∈S0

r(f)

=
∑

f∈F∗

r(f)−
∑

f∈S0

r(f) =
∑

f∈S2

r(f) .
(11)

Based on the facts that FI ∩ S2 = ∅, S1 ⊂ FI and the
criterion “selecting least importance filter” in the pruning
algorithm, we have

max
f∈S1

I(f) ≤ max
f∈FI

I(f) ≤ min
f∈S2

I(f) . (12)

Therefore,

∑

f∈S1

ℓ(f) =
∑

f∈S1

ℓ(f)

r(f)
r(f) =

∑

f∈S1

I(f)r(f)

≤ max
f∈S1

I(f) ·
∑

f∈S1

r(f)

≤ min
f∈S2

I(f) ·
∑

f∈S2

r(f)

≤
∑

f∈S2

I(f)r(f)

=
∑

f∈S2

ℓ(f)

r(f)
r(f) =

∑

f∈S2

ℓ(f) ,

(13)

and
∑

f∈FI

ℓ(f) =
∑

f∈S0

ℓ(f) +
∑

f∈S1

ℓ(f)

≤
∑

f∈S0

ℓ(f) +
∑

f∈S2

ℓ(f) =
∑

f∈F∗

ℓ(f) .
(14)

We can see that with (14), the total loss impact of our so-

lution FI will always be equal to or less than that of the

optimal solution F ∗. In other words, our solution FI is

thus an optimal solution to the problem of single-constraint

pruning (8).

3.3. Multipleconstraint Importance Estimation

In practical scenarios, given any desired platform, we

may need to jointly consider some pruning constraints of

different resources at the same time, such as regarding the #

of parameters left of the model owing to the memory stor-

age and the # of FLOPs based on the platform’s comput-

ing power. Therefore, we need to generalize the aforemen-

tioned single-constraint pruning problem into that under

multiple constraints and also generalize the solution with

our CAIE.
In formulation, when given k constraints {Ci}

k
i=1,

we can first generalize (8) to the problem of multiple-
constraint pruning:

argmin
F

∑

f∈F

ℓ(f) s.t.
∑

f∈F

ri(f) ≥ Ri, ∀i ≤ k , (15)

with ri(f) =
Ci(θ)−Ci(θf′)

Ci(θ)
and the pruning objective Ri =

Ci(θ)−Ci

Ci(θ)
for each concerned resource i. Specifically, we

can neglect the resource i when Ci(θ) − Ci < 0, which

means its consumption is already lower than the given con-

straint; thus, the pruning objective of resource i should be

modified as Ri = min(Ci(θ)−Ci

Ci(θ)
, 0).

(a) (b)

Total impact on

resource 1

Total impact
on resource 2

Total impact
on resource 2

Total impact on

resource 1

Figure 2: (a) Illustration of the effective resource impact.

(b) The modified problem in multiple-constraint prun-

ing. We take the problem under two resource constraints

(R1, R2) as an example and demonstrate the resource im-

pact on the resource plane. (a): The effective resource

impact re(f) is the scalar projection of ~r(f) to the objec-

tive vector ~R. (b): Dotted lines are the boundaries of the

constraints in the modified problem (19) with vectors ~Rt

and ~Rt+1 in pruning iteration t and t + 1. As we remove

some filters in the network, we will adjust the objective vec-

tor from ~Rt to ~Rt+1 in order to make the pruning direction

still point to the point R.

To better derive the solution, we need to jointly con-
sider all different resource impacts when removing one
filter f . We define the joint resource impact and the
overall pruning objective as the vector form, ~r(f) =

〈r1(f), r2(f), ..., rk(f)〉 and ~R = 〈R1, R2, ..., Rk〉, in the
resource space R

k. With the linearity of vectors, the total
resource impact

∑
f∈F ri(f) for all resource i when prun-

ing the filter set F can thus be easily obtained by summation
of the resource impact vectors ~r(f):

〈

∑

f∈F

r1(f),
∑

f∈F

r2(f), ...,
∑

f∈F

rk(f)

〉

=
∑

f∈F

~r(f) . (16)

Furthermore, in the space R
k, we found that the direc-

tion of ~R is the optimal direction for pruning because the

objective point R = (R1, R2, ..., Rk) is the closet point on

the boundary of the constraints in problem (15) to the ori-

gin of the resource space. Hence, when finding the optimal

solution, we only need to focus on the components of ~r(f)

with positive contribution to the direction of ~R.

