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Abstract

Annotated images for diagnosis of rare or novel dis-

eases are likely to remain scarce due to small affected pa-

tient population and limited clinical expertise to annotate

images. Deep networks employed for image based diag-

nosis need to be robust enough to quickly adapt to novel

diseases with few annotated images. Further, in case of

the frequently occurring long-tailed class distributions in

skin lesion and other disease classification datasets, con-

ventional training approaches lead to poor generalization

on classes at the tail end of the distribution due to biased

class priors. This paper focuses on the problems of dis-

ease identification and quick model adaptation in such data-

scarce and long-tailed class distribution scenarios by ex-

ploiting recent advances in meta-learning. This involves

training a neural network on few-shot image classification

tasks based on an initial set of class labels / head classes

of the distribution, prior to adapting the model for classi-

fication on a set of unseen / tail classes. We named the

proposed method Meta-DermDiagnosis because it utilizes

meta-learning based few-shot learning techniques such as

the gradient based Reptile and distance metric based Pro-

totypical networks for identification of diseases in skin le-

sion datasets. We evaluate the effectiveness of our approach

on publicly available skin lesion datasets, namely the ISIC

2018, Derm7pt and SD-198 datasets and obtain significant

performance improvement over pre-trained models with just

a few annotated examples. Further, we incorporate Group

Equivariant convolutions (G-convolutions) for the Meta-

DermDiagnosis network to improve disease identification

performance as these images generally do not have any

prevailing global orientation / canonical structure and G-

convolutions make the network equivariant to any discrete

transformations like rotation, reflection and translation.

1. Introduction

Over the past decade, the availability of large quanti-

ties of labeled data has enabled deep learning methods to

achieve impressive breakthroughs in learning tasks such as

speech recognition, object recognition and machine transla-

tion. Additionally, deep learning has also proven its value

in the automation of medical image analysis to potentially

assist doctors in the effective diagnosis and treatment of

diseases such as detection of breast cancer from mammo-

grams [38, 29], tumors from CT scan images [16, 12, 33],

and pathologies from chest X-rays [34, 7].

Another demanding medical specialization that stands

to benefit from deep learning is Dermatology with cases

of skin diseases outpacing hypertension, obesity and can-

cer summed together. Automated classification of skin le-

sions using images is a particularly challenging task owing

to the long-tailed class distribution of skin datasets (shown

in Figure 1), fine-grained variability in the appearance of

skin lesions, and the lack of sufficient images available for

the novel skin ailments being discovered. Annotations of

these skin diseases is very time consuming, labour inten-

sive, costly and error-prone even when it is performed by

experienced doctors. This motivated researchers to apply

deep models for automated diagnoses. However, these net-

works tend to fail when there is limited annotated data avail-

able since they over-fit and are less likely to generalize well.

Moreover, these methods learn skewed class priors towards

dominant classes of the distribution and do not generalize

to tail classes in case of heavy-tailed class distributions. In

contrast, humans can learn quickly from a few examples

by leveraging prior knowledge. Such capacity in data effi-

ciency and fast adaptation, if realized in machine learning,

can greatly expand its utility.

To circumvent the issue of scarce data / heavy-tailed

class distributions, methods for few shot classification such

as transfer learning [6, 30, 11] were proposed. However,

these methods are successful only when sufficient labeled

data is available in the target domain and do not guarantee

optimal network initialization parameters that can quickly

adapt to new target domains. Hence, to facilitate learning

from small amounts of annotated data, meta-learning [25]

techniques have emerged. These techniques imbibe the sys-

tem with the capability to rapidly adapt to new tasks and

environments with very few training examples. The key un-
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Figure 1. Figures showing class distribution in skin lesion datasets: ISIC 2018 [4], Derm7pt [13] and SD-198 [32]. The distribution is

generally heavy-tailed with some classes having very few samples.The classes towards head of the class distribution (common-diseases),

shown in red, are taken as train classes and classes at the tail of the distribution (new / rare disease), shown in blue color, are chosen as test

classes.

derlying idea is to train the model’s initial parameters such

that the model has maximal performance on a new task af-

ter the parameters have been updated through one or more

gradient steps computed with a small amount of data from

the new task.

