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Abstract

One of the key issues in deep learning is the difficulty in

the interpretation of mechanisms for the final predictions.

Hence the real-world application of deep learning in skin

cancer still proves limited, in spite of the solid performances

achieved. We present a way to better interpret predictions

on a skin lesion dataset by the use of a multi-task learn-

ing framework and a set of learnable gates. The model de-

tects a set of clinically significant attributes in addition to

the final diagnosis and learns the association between tasks

by selecting which features to share among them. Con-

ventional multi-task learning algorithms generally share all

the features among tasks and lack a way of determining

the amount of sharing between tasks. On the other hand,

this method provides a simple way to inspect which fea-

tures are being shared between tasks in the form of gates

that can be learned in an end-to-end fashion. Experiments

have been carried out on the publicly available Derm7pt

dataset, which provides diagnosis information as well as

the attributes needed for the well-known 7-point checklist

method.

1. Introduction

Skin cancer is one of the most common forms of can-

cer, for which an early diagnosis has been shown to re-

verse the odds in the majority of cases [16]. Deep learn-

ing methods for the diagnosis of skin cancer have already

reached dermatologist-level performance [8, 14, 16, 34].

However, there appears to be a discrepancy between the

performance and the utilisation in real clinical settings of

these models, mainly due to the barriers in understanding

the choices done by deep learning algorithms. Thus, one of

the next impactful directions in this area of research should

be the interpretation of the internal mechanisms of a model

for the final diagnosis. As a matter of fact, the interpre-

tation of the behaviour in deep learning is a key missing

component in making this technology applicable and trust-

worthy in many real-world scenarios. In medical applica-

tions, where the well-being of humans is a concern, there

is a particular need for models that can show their mecha-

nism in an easily interpretable way for physicians. It is not

surprising that this particular branch of research has been

recently getting increased traction under the name of eX-

plainable AI (XAI) [6]. One way of approaching this prob-

lem is to “look into” the hidden activations of neural net-

works to explain the prediction mechanism [22, 28]. This is

akin to neuroscience, where researchers look into the activ-

ity of neurons in the brain to understand its functioning: a

rather difficult task given the high complexity of our brain,

just like a deep learning model. In fact, in spite of their

promising performance, most state-of-the-art deep learning

models are made up of thousands or millions of parame-

ters that do not have a clear meaning for us. However, hu-

mans do not explain themselves through the activation of

their neurons. Explanations are instead usually based on

associations between elements, logic and causal reasoning.

Indeed, by association alone, we could interpret our predic-

tions fairly well. For this reason, we have worked on the

interpretation of deep neural networks for skin cancer di-

agnosis using a multi-task learning (MTL) [10] framework,

as the associations between tasks related to the analysis of a

skin lesion can help with understanding the behaviour of the

model. To pursue this, we devised a strategy based on gate

elements, that allows us to directly interpret the amount of

sharing of information between the different tasks. Histor-

ically, two rule-based algorithms, namely ABCD rule [24]

and 7-point checklist [4], have been used by doctors for the

detection of melanoma. Both are based on the detection of

a series of attributes and patterns in the lesion. Each has

its own strengths and weaknesses, with the latter proving to

have a higher sensitivity, in exchange for a lower specificity

[9]. The fact that rule-based methods have been widely

adopted by clinicians proves their merit. Thus, the analysis

of skin images through a rule-based method can be inher-

ently framed as a MTL problem and provide a use-case for
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the developed model. Experiments have been carried out

on the Derm7pt dataset [19], which provides the diagnosis

supported by the clinically significant attributes that are part

of the 7-point checklist method.

2. Related works

2.1. On Multi­Task Learning

Multi-Task Learning (MTL) [10] is a branch of Machine

Learning in which an algorithm is developed with the aim

of learning multiple tasks at the same time, usually from a

single set of data. It is motivated by the idea that related

tasks might share a representation of the data and informa-

tion learned for one task might be useful for another one.

Conceptually, this is a process easily handled by humans,

who are naturally able to find correlations between tasks and

exploit them to improve their overall performance. Simi-

larly, having multiple objective functions introduces an in-

ductive bias to the model, which causes it to lean towards

configurations that are optimal for more than one task [26].

The overall effect is that MTL increases the generalization

capabilities of the model [26] and the data efficiency, as it

can be seen as a form of implicit data augmentation [26].