Consequently, we define the effective resource impact,

re(f), as the scalar projection of ~r(f) onto ~R:

re(f) = ~r(f) ·
~R

|~R|
=

∑

i
ri(f)Ri

√
∑

i
R2

i

, (17)

which is also illustrated in Fig. 2 (a). With re(f), our gen-

eralized Constraint-Aware Importance Estimation (CAIE)

under multiple constraints Imul(f) can be defined as the

R1
Total impact on resource 1

Total impact
on resource 2

R2

Total loss impact

R

Ours

Others

𝑟(𝑓)

ℓ(𝑓)

Figure 3: Comparison of our CAIE to others under the

multiple-constraint pruning problem. We demonstrate

the pruning problem under two constraints. The paths col-

ored in red and blue denote the pruning process generated

by our method and others respectively. Each colored vec-

tor between two points is composed by the loss impact ℓ(f)
and the resource impact vector ~r(f) when removing the fil-

ter f . Our method with CAIE is able to reach the pruning

objectives simultaneously and also jointly considers all the

impacts to generate a better result with lower total loss im-

pact under the objective R.

formula similar to that in single-constraint pruning (10):

Imul(f) =
ℓ(f)

re(f)
. (18)

It’s worth noting that in fact, the importance Imul(f) is
the optimal solution to the following modified problem:

argmin
F

∑

f∈F

ℓ(f) s.t.
∑

f∈F

re(f) ≥ |~R| , (19)

which is transformed from the problem under single con-

straint (8) with the substitution in some of the notations. Al-

though the boundary of constraints in original problem (15)

and that in the modified one (19) are distinctive, shown in

Fig. 2 (b), the point R is also the closet point on the bound-

ary in (19) to the origin, which is the same as problem (15).

Moreover, from iteration t to t+ 1 among the pruning pro-

cess, we will also adjust the objective vector ~R whenever

we remove a small number of filters. Thus, also shown in

Fig. 2 (b), we can always consider the optimal direction in

the process and consequently be able to reach the final prun-

ing objective point R accurately.

In Fig. 3, we demonstrate the effectiveness of our CAIE

method under multiple constraints (colored in red) when

comparing to others only based on the loss impact (colored

in blue), where the x-y plane is the resource space and the z-

axis denotes the total loss impact. With our CAIE, the path

which represents the iterative pruning result always moves

Algorithm 1: Global Filter Pruning with CAIE

Input: Pre-trained network parameters θ∗, dataset D, k

pruning constraints {Ci}
k
i=1

Output: pruned network parameters θ∗p
1: Set θ∗ as the initialization of the concerned network θ

2: while θ not satisfy given constraints do

3: Estimate the loss impact ℓ(f) for each filter f in θ

with n mini-batches of data in D
4: Evaluate the pruning objective vector ~R from θ and

the resource impact vector ~r(f) for each filter f in θ

5: Calculate the importance score I(f) with

formula (17) and (18)

6: Remove a filter set F containing m least important

filters based on I(f) and acquire a left network θF ′

7: Set θF ′ as the concerned network θ for next iteration

8: end while

9: Fine-tuning θ with D and yield a pruned model θ∗p

toward the pruning objective point R while previous meth-

ods can only “separately” match each constraints (i.e. first

meet R1 then R2). Moreover, since we greedily select the

filters with the smallest importance score Imul(f), which is

the slope of performance change on the effective reduction

of all the resources, we can acquire the result with smaller

overall impact on loss than others when it meets R. To sum-

marize, our CAIE method can generate the optimal result

under any combination of resource constraints.

3.4. The Overall Pruning Scheme

Our algorithm of global filter pruning follows the pro-

cedure of “iteratively pruning then fine-tuninig”. During a

single iteration in the pruning stage to remove a small num-

ber of filters, we first estimate the loss impact ℓ(f) of each

filter f following the method proposed in [16]. Next, we

will evaluate the resource impact vector ~r(f) and the prun-

ing objective vector ~R. With ℓ(f), ~r(f) and ~R at hands,

our Constraint-Aware Importance Estimation (CAIE) can

integrate those components with formula (17) and (18) to

generate the importance I(f) of each filter as the criterion

for pruning. The iterative pruning process will continue un-

til the pruned network satisfies the given constraints, then

followed by the fine-tuning process to further boost the per-

formance at last. The overall procedure of our proposed

algorithm is shown in Alg. 1.

4. Experiments

In this section, we will explain the implementation de-

tails of our experiments and demonstrate the effectiveness

of our CAIE method.

Table 1: Ablation Studies of our CAIE. Each block spaced apart by double line represents a group of experiments. The

column “w/ − w/o CAIE” illustrates the performance gain after applying our CAIE comparing to the first row in each block.