In this paper, we explore meta-learning based few-shot

approaches like Reptile [25] (i.e., gradient-based method)

and Prototypical networks [31] (i.e., distance metric based

learner) to identify skin lesions from medical images in

low-data / heavy-tailed data distribution regimes. We call

the proposed network Meta-DermDiagnosis which utilizes

meta-learning to facilitate quick adaptation of deep neu-

ral networks trained on data samples of common diseases

for identification of rare diseases with much less annotated

data. In essence, it consists of a meta-learner which involves

training the neural network to solve a number of few-shot

image classification tasks based on an initial set of class la-

bels. The class labels are sampled from the head of the class

distribution to find effective network initialization weights

and subsequently, adapting the model to perform classifi-

cation on a new set of unseen classes / tail classes with

very few examples. Furthermore, we demonstrate that us-

ing Group Equivariant convolutions (G-convolutions) [5] in

Meta-DermDiagnosis greatly improves the network’s per-

formance in case of skin lesion image classification as ori-

entation is generally not an important feature in such im-

ages. We evaluate the performance of our proposed method

using Reptile and Prototypical networks on three publicly

available skin lesion classification datasets namely, the ISIC

2018 [4], Derm7pt [13] and SD-198 [32], and compare

their performance against the pre-trained transfer learning

baseline. Our results demonstrate that Reptile with G-

convolutions performs better than other approaches in the

low-data regime. We can also use the proposed approach

for disease identification in other medical imaging datasets.

As a summary, we make following contributions in the pa-

per:

• We propose to use meta-learning for rare disease iden-

tification in skin lesion image datasets having long-

tailed class distributions and few annotated data sam-

ples by formulating the problem as 1-shot, 3-shot and

5-shot classification problems. We named the pro-

posed network Meta-DermDiagnosis.

• We explore the gradient based Reptile [25] and metric-

learning based Prototypical networks [31] for iden-

tifying diseases from skin lesion images in low-data

regimes and present the results in Section 5.3.

• Further, we demonstrate that G-convolutions [5]

greatly improve the network’s performance in case of

skin lesion images as orientation is generally not an

important feature in such skin lesion data.

• We evaluate Meta-DermDiagnosis network on pub-

licly available skin lesion datasets such as ISIC

2018 [4] , Derm7pt [13] and SD-198 [32] and com-

pare the classification performance with pre-training

as a baseline, as described in Section 5.3. The results

demonstrate that Reptile outperforms pre-training and

prototypical networks in skin lesion classification in

low-data scenarios.

• We also claim that the proposed meta-learning based

disease identification system can also be applied on

other medical imaging datasets in future work.

The remaining paper is organized as follows : In Sec-

tion 2, we contrast our work to the existing literature. Sec-

tion 3 defines the problem of few-shot learning for skin-

disease identification and outlines the meta-learning tech-

niques employed. Subsequently, we provide details of data

sets used in Section 4 and present the results of the experi-

ments conducted and their discussion in Section 5. Conclu-

sions are presented in Section 6.

2. Related Work

Deep neural networks (DNNs) are state-of-the-art mod-

els across various domains ranging from image analy-

sis [10, 22, 24] to natural language processing [18, 2]. Re-

cently, deep learning has also shown great success in med-

ical image classification and segmentation [9, 21, 1, 3, 39,

26, 8, 34, 7]. However, DNNs are most effective when large
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Figure 2. Figure showing an overview of the proposed approach Meta-DermDiagnosis for identification of diseases in skin lesion datasets

based on meta-learning techniques Reptile and Prototypical networks.

volumes of annotated data is available for training which is

generally not the case with medical data of rare diseases.