Thus, learning multiple tasks at same time seems an effi-

cient solution for those cases where the number of available

data points might not be sufficient to optimize millions of

parameters [37]. However, just increasing the number of

tasks learned together is not guaranteed to provide all these

benefits as the intra-task relatedness plays a fundamental

role, to the point that it might even have a disruptive effect

if vaguely related tasks start competing for the parameter

space [29, 30].

With regards to supervised deep learning, MTL architec-

tures can be mostly divided in two main categories [26]:

hard parameter sharing, in which the model has a fixed

architecture that is shared between the tasks, and soft pa-

rameter sharing, where usually each task has its own model

and the sharing occurs through means of constraints to the

task-specific model parameters or through their combina-

tion according to a defined rule. Cross-stitch networks

[23] model the shared knowledge between tasks through

a linear combination of their feature maps after each con-

volutional layer, carried out through a combinatorial unit

(namely cross-stitch unit) whose weights are learned during

training. The concept is further generalized in [27], which

introduces the MTL meta-architecture known as Sluice Net-

works. The parameter space of each convolutional layer

is split in two subspaces: task-specific and shared. Their

outputs are mixed through a linear combination mediated

by parameters learned during training. Furthermore, before

the last layers, another linear combination is evaluated by

combination of skip connections coming from previous lay-

ers. Given its design, this meta-architecture also generalizes

other known MTL architectures, such as [10] and [23].

In Task Routing [31] a task-specific mask is defined for

each convolutional layer in a dropout-like fashion, defin-

ing whether a feature map is used by one task or the other.

A sharing ratio hyper-parameter defines the amount of fea-

tures maps that are shared between tasks. As this method

only introduces a mask layer, it can be applied to any pre-

existing architecture with relative ease of implementation.

The Neural Discriminative Dimensionality Reduction

(NDDR) CNN architecture [15] models the question of

learning what to share as a dimensionality reduction prob-

lem using known CNN components. The NDDR block is

introduced, a combination of a 1× 1 convolution and batch

normalization, on which weight decay is applied for regu-

larization, that is inserted after the feature maps from each

task are concatenated together. As a matter of fact, a 1 × 1
convolution is equivalent to a discriminative dimensionality

reduction, as one parameter per channel is learned that acts

as coefficient in the linear combination of channels. Sim-

ilarly to [31], this solution can be applied to pre-existing

fixed architectures with little parameter overhead as a “plug

and play” kind of solution.

2.2. On MTL and Skin Lesions

While most works in the context of skin lesions focus on

the single tasks of directly classifying a lesion or segment-

ing it [7, 8, 13, 14, 16, 17, 18, 33], some try to use the bene-

fits of MTL to develop unified pipelines dealing with multi-

ple tasks [3, 11, 12, 19, 35, 36]. This work is similar to [19],

which proposes a Multi-Modal MTL framework to classify

skin lesions from the [5] dataset, which includes pictures

captured with diverse modalities, metadata and the annota-

tions related to the 7-point checklist. The authors use all

the data at their disposal to develop an architecture that can

predict the diagnosis of the lesion and the 7-point check-

list attributes in a single optimization, guided by a weighed

multi-modal multi-task loss function. Given that the dataset

is highly unbalanced, they propose a sampling strategy dur-

ing training such that at every iteration every label gets a

similar representation and each sample’s contribution to the

loss function is weighed according to its label’s representa-

tion in the mini-batch. The impact of the different modal-

ities on the output is investigated by the authors, as well

as a comparison between the direct diagnosis of melanoma

(i.e. output of the network) and the diagnosis inferred from

the predicted 7-point checklist attributes. The same dataset

from [19] has been used for experiments in [3], which in-

troduces a MTL architecture using CNNs and makes use of

both the dermoscopic and clinical images. The proposed

model consists of one CNN for each of the checklist at-

tributes, where the CNN has two independent branches (one

for the dermoscopic and one for the clinical image input)

that merge after the feature maps are flattened. While the



t task name labels

0 Diagnosis (DIAG) BCC, NEV, MEL, MISC, SK

1 Pigment Network (PN) ABS, TYP, ATP

2 Blue Whitish Veil (BWV) ABS, PRS

3 Vascular Structures (VS) ABS, REG, IR

4 Pigmentation (PIG) ABS, REG, IR

5 Streaks (STR) ABS, REG, IR

6 Dots and Globules (DaG) ABS, REG, IR

7 Regression Structures (RS) ABS, PRS

Table 1: Summary of the 8 tasks learned by the algorithm.