Model Constraints w/ CAIE
FLOPs left

(%)

Param. left

(%)

P. Top-1

(%)

Top-1↓

(%)

w/ − w/o

CAIE (%)

ImageNet [19]

ResNet-50

(orig. top-1 : 76.13%)

f.33, p.31 ✗ 32.83 25.94 71.57 4.56 -

f.33 ✓ 32.95 49.40 73.90 2.23 2.33

p.26 ✓ 46.64 25.80 71.96 4.17 0.39

f.33, p.31 ✓ 32.90 30.76 72.39 3.74 0.82

f.33, p.26 ✓ 32.47 25.89 71.92 4.22 0.34

ResNet-50

(orig. top-1 : 76.13%)

f.65, p.70 ✗ 64.83 64.27 75.59 0.54 -

f.65 ✓ 64.58 85.72 76.02 0.11 0.43

p.65 ✓ 79.80 64.70 75.80 0.33 0.21

f.65, p.70 ✓ 64.95 69.88 75.83 0.30 0.24

f.65, p.65 ✓ 64.81 64.61 75.69 0.44 0.10

ResNet-34

(orig. top-1 : 73.31%)

f.78, p.79 ✗ 77.55 71.43 72.67 0.64 -

f.78 ✓ 77.47 90.43 73.15 0.16 0.48

p.72 ✓ 85.89 71.29 72.72 0.59 0.05

f.78, p.79 ✓ 77.43 78.94 72.91 0.40 0.24

f.78, p.72 ✓ 77.72 71.32 72.73 0.58 0.06

CIFAR-10 [11]

VGG16-BN

(orig. top-1 : 93.34%)

f.44, p.20 ✗ 43.32 9.93 92.94 0.40 -

f.44 ✓ 44.00 12.55 93.06 0.28 0.12

p.10 ✓ 42.90 9.69 93.02 0.32 0.08

f.44, p.20 ✓ 43.07 12.19 93.11 0.23 0.17

f.44, p.10 ✓ 42.43 9.89 92.98 0.36 0.04

ResNet-34

(orig. top-1 : 94.13%)

f.40, p.15 ✗ 29.90 14.48 93.34 0.79 -

f.30 ✓ 29.82 19.95 93.48 0.65 0.14

p.15 ✓ 35.69 14.79 93.46 0.67 0.12

f.40, p.15 ✓ 35.10 14.88 93.50 0.63 0.16

f.30, p.15 ✓ 29.64 14.79 93.40 0.73 0.06

4.1. Implementation details

Dataset Our CAIE is evaluated on the CIFAR-10 [11] and

ImageNet ILSVRC-12 [19]. The CIFAR-10 dataset con-

tains 50k training images and 10k test images in 10 classes,

while ImageNet dataset contains 1.28M training images and

50k test images in 1000 classes.

Loss impacts We choose the method proposed by

Molchanov et al. [16] to evaluate the loss impact ℓ(f) of

a filter f . The formula of loss impact is ℓ(f) = (γc
∂L
∂γc

+

βc
∂L
∂βc

)2, where γc and βc are the scaling and shifting pa-

rameters of the following BN layer in the channel c corre-

sponding to the filter f . The gradients ∂L
∂γc

and ∂L
∂βc

in the

formula above would be computed whenever a mini-batch

of training data is given. We average the loss impacts cal-

culated in n mini-batches using running average with coef-

ficient 0.9. Additionally, the gradients would also be uti-

lized in updating network when evaluating the loss impacts

of filters. If the network such as ResNet [6] contains resid-

ual blocks that some specific layers should be pruned in the

same way, as described in [16], we will sum over the corre-

sponding loss impacts in the same channel of these grouped

layers as the overall loss impact.

Resource impacts The ith resource impact ri(f) of the

filter f among the same layer share the same value. Thus,

we can evaluate the resource impact for layer l by ran-

domly removing a filter in layer l plus the corresponding

channel of each filter in the succeeding (l + 1)th layer

then measuring the proportion of reduction in the con-

cerned resources. Also, when we encounter residual blocks

containing grouped layers, we will randomly remove an

output channel in these layers following the rule in the

works [3, 23] to evaluate the overall resource impact.

Pruning and fine-tuning In both stages, the batch size is

set to be 256 and 64 in CIFAR-10 and ImageNet respec-

tively. In a single pruning iteration, the number of batches

n used for estimating importance and the number of pruned

filters m are set to be 30 and 25 in both datasets. For opti-

mizing neural network, we use SGD with initial learning

rate 10−3 and runs for 30 epochs in ImageNet and 240
epochs in CIFAR-10 of the fine-tuning stage. The learn-

ing rate will decay by 5 every 10 epochs in ImageNet and

every 80 epochs in CIFAR-10.