Several approaches to deal with scarce data have been

proposed in the literature such as transfer learning [28, 11,

30, 6] and few-shot learning [15, 36] which requires the

network to be pre-trained on a large amount of labelled

data on a related domain and subsequently, fine-tuned on

target domain data. While meta-learning techniques have

been successfully applied for classifying real world image

datasets, their application to medical images has been very

limited [35, 23, 25, 31, 37]. Skin lesion classification is

one such medical field where researchers have not suffi-

ciently explored meta-learning techniques. However, we

have demonstrated that meta-learning techniques prove to

be beneficial in skin lesion classification datasets because of

limited availability of samples for a large number of existing

or new skin diseases. Prabhu et al. [27] proposed learning

a mixture of prototypes for each disease class initialized via

clustering and refined via an online update scheme. In an-

other paper [20], authors have proposed a difficulty-aware

meta-learning method that dynamically monitors the impor-

tance of learning tasks during the meta-optimization stage

and evaluate their network’s performance on ISIC 2018 skin

lesion dataset. In our work, we utilized meta learning tech-

niques such as Reptile and Prototypical networks, along

with G-convolutions for skin disease classification and sig-

nificantly outperformed DAML [20] on the ISIC 2018 [4]

skin lesion dataset. In addition, we also performed exper-

iments on other skin lesion datasets like Derm7pt [13] and

SD-198 [32] and report encouraging results.

3. Meta-DermDiagnosis

The objective of the paper is to identify diseases from

skin lesion images. The image datasets for skin lesions

generally have skewed distribution among different lesion

classes i.e., a long-tailed distribution as shown in Figure 1.

This is due to the fact that new/rare diseases are being dis-

covered everyday which are difficult to annotate because of

limited expertise. This limits the number of annotated sam-

ples for new / rare diseases as compared to those of common

diseases. If we train conventional deep networks to clas-

sify the skewed skin lesion datasets, they do not generalize

well as they learn biased class priors towards the classes

with larger number of samples and give poor performance

on rare disease classes. Moreover, repeated training of deep

networks is a time-consuming process, which is often not

desirable in healthcare. This motivates the exploration of

techniques which can quickly learn and adapt to new dis-

ease classes with very few annotated examples.
Therefore, we formulate the problem of disease iden-

tification from skin lesion images in low-data regimes

as a few-shot learning problem by utilizing recent meta-

learning techniques. We call the proposed solution Meta-

DermDiagnosis that aims to facilitate quick adaptation of

networks trained on common diseases to identification of

new / rare disease classes with limited annotated data. An

overview of the entire pipeline for Meta-DermDiagnosis is

shown in Figure 2 which includes a meta-training stage and

a meta-testing stage. The meta-training stage consists of a

meta-learner for training the neural network to solve a large

number of few-shot image classification tasks created from

a set of training classes comprising of common diseases,

with the classes being sampled from the head of the distribu-

tion, and finding effective network initialization parameters

for the model. The meta-learning technique can either be a

gradient based Reptile algorithm or a distance-metric based

Prototypical network. Next, in the meta-testing stage, the

model is adapted to perform classification on a new set of

unseen / rare classes with very few examples. We also uti-



𝜃0 𝜃1 𝜃n

𝜃1

After updating 
𝜃0

After updating 
𝜃n-1

𝜃n

𝑻1 ~ (𝑿1, 𝒀1) 𝑻2 ~ (𝑿2, 𝒀2) 𝑻n ~ (𝑿n, 𝒀n)

META-TRAINING

Random
Initialization

𝑻i ∈ 𝑻tr, (𝑿i, 𝒀i) are mini-batches sampled from Dtr 

Repeat for d iterations

𝜃’

After updating 
through all 
iterations

𝜃’

𝑻i,te ~ (𝑿i,te, 𝒀i,te)

META-TESTING

𝑻i,te ∈ 𝑻te, (𝑿i,te, 𝒀i,te) are mini-batches sampled from Dte 

𝜃final for final testing 
on meta-test task

After updating 
𝜃’

Figure 3. Pipeline for gradient-based meta-learning on skin lesion classification.

lize Group equivariant convolutions in the neural network

used for Meta-DermDiagnosis to make the network invari-

ant to any transformations to skin lesion images, which in

turn improves the classification performance of the network.