The first task (DIAG) indicates the final diagnosis of the le-

sion, whereas the following are the 7 attributes that are used

in the 7-point checklist. BCC: basal cell carcinoma; NEV:

nevus; MEL: melanoma; MISC: miscellaneous; SK: sebor-

rheic keratosis; ABS: absent; TYP: typical; ATP: atypical;

PRS: present; REG: regular; IR: irregular.

architecture for each block is identical, the weights are not

shared. The outputs from the network are then mapped to

the 7-point checklist scores and, following the classic rules

used by doctors, the final diagnosis prediction is given. As

this method uses the 7-point checklist, it is only able to dis-

cern melanoma and non-melanoma cases; by contrast, [19]

also has a direct diagnosis output, which allows a finer grain

classification of the lesions in 5 classes.

3. Dataset and the 7-point checklist

The 7-point checklist [4] is a rule-based method used by

dermatologists to evaluate whether the skin lesion being an-

alyzed is a melanoma or not. The method consists in look-

ing for 7 specific patterns on the lesion (Table 1) and eval-

uating their status; i.e. a pattern may be absent or present

and showing a typical or atypical conformation. Depending

on the evaluation, each pattern is attributed a score. If the

sum of the scores exceeds a clinically established threshold

τ , the lesion is diagnosed as melanoma. Prominent values

for the threshold are τ = 1 and = 3, with the former provid-

ing higher sensitivity to melanoma in spite of lower overall

precision.

The data used in this work is the Derm7pt dataset (from

the Interactive Atlas of Dermoscopy [5]), which was pub-

licly released with [19]. The dataset consists of 1011 cases

of skin lesions annotated by experts. For each case, data are

available in multiple modes (e.g. metadata, images), how-

ever this work only considers the dermoscopic images as

data source, as they provide a higher resolution and allow

to appreciate better the patterns on the lesion that are nec-

essary for the criteria. Labels are available for 8 categories

with varying degrees of granularity as summarized in Table

1; these categories will be used as the 8 tasks to learn in the

MTL architecture. Thus, in the following the terms cate-

gory and task will be used interchangeably.

The pre-processing procedure of the dataset, consisting in

grouping the more infrequent labels and splitting in train-

Figure 1: Representation of the complete model architec-

ture. The sequence of convolutional block and gated block

is repeated 4 times before the final sequence of layers. GAP:

global average pooling; fcl: fully connected layer, where the

number of output neurons is indicated.

Figure 2: Representation of how a gate works. A tensor of

spatial dimensions W × H and C feature maps is multi-

plied over the channel axis by the gate, a vector of values

that learns which features to suppress (0, black) or select (1,

white). Note that the the values of the gates are continuous

in the interval [0, 1].

validation-test sets, has been executed just like in [19]1.

The number of samples per set are as follows: 413 cases

for training, 203 cases for validation and 395 cases for the

testing phase.

4. Methods

The aim of this work is to develop a single neural net-

work that, given one input dermoscopic image, is able

to classify the diagnosis of the skin lesion, as well as

seven clinically significant patterns that make up the 7-point

checklist (Section 3). The whole framework is represented

in Figure 1.

It is desirable to develop a MTL method that learns what

to share between tasks [15, 31]. The idea is that differ-

ent tasks should only receive information that is relevant to

them from other tasks, thus it is necessary to develop a way

to learn how to discriminate among features passed from

other tasks. We use gates to select which features should

be kept (i.e. multiply by 1) or suppressed (i.e. multiply

by 0) as shown in Figure 2. While the suppressed features

are not really removed from the feature tensor, being mul-

tiplied by 0 makes them virtually null in the following con-

1Code available at https://github.com/jeremykawahara/derm7pt.



Figure 3: Representation of a gated block for T tasks, where

each input F t has C = 3 channels. The feature maps are

concatenated along the channel axis and passed through the

task specific gates. The colors white and black indicate an

open (αt
i,c = 1) or closed (αt

i,c = 0) gate, respectively;

the color green indicates constant values, since the features

from the same task are not filtered by the gates (αt
t,c = 1,

constant).

volutional layer. In order to learn the values of the gate

through standard optimization techniques in an end to end

fashion and make backpropagation possible, it is necessary

to model them as a vector of continuous values over which

an activation function is applied to map them in the interval

[0, 1] (Section 4.1).