Table 2: Comparison to state-of-the-arts on ImageNet. To compared with others, we set the resource constraints based on

the resource left of the pruned model in other works.

Model
Orig. Top-1

(%)
Method

FLOPs left

(%)

Param. left

(%)

P. Top-1

(%)

Top-1↓

(%)

ResNet-50
76.18 Taylor-FO-BN-56% [16] 32.76 30.86 71.69 4.49

76.13 Ours (f.33, p.31) 32.90 30.76 72.39 3.74

ResNet-50
72.88 Thinet-30 [15] 34.66 28.49 68.42 4.46

76.13 Ours (f.33, p.26) 32.47 25.89 71.92 4.22

ResNet-50
76.15 FPGM-only 30% [8] 58.80 - 75.59 0.56

76.13 Ours (f.55) 54.77 77.35 75.62 0.53

ResNet-50
76.18 Taylor-FO-BN-81% [16] 65.03 69.92 75.48 0.70

76.13 Ours (f.65, p.70) 64.95 69.88 75.83 0.30

ResNet-50
- NISP-50-B [24] 55.99 56.18 - 0.89

76.13 Ours (f.56, f.56) 55.89 55.84 75.25 0.88

ResNet-34

73.31 Taylor-FO-BN-82% [16] 77.74 78.90 72.83 0.48

73.23 Li et al. [12] 75.80 89.20 72.17 1.04

73.31 Ours (f.78, p.79) 77.43 78.94 72.91 0.40

4.2. Evaluation

We conduct experiments in Table 1 and 2 to verify our

method when given pre-trained models, such as the ResNet

series [6] and the VGG network [20], and some resource

constraints. In our experiments, we adopt two commonly

used concerned resources, which is the total FLOPs (f) and

the network parameters (p) respectively. The given con-

straints would be the maximum proportion of the specific

resource could remain. For example, (f.33, p.31) indicates

that there should be at most 33% FOLPs and 31% parame-

ters left of the pruned model. The performance of a pruned

model would then be evaluated by its top-1 accuracy (P.

Top-1) and the accuracy drop after pruning (Top-1↓).

Effectiveness of our CAIE We conduct ablation studies

in Table 1 to compare the pruning results of the model with

and without applying our CAIE on ImageNet and CIFAR-

10. Each block in the table containing five rows shows a

group of experiments on the pre-trained model and its orig-

inal top-1 accuracy. The first row in each block is the “base-

line” result without CAIE, which only takes the loss impact

as the importance while pruning until separately meets the

constraints. The second and third row are used to confirm

the correctness of our CAIE under a single constraint. As

we can see, the results in these two rows have the same

amount of concerned resource compared to the pruned re-

sult of baseline yet reach better performance. The fourth

row demonstrates the flexibility of our CAIE that can ac-

curately adapt to the given multiple constraints. In some

cases (f.44, p.20 in VGG16-BN), the result generated by

CAIE may not meet the constraints simultaneously, but the

performance still be better than that in the baseline result.

Last, the fifth row is to affirm the effect of CAIE when the

given multiple constraints is set to the same as the baseline

results, such as (f.33, p.26) is the same as (32.83, 25.94) in

the first block. As we can see, our results can still outper-

form the baseline for all the models. Altogether, our CAIE

can always yield improvement in performance when given

any constraints.

Comparison to state-of-the-arts In Table 2, we compare

our CAIE with others on the ImageNet. Given a pruning

result in other works, we will conduct experiments with our

CAIE under the resource constraints corresponding to the

resources left of others. Compared to the state-of-the-art

Taylor-FO-BN [16], which contains the same calculation

of loss impact and the pruning procedure as ours, results

with CAIE can achieve better performance. Furthermore,

when comparing to those with different importance estima-

tion and the pruning process [15, 8, 24, 12], our method still

can obtain the best results. It is worth noting that for fair

comparison, we did not show the results of GBN [23] be-

cause they apply other losses to reinforce the sparsity when

training.

5. Conclusions

In this work, we propose a novel method called

Constraint-Aware Importance Estimation (CAIE) to esti-

mate the importance of filters in the network under the given

multiple resource constraints, which integrates information

of the impact on the considered resources with the impact

on loss function when removing a filter. We demonstrate

the effectiveness of our method and we can achieve state-

of-the-art performance comparing to others under the same

amount of resource consumption of the pruned model.

Acknowledgment

This research was supported in part by the Ministry of

Science and Technology of Taiwan (MOST 108-2633-E-

002-001), National Taiwan University (NTU-108L104039),

Intel Corporation, Delta Electronics and Compal Electron-

ics.