Now, we describe Reptile, Prototypical networks and G-

convolutions in detail in following subsections.

3.1. Reptile: Gradientbased metalearning

In supervised learning, the common practice is to learn

from a set of labeled examples, while meta-learning learns

from a set of labeled tasks, each represented as a labeled

training set and a labeled testing set. The learning algorithm

trains for a representation that can be quickly adapted to a

new task, via a few gradient steps. The meta-learner seeks

to find an initialization that is not only useful for adapting to

various problems, but also can be adapted quickly in a small

number of steps and efficiently using only a few annotated

examples.

Figure 3 depicts the gradient-based meta-learning

pipeline used for disease classification from skin lesion im-

ages. Let Ttr and Tte be the set of train and test tasks respec-

tively, and Dtr, train(Dte), test(Dte) be the meta-train

dataset, training portion of meta-test dataset used for fine-

tuning, and the portion of the meta-test dataset used for test-

ing respectively. Ti ∈ Ttr, Ti,te ∈ Tte are the ith meta-train

and meta-test tasks respectively, (Xi,Yi) are mini-batches

sampled from Dtr, and (Xi,te,Yi,te) are mini-batches sam-

pled from train(Dte). Here, d is the number of times

each task is observed during meta-training, train(T ) and

test(T ) are the training and testing sets for a particular task

T . The main idea is that instead of hand-designing a learn-

ing algorithm for the task of interest, we aim to learn a good

network initialization (i.e., the parameters of a network) so

that the classifiers for novel classes can be learned with a

limited number of labeled examples and a small number of

gradient update steps. The meta-learner learns an initial-

ization from the tasks in the training set Ttr, with the loss

being measured on the set of test tasks Tte. The optimiza-

tion problem can be formulated using the below objective

function:

min
θ

ET∼p(T )[Ltest(T )(θ)] (1)

where Ltest(T )(θ) is the loss obtained for the test dataset of

task T i.e. test(T ) using parameters θ.

To demonstrate the effectiveness of meta-learning on

few-shot tasks, we take classes with the minimum amount

of data (i.e. tail classes of the distribution) for meta-testing.

Each task Ti is a classification task which is sampled from

the distribution p(T ) over the task space. We use Rep-

tile [25] as the meta-learning algorithm for our analysis. It is

a first-order gradient-based meta-learning algorithm which

learns an initialization for the parameters of a neural net-

work model, such that when we optimize these parameters

at test time, learning is fast i.e., the model generalizes using

a small number of examples from the test task.

Algorithm 1 Reptile [25]

1: Initialize θ, the vector of initial parameters

2: for iteration = 1, 2, . . . do

3: Sample task T , corresponding to loss LT on weight

vectors θ̃

4: Compute θ̃ = Uk
T (θ), denoting k SGD or Adam

steps

5: Update θ ← θ + ǫ(θ̃ − θ), where ǫ is the stepsize

parameter

6: end for

In Reptile algorithm, Uk
T (θ) is the operator (e.g. corre-

sponding to Adam optimizer or SGD) that updates θ using

k mini-batches on data sampled from T .

3.2. Prototypical Networks [31]

Prototypical network is a distance metric based meta-

learning technique which computes a prototype vector as

the representation of each class, and this vector is the mean

vector of the embedded support instances belonging to its



class. A subset of N classes is randomly selected to for-

mulate one training task. For each training task, a sup-

port set S = (x1, y1), ..., (xn, yn) and a query set Q =
(xn+1, yn+1), ..., (xn+m, yn+m) are created by sampling

examples from the selected classes, where xj are inputs

and yj are the corresponding labels. Here, n and m de-

note the number of examples in the support (S) and query

(Q) sets respectively. Prototypical Networks compute rep-

resentations of the inputs x using an embedding function g

parameterized with θ : z = g(x,θ). Each class c is rep-

resented in the embedding space by a prototype vector mc

which is computed as the mean vector of the embedded in-

puts for all the examples Sc of the corresponding class c as

follows:

mc =
1

|Sc|

∑

(xj ,yj)∈Sc

g(xj ,θ) (2)