Formally, a set is given of n color images xs ∈ X and

their corresponding one-hot encoded labels for T tasks

ys = {y1

s ,y
2

s , . . .y
T
s } ∈ Y ⊂ R

J1

⊗ R
J2

⊗ · · ·RJT

(1)

where ⊗ is the direct product, s = 1, . . . n is the sample

index and J1, . . . JT indicate the number of classes in each

task t. Thus, each

yt
s = [yts,1, y

t
s,2 . . . y

t
s,Jt ] ∈ R

Jt

(2)

is the vector of one-hot encoded labels of sample s for task

t. The objective of the MTL problem is to find a neural net-

work gΘ, with a set of parameters Θ, such that gΘ : X 7→ Y .

4.1. Gated block

The idea proposed in this work is to have learnable

“gates” that determine which features coming from other

tasks would be useful for the specific task they refer to. A

similar concept has been implemented, with different objec-

tives, also in [2, 15, 32].

Consider having T tasks, each one carried out by a task-

specific neural network with the same architecture. A gated

block can be applied after any convolutional block, to share

features with the same spatial resolution; one gate will be

initialized for each task. A convolutional block can be

any sequence of CNN operations (e.g. convolution, max-

pooling, residual block). Since the feature maps will be

concatenated, it is necessary for all the task-specific con-

volution blocks to output features maps with the same spa-

tial resolution. For simplicity, all the task-specific convolu-

tional blocks are chosen to have the have the same number

of output feature maps.

A gated block (represented in Figure 3) concatenates

the features coming from the T task-specific convolutional

blocks on the channel axis, applies batch normalization to

the new set of features and then passes them through a set

of gates αt that determine which features should be shared.

Each gated block consists of T independent gates, one for

each task, with the aim to select which features to share.

The gate αt for task t should always keep the features com-

ing from task t, while selecting or rejecting those coming

from other tasks.

A gated block is formally defined as an operational unit

that takes a set of feature maps F = {F 1, F 2, . . . , FT }
as input and outputs a set of processed feature maps F ∗ =
{F 1∗, F 2∗, . . . , FT∗}. The tensor F t indicates the input

coming from a convolutional block of task t; similarly F t∗

will be the output of the gated block concerning task t. Each

of these can also be written unwrapping the channel dimen-

sion as

F t = [F t
1 , F

t
2 , . . . , F

t
C ] ∈ R

H×W×C (3)

F t∗ = [F t∗
1 , F t∗

2 , . . . , F t∗
TC ] ∈ R

H×W×TC (4)

where each F t
c or F t∗

c represents the c-th feature map of the

tensor regarding task t.

The input feature maps are concatenated along the fea-

ture axis, yielding

Fconcat =
[

F 1, F 2 . . . FT
]

= (5)

=
[

F 1

1 , F
1

2 , . . . F
2

1 , F
2

2 , . . . F
T
C−1, F

T
C

]

∈ R
H×W×TC

This is then multiplied by each of the T task-specific gates

to obtain the tensor F t∗ = Fconcat α
t.

Ideally a gate would be a made up of binary values (ei-

ther 0 or 1), that would indicate whether that feature should

be shared between tasks; thus functioning like a mask.

However, to be able to learn the gates through gradient de-

scent in an end-to-end fashion it is necessary to model them

as a vector of continuous values

α̂t =
[

α̂t
1,1, α̂

t
1,2, . . . , α̂

t
i,c, . . . , α̂

t
T,C

]T
∈ RTC (6)

where each α̂t
i,c ∈ R refers to the “raw” value of the coeffi-

cient for the c-th feature map coming from task i in the gate

of task t.

The raw values of the vector are subsequently mapped in

the interval [0, 1] through means of the sigmoid function, as

follows

αt
i,c =

1

1 + e−γgα̂
t
i,c

∈ [0, 1] (7)



where γg is a hyperparameter defining the shape of the

curve to make it more similar to a step function. A generic

αt
i,c indicates the value that will multiply the c-th feature

map coming from task i in the gate of task t.

Furthermore, we want the gates to be applied only to the

features coming from other tasks, while the features specific

to that task should always be left intact; to achieve this, the

gates are initialized as α̂t
i,c = 100 (non-trainable) if t = i

and 0 otherwise. With this initialization, all the gates start

with the same constant value, meaning that the contribution

of each feature map coming from other tasks will be equal.

Modelled in this way, the algorithm can learn the “raw” val-

ues α̂t
i,c through standard optimization techniques.