References

[1] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,

Kevin Murphy, and Alan L Yuille. Deeplab: Semantic image

segmentation with deep convolutional nets, atrous convolu-

tion, and fully connected crfs. IEEE Transactions on Pattern

Analysis and Machine Intelligence (TPAMI), 40(4):834–848,

2017.

[2] Ting-Wu Chin, Cha Zhang, and Diana Marculescu. Layer-

compensated pruning for resource-constrained convolutional

neural networks. arXiv preprint arXiv:1810.00518, 2018.

[3] Xiaohan Ding, Guiguang Ding, Yuchen Guo, and Jungong

Han. Centripetal sgd for pruning very deep convolutional

networks with complicated structure. In IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages

4943–4953, 2019.

[4] Ariel Gordon, Elad Eban, Ofir Nachum, Bo Chen, Hao Wu,

Tien-Ju Yang, and Edward Choi. Morphnet: Fast & simple

resource-constrained structure learning of deep networks. In

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), pages 1586–1595, 2018.

[5] Song Han, Jeff Pool, John Tran, and William Dally. Learn-

ing both weights and connections for efficient neural net-

work. In Advances in Neural Information Processing Sys-

tems (NeurIPS), pages 1135–1143, 2015.

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), pages 770–778, 2016.

[7] Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi

Yang. Soft filter pruning for accelerating deep convolutional

neural networks. arXiv preprint arXiv:1808.06866, 2018.

[8] Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang.

Filter pruning via geometric median for deep convolutional

neural networks acceleration. In IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), pages 4340–

4349, 2019.

[9] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning

for accelerating very deep neural networks. In IEEE Interna-

tional Conference on Computer Vision (ICCV), pages 1389–

1397, 2017.

[10] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift. arXiv preprint arXiv:1502.03167, 2015.

[11] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple

layers of features from tiny images. 2009.

[12] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and

Hans Peter Graf. Pruning filters for efficient convnets. arXiv

preprint arXiv:1608.08710, 2016.

[13] Chih-Ting Liu, Yi-Heng Wu, Yu-Sheng Lin, and Shao-Yi

Chien. Computation-performance optimization of convolu-

tional neural networks with redundant kernel removal. In

2018 IEEE International Symposium on Circuits and Sys-

tems (ISCAS), pages 1–5. IEEE, 2018.

[14] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang,

Shoumeng Yan, and Changshui Zhang. Learning efficient

convolutional networks through network slimming. In IEEE

International Conference on Computer Vision (ICCV), pages

2736–2744, 2017.

[15] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A fil-

ter level pruning method for deep neural network compres-

sion. In IEEE International Conference on Computer Vision

(ICCV), pages 5058–5066, 2017.

[16] Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio,

and Jan Kautz. Importance estimation for neural network

pruning. In IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR), pages 11264–11272, 2019.

[17] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila,

and Jan Kautz. Pruning convolutional neural networks for re-

source efficient inference. arXiv preprint arXiv:1611.06440,

2016.

[18] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster r-cnn: Towards real-time object detection with region

proposal networks. In Advances in Neural Information Pro-

cessing Systems (NeurIPS), pages 91–99, 2015.

[19] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, et al. Imagenet large

scale visual recognition challenge. International journal of

computer vision, 115(3):211–252, 2015.

[20] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014.

[21] Robert Tibshirani. Regression shrinkage and selection via

the lasso. Journal of the Royal Statistical Society: Series B

(Methodological), 58(1):267–288, 1996.

[22] Jianbo Ye, Xin Lu, Zhe Lin, and James Z Wang. Re-

thinking the smaller-norm-less-informative assumption in

channel pruning of convolution layers. arXiv preprint

arXiv:1802.00124, 2018.

[23] Zhonghui You, Kun Yan, Jinmian Ye, Meng Ma, and Ping

Wang. Gate decorator: Global filter pruning method for ac-

celerating deep convolutional neural networks. In Advances

in Neural Information Processing Systems (NeurIPS), pages

2130–2141, 2019.

[24] Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-Hsin Lai, Vlad I

Morariu, Xintong Han, Mingfei Gao, Ching-Yung Lin, and

Larry S Davis. Nisp: Pruning networks using neuron impor-

tance score propagation. In IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 9194–9203,

2018.

[25] Zhuangwei Zhuang, Mingkui Tan, Bohan Zhuang, Jing Liu,

Yong Guo, Qingyao Wu, Junzhou Huang, and Jinhui Zhu.

Discrimination-aware channel pruning for deep neural net-

works. In Advances in Neural Information Processing Sys-

tems (NeurIPS), pages 875–886, 2018.