The distribution over predicted labels y for a query sam-

ple x is computed using softmax over negative distances

to the prototypes in the embedding space using a distance

function d as follows:

p(y = c|x,mc) =
exp (−d(z,mc))∑
c′ exp (−d(z,mc′))

(3)

Here, z = g(x,θ). Parameters θ are updated so as to

improve the likelihood computed on the query set:

∑

(xj ,yj)∈Sc

log p(y = yj |xj ,mc) (4)

which is computed using (3) with the estimated proto-

types.

3.3. Group Equivariant Convolutions

In addition, we make use of Group equivariant convo-

lutions [5] (G-convolutions) in our neural network archi-

tecture in place of the normal spatial convolution filters.

Convolutional neural networks have an important property

of translational weight sharing which imparts translation

equivariance. This means that shifting the image and then

feeding it through a number of layers is the same as feed-

ing the original image through the same layers and then

shifting the resulting feature maps. However, there are

many scenarios in which the input image consists of pat-

terns which maintain their identity under other transforma-

tions like rotation and reflection such as images of lesions

or tumors. To make the conventional CNNs equivariant to

other transformations, a large amount of annotated data is

required, which is difficult to obtain especially for data-

limited domains such as healthcare. Thus, there is a need for

data-efficient modifications such as G-convolutions through

which CNNs can be generalized to other kinds of trans-

formations. By exploiting symmetries, Group Equivariant

CNNs have achieved state-of-the-art results on a variety of

datasets like rotated MNIST [19] and CIFAR10 [17]. Due to

the rotations and reflections present in the skin lesion data,

G-convolutions enhance the performance significantly.

(a) ISIC 2018 [4]

Clinical

Dermoscopy

(b) Derm7pt [13]

(c) SD-198 [32]

Figure 4. Figure showing some sample images from skin lesion

datasets.

4. Datasets and Evaluation

We tested our proposed meta-learning based approach

Meta-DermDiagnosis on three publicly available datasets:

ISIC 2018 Skin Lesion dataset [4] consists of 10, 015
dermoscopic images which have been labelled by expert

pathologists into one of the seven categories of skin lesions.

Out of the total images 7, 515 belong to the train set, while



Table 1. Performance comparison of AUC (in %) and Accuracy (in %) on the ISIC 2018 skin lesion dataset for 2-way classification tasks.

Pre-trained Reptile Prototypical Networks

Avg. AUC Avg. Accuracy Avg. AUC Avg. Accuracy Avg. AUC Avg. Accuracy

w/o G-Conv

1-shot 59.7 54.8 60.3 58.0 61.6 59.3

3-shot 67.8 65.2 73.1 73.4 70.2 67.9

5-shot 72.0 71.5 79.6 76.2 75.4 73.0

w/ G-Conv

1-shot 61.3 62.6 68.1 64.3 65.7 64.5

3-shot 72.8 69.3 81.2 76.7 75.8 73.5

5-shot 79.1 79.4 86.8 82.1 82.9 79.7

the remaining 2, 500 belong to the test set according to the

standard train/test split. In most cases, albeit not always,

the target lesion is in the center of the image. In practice,

the task of the clinician is not only to differentiate between

malignant and benign lesions, but also to make specific di-

agnoses because different malignant lesions, for example

melanoma and basal cell carcinoma, may be treated in a

different way and timeframe. With the exception of vascu-

lar lesions, which are pigmented by haemoglobin and not

by melanin, all lesions have variants that are completely de-

void of pigment (for example amelanotic melanoma). For

experimentation, we resize the images from 600× 450 pix-

els to 224 × 224 pixels, and choose four and three classes

in the meta-train and meta-test sets respectively for creat-

ing few-shot classification tasks. Figure 4(a) shows sample

images from the dataset.