Similarly to NDDR-CNN [15], features among tasks are

shared through concatenation on the feature axis followed

by an operation to reduce the dimensionality. In [15] this

is achieved directly through the sequence of 1 × 1 convo-

lution followed by batch normalization for each task, plus

L2 regularization on these kernels. This work differs in the

introduction of one “gate” element for each task after the

concatenation, as described above. The gates model the de-

sired behaviour of selecting the useful features from another

task while suppressing the others. A 1 × 1 convolution to

reduce the feature channel dimension is also applied here,

after each gate. Furthermore, batch normalization is applied

after the all the feature maps are concatenated, instead of af-

ter the dimensionality reduction. Ideally, a 1× 1 filter such

as the one in NDDR-CNN [15] could learn the same be-

haviour expressed by the proposed gates. However, includ-

ing them explicitly after the concatenation allows to enforce

the desired behaviour of selectivity in the model.

4.2. Training matters

Balanced mini-batches Due to the imbalance in the

dataset and the number of tasks, it may happen that mul-

tiple mini-batches do not include one of the unique labels,

meaning that the model will rarely be optimized for that

label. Thus, this work uses the same mini-batch sampling

strategy described in [19].

At each training iteration, k elements are randomly sampled

from the training set for each of the unique labels present in

the dataset, so that every mini-batch consists of at least k

elements belonging to each unique label. As noted in Table

1, there are 24 unique labels in the dataset across the 8 tasks

considered; thus the batch size will be b = 24k. Since the

unique labels are not mutually exclusive, some of them may

repeat more than k times in a mini-batch, which is why [19]

makes use of dynamic weights, computed at each training

iteration for each unique label. For each task, a vector of

weights wt = [wt
1, . . . , w

t
Jt ] ∈ R

Jt

is computed in a way

that gives a higher value to the more infrequent labels for

task t in the current mini-batch. This is achieved through

the equation

wt(yt) : wt
j =

max (1 yt)

(1 yt)j
(8)

detailed in [19]; where according to Eq. 2 yt =
[yt

1,y
t
2 . . .y

t
b]

T ∈ R
b×Jt

is the tensor of one-hot encoded

labels for the b samples in the mini-batch. As k > 0, there

will always be at least one sample in the mini-batch belong-

ing to each unique label, avoiding the possibility of having

a division by zero in Eq. 8.

Loss function All the tasks are classification tasks, which

can be associated with a focal cross-entropy loss as defined

in [21]. The focal cross-entropy loss scales the standard

cross-entropy by a factor (1 − ỹts,j)
β , which indicates how

hard the sample was to classify; i.e. samples that are easily

classified by the network have higher confidence and should

have a lower impact on the loss function. β is a hyperparam-

eter set to β = 2 according to the findings in [21].

Since each sample’s contribution will be weighted based on

the number of elements with that label in the mini-batch

(as detailed in the previous section), the classification loss

function for each task for one sample s is

FL(yt
s, ỹ

t
s,w

t(yt)) = −

Jt

∑

j

wt
j y

t
s,j (1− ỹts,j)

β log(ỹts,j)

(9)

where yt
s ∈ R

1×Jt

and ỹt

s
∈ R

1×Jt

are the one-hot en-

coded ground truth and the softmax-activated predicted out-

put of the network, respectively as defined in Eq. 1, 2.

wt(yt) is the vector of mini-batch weights for task t, com-

puted according to Eq. 8.

Considering all the tasks and the regularization penalties,

the final loss function is

L =
1

b

T
∑

t

b
∑

s

FL(yt
s, ỹ

t
s, w(y

t)) + γL2

∑

∀θ∈ΘK

||θ2||

2

(10)

where the last term represents the L2 regularization applied

to all the kernels in the model, indicated by the set ΘK ⊂
Θ.

5. Experiments

The network used in the experiments is shown in Figure

1: the sequence of convolutional block and gated block is

repeated 4 times before the final sequence of layers. The

outputs of the last gated block go through task-specific (i.e.

non-shared weights) blocks composed of a 1 × 1 convolu-

tion, global average pooling, and two fully connected lay-

ers, the last of which presents a softmax activation for the



final prediction. A convolutional block is defined as a se-

quence of a convolutional layer and max-pooling. For in-

creased regularization, batch normalization is applied on the

tensor of concatenated features in every gated block, with a

momentum of 0.90. Furthermore, dropout with rate 0.3 is

applied before the fully connected layers toward the end of

the network. Additional details on the network configura-

tion can be found in Table S1 in the supplementary material.

The parameters in the algorithm are updated using Adam

optimizer [20] with learning rate µ = 1e−3 for the network

parameters and µα = 100 µ for the values of the gates. Af-

ter testing different values, we chose γg = 3 (Eq. 7) as it

allows us to have the desired behaviour on the gates. The

regularization coefficient for L2 has value γL2
= 1e − 4.

The sampling strategy described in Section 4.2 is always

used during training in order to have at least k = 6 samples

of each class per mini-batch. Since these are randomly sam-

pled from the training dataset with reinsertion, an epoch is

not defined as the iteration over all the samples in the set.

We define an epoch as a fixed number of 5 training itera-

tions. Early stopping has been implemented with a patience

of 50 epochs, monitoring the value of the validation loss.

During validation and testing, the mini-batch weights (Eq.

8) are not computed, because it would not make sense to

evaluate them at inference time given that they are highly

dependent on the batch size. Similarly the L2 penalty is not

computed during inference, as it would just provide con-

stant values. In the experiments (Sec. 5, the images have

been resized to 256 × 256 pixels and random transforma-

tions (e.g. rotation, flipping, shift, shear) are applied during

training as a data augmentation strategy.

Results are reported for the following experiments:

a) standard: the main architecture used in the experi-

ments; the other experiments are built as variations of

this architecture. Given the limited number of samples,

the architecture has a small number of filters per each

convolution in order to avoid overfitting.

b) binary: in this experiment the labels for the diagno-

sis task (DIAG) have been grouped in two categories

in order to have a binary classification of “melanoma”

vs “all”. The architecture is identical to standard.

c) half: this experiment tests the effect on the model

when halving the number of available parameters with

respect to standard; i.e. for each convolutional

layer, the number of filters has been halved.

d) double: this experiment tests the effect on the model

when doubling the number of available parameters

with respect to standard; i.e. for each convolutional

layer, the number of filters has been doubled.

e) gates-off: in this experiment, we test whether hav-

ing gates has effects on the model’s performance. To

do this, for each gate element the values are set such

that αt
i,c = 0 if i 6= t and 1 otherwise; which is equiva-

lent to having independent networks for each task. For

a more fair comparison with standard, each task

specific network is given more parameters; i.e. the

base architecture is the one used in double.

The code uses Tensorflow 2.0 [1] and Scikit-learn [25].

All the models are trained from scratch every time.

6. Results

We define sharing fraction between task t and task i at a

certain gated block as

SFt
i =

1

C

C
∑

c

αt
i,c (11)

where C is the number of feature maps shared by task i.

This number gives an indication of how many features com-

ing from task i are being selected by task t.

It is known that the features learned at deeper layers of

the network represent more abstract concepts related to the

data, thus we are going to inspect what is being shared

among the tasks at the last gated block. The sharing matri-

ces for the four experiments are reported in Figure 4, where

each element is evaluated through Eq. 11 times 100. No-

tably, in all the experiments the task that took more features

from the others is the diagnosis task (DIAG). As a matter

of fact, the diagnosis of the lesion should rely on the iden-

tification of the attributes, which would explain why this

task requires more information from the others (i.e. the at-

tributes). However, it appears that this does not apply when

the labels in the diagnosis task are grouped into a binary

task, as shown in Figure 4b. This might be because the non-

melanoma images have very heterogeneous conformations,

due to the varied nature of the lesions in this subset. Thus,

the task might need to rely less on the information coming

from other tasks. With the exception of binary, in the

other experiments it seems that the correlation between di-

agnosis (DIAG) and attributes such as vascular structures

(VS) and streaks (STR) is always present, with the latter

reaching a high value of 73% in the half experiment (Fig-

ure 4c). These experiments also show a good correlation be-

tween DIAG and the attributes pigment network (PN), blue

whitish veil (BWV) and vascular structures (VS), which are

the three major criteria in the 7-point checklist method [4].

Surprisingly, half shows no reliance on the blue whitish

veil (BWV) attribute for diagnosis at this stage, a fact that

may be due to the higher correlation with STR. In this same

experiment, there is a high correlation between PN and

DIAG, which could hint at the fact that, given the limited

number of parameters, the model has learned to base its de-



(a) standard (b) binary

(c) half (d) double

Figure 4: Sharing fraction matrices for the experiments de-

tailed in Section 5, taken at the epoch with the best valida-

tion loss.

cision on the pigment network through the diagnosis instead

of the other way round (as would a human operator).

In all these experiments the values of the gates, i.e. αt
i,c,

are free to move without regularization penalties and start

with the same value. The fact that during training the val-

ues move towards both extremes of the spectrum, seems to

indicate that indeed it is not necessary for the network to

share every feature between the tasks and that this can give

an indication of the decision mechanisms followed by the

network. As a matter of fact, the model could have poten-

tially learned to keep every gate to an intermediate value, as

to have full access to all the feature maps for every classifi-

cation tasks.

All the experiments clearly show the ability to fit the

training data2, with the training loss decreasing at a steady

pace. However, it appears that the networks are prone to

overfitting and poor generalization. This can be seen also

in the quantitative results obtained on the unseen testing

set, reported in Table 2. Performance in the various exper-

iments is comparable, with minor differences. In particu-

lar, standard and binary are the best-performing se-

2Training curves available in supplementary material.

DIAG PN BWV VS PIG STR DaG RS Avg. 7pt

s
t
a
n
d
a
r
d ac 45.8 55.4 85.1 63.5 62.5 49.1 48.6 65.1 61.3

rc 45.5 53.2 76.5 49.9 53.8 52.4 50.6 67.2 57.7

pr 40.3 53.9 75.7 44.0 53.7 46.0 49.8 63.5 55.2

h
a
l
f

ac 51.4 50.6 75.2 60.5 58.5 41.5 53.4 60.0 57.1

rc 47.8 51.2 77.5 48.1 51.5 50.3 54.3 64.6 56.8

pr 40.0 52.6 68.2 42.3 50.2 44.0 53.2 61.5 53.1

d
o
u
b
l
e

ac 45.8 53.7 71.6 45.1 57.0 54.4 53.2 66.1 57.3

rc 41.0 53.5 79.4 42.2 52.5 52.6 53.7 66.4 57.2

pr 37.5 53.4 68.4 38.1 51.5 48.3 52.8 63.1 53.7

g
a
t
e
s
-
o
f
f ac 44.3 44.8 77.2 47.8 43.3 42.8 47.3 56.7 51.4

rc 38.5 47.7 79.8 47.5 46.5 53.9 49.0 65.0 55.6

pr 35.3 49.8 70.0 42.0 42.9 46.4 48.3 62.4 51.7

b
i
n
a
r
y

ac 77.2** 58.0 79.5 58.2 62.0 57.2 54.4 60.0 61.3

rc 71.0 ** 56.4 78.2 51.9 47.9 52.6 55.7 65.8 58.3

pr 70.3 ** 56.3 70.5 44.3 52.3 48.3 55.2 62.5 55.6

K
aw

ah
ar

a
et

al
.

(c
b
n
)

*

ac 74.2 70.9 87.1 79.7 66.1 74.2 60.0 77.2 73.6

rc 60.4 68.0 83.4 49.3 55.5 63.9 59.0 73.7 64.7

pc 69.6 69.3 78.7 54.4 57.7 66.3 59.5 71.6 65.4

Table 2: Summary of the results for all the experiments.

Last column indicates the average considering only the 7-

point checklist criteria. (*) cbn refers to experiment x-

combine [19], which uses additional data during training.

(**) The DIAG task in binary only has 2 output classes,

instead of 5. ac: accuracy; rc: recall; pc: precision.

tups overall, even though the latter deals with a simpler job

due to the grouping in the DIAG task. Surprisingly, half

performs slightly better than its counterparts on the DIAG

task. An explanation for this might be found in the obser-

vation done in the paragraph above that DIAG has a SF

score of 73% with STR. It might be that the DIAG task is

somehow “stealing” feature maps from STR, whose perfor-

mance does seem hindered. As a matter of fact, the tasks are

all being trained together at the same time and they might be

competing for resources when limited. On the other hand,

the experiment double seems to have the opposite prob-

lem, and having more parameters its performance quickly

shows signs of overfitting. Sharing features among tasks

proved beneficial for the model, as clearly shown by the

increase in performance between experiment gates-off

and the ones in which gates are enabled. This gap is even

more evident in the DIAG task, which is in fact known to

be reliant on the other tasks. Furthermore, DIAG proves the

hardest tasks to learn, probably because it represents a more

abstract concept and because it is the only one with 5 possi-

ble labels, which are also highly unbalanced in the dataset.

Compared to the performance of [19] (which uses the same

data and split), our best-performing model (standard)



GT standard binary

inferred

diagnosis

121 173 108 186 78 216 0

tr
u

e1 100 11 90 8 93 1

direct

diagnosis
NA

281 13 246 48 0

76 25 42 59 1

0 1 0 1 0 1

predicted

Table 3: Confusion matrices of the binary melanoma di-

agnosis for various experiments (0: not melanoma; 1:

melanoma). Inferred diagnosis uses τ = 1.

appears to have around a 10% gap in performance across

the various metrics. However, for a fair comparison it has

to be noted that the experiments in [19] make use of addi-

tional input features (such as metadata and clinical images)

in their pipeline, providing additional information to the al-

gorithm. Furthermore their base architecture is initialized

on ImageNet and then re-trained, instead of being trained

from scratch. Thus, a primary cause of these results might

be the small size of the dataset, which makes it harder to

train the algorithm from scratch and more prone to overfit-

ting. In addition, looking at the training curves2 also reveals

how these tasks seem to have different speeds at which they

start overfitting, suggesting that a different choice of train-

ing strategy might prove beneficial for this model.

The 7-point checklist method [4] allows to diagnose

melanoma based on the detection of clinically significant

attributes (Section 3). A score is assigned to each attribute

based on its presence and/or irregularity. The scores are

then summed together and a threshold τ determines whether

the lesion is melanoma or not. In the following, we refer

to the diagnosis obtained using the 7-point checklist rule

over the attributes predicted by the network as inferred di-

agnosis. On the other hand, we refer to the output of the

DIAG task as direct diagnosis. Table 3 summarizes the

confusion matrices obtained through inferred diagnosis and

direct diagnosis for the relevant experiments with a thresh-

old τ = 13. It also reports the confusion matrix obtained

by applying the 7-point checklist method on the ground

truth (GT) labels. As this method only deals with a binary

melanoma/non-melanoma classification, the 5 diagnosis la-

bels have been grouped in 2 respective categories.

When applying the 7-point checklist method to the at-

tribute predictions coming from the network, standard

shows a performance that is similar that obtained through

application of the same method on the GT labels, represent-

ing the clinical standard. Similarly, the binary experi-

ment the model achieves a higher sensitivity on melanoma,

but at the same time appears to provide many false pos-

itives. Looking at the ability of these models to detect

melanoma based on the attributes or from direct diagno-

3The confusion matrices for all the experiments and τ = 3 can be

found in the supplementary material.

sis, enhances the differences between the standard and

binary experiments. The former shows in fact more re-

liance on the attributes, which is proven by its high sensitiv-

ity to melanoma and ability to identify a relevant portion of

the non-melanoma cases through this rule. Conversely, its

direct diagnosis misses most of melanoma cases but rarely

identifies a non-melanoma lesion as such. On the other

hand, the model in binary, which is trained to directly

identify melanoma, proves a better performance in its direct

classification, while losing more precision when the 7-point

checklist rule is applied to its attribute predictions.

7. Conclusion

The analysis of skin lesions inherently suits a MTL de-

sign due to the importance of detecting clinically significant

attributes. Despite the good performance of “opaque” deep

learning models, criteria driven by clinical knowledge are

still preferred by the clinicians, e.g. the 7-point checklist

addressed in this paper. Thus, this work has focused on

developing a deep multi-task learning method that provides

a simple way to improve interpretability of the learned

associations between tasks. The proposed framework is

based on the idea of learnable gates, which allow the model

to learn which features to share among tasks. The values

of these gates reveal how our model uses or mixes features

from different tasks. Experiments have been carried out

on the Derm7pt dataset, which provides annotations of

the diagnosis and the 7-point checklist criteria for each

lesion. The quantitative performance has proven behind

the main related work [19], which only partly provides a

fair comparison due to the use of additional data modalities

in the pipeline. Nonetheless, the performance has shown

satisfactory results when applying the 7-point checklist

to the predicted attributes, approximating what is the

clinical ground truth. Inspection of the associations learned

by the model has revealed that in most experiments the

diagnosis task is the one requiring more information from

the other tasks (i.e. the checklist criteria). Notably, in our

best-performing experiment there appears to be a higher

sharing of the features of the major criteria, which also

contribute more in the 7-point checklist rule. Overall, this

work contributes to developing a tool that can be used to

analyse the behaviour of a MTL CNN in a simple way and

provide additional information to the end user, which could

ultimately increase the potential of deep learning models

for eventual clinical use.
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