Derm7pt [13] is a dataset that includes over 2000 clin-

ical and dermoscopy color images belonging to 20 classes,

along with corresponding structured metadata which is tai-

lored for training and evaluating computer aided diagnosis

(CAD) systems. It provides image-based prediction based

on a 7-point skin lesion malignancy checklist. The origi-

nal image size is 768× 512 pixels, and these are resized to

224× 224 pixels for conducting our experiments. We have

used the standard dataset train/test split in our experiments.

2 classes have been removed from our experiments: ‘mis-

cellaneous’ (since this stands for random skin diseases not

in the list of specified diseases) and ‘melanoma’ (since it

has just a single example so there is no train/test split for

this category). Out of 18 lesion categories, 13 classes have

been used for training and the remaining classes are used for

testing. The classes with the minimum amount of data have

been put in the test set to model the generalization to rare

skin diseases. Few example skin lesion images are shown

in Figure 4(b). The first row shows sample clinical images,

while the second row shows the corresponding dermoscopy

images.

SD-198 [32] dataset contains 198 fine-grained skin dis-

ease categories from different types of eczema, acne and

various cancerous conditions. It consists of clinical skin dis-

ease images submitted by patients or dermatologists. There

are 6, 584 images in total. The images vary in color, ex-

posure, illumination and scale, and include a wide range

of patients with different ages, gender, locations of disease,

colors of skin and different stages of the disease. We use the

standard 50− 50 train/test split provided by SD-198, which

has 3, 292 training and 3, 292 testing images. The images

are collected by digital cameras or mobile phones. The orig-

inal image size is 1640 × 1130 pixels, and they are resized

to 224 × 224 pixels. In our experiments, we use 20 classes

for training and the 70 classes which contain less than 20
images per class for testing. These 70 classes signify rare

diseases for which not enough images are available. Fig-

ure 4(c) shows representative images from the dataset.

We apply augmentations to all the above datasets by ap-

plying random transformations like rotation (−30 degree to

+30 degree), scaling (−20% to +20%), and horizontal flip-

ping. An obvious problem with datasets is heavy class im-

balance (i.e., long-tailed class distribution) as shown with

blue color in Figure 1. To mitigate this issue, we choose the

classes with very few samples (i.e., tail classes of the distri-

bution which refer to rare / new diseases) to create meta-test

tasks.

5. Experiments and Results

5.1. Implementation Details

We use a 6-layer CNN for all our experiments involving

Reptile, pre-trained networks, and Prototypical networks.

Each convolution layer consists of 32 filters of size 3 × 3,

and is followed by a 2 × 2 max pooling layer, batch nor-

malization, and ReLU activation. Experiments with deeper

networks like DenseNet-121 caused the models to over-fit

during meta-training and few-shot fine-tuning. We per-

formed grid search to determine the optimal learning rate

and number of iterations required for meta-training and

fine-tuning for all the experiments conducted, since these

hyper-parameters have a considerable impact on the model



Table 2. Performance comparison of AUC (in %) and Accuracy (in %) on the Derm7pt skin lesion dataset for 2-way classification tasks.

Pre-trained Reptile Prototypical Networks

Avg. AUC Avg. Accuracy Avg. AUC Avg. Accuracy Avg. AUC Avg. Accuracy

w/o G-Conv

1-shot 56.9 58.4 59.7 60.2 60.6 62.5

3-shot 62.1 60.7 64.1 65.7 65.8 63.9

5-shot 66.6 64.9 71.4 70.5 68.2 66.7

w/ G-Conv

1-shot 60.8 59.5 62.1 61.8 63.7 64.1

3-shot 62.6 62.3 68.7 69.9 65.3 66.8

5-shot 69.8 65.2 77.2 76.9 72.8 69.5

performance. The input to the network is an image of size

224 × 224 pixels, and the batch size is set to 5. The stan-

dard train/test splits are used for all the 3 datasets - ISIC

2018, Derm7pt, SD-198. In addition, to incorporate G-

convolutions into the network architecture, we simply re-

place the traditional spatial convolution layers with the G-

convolution layers, with the rest of the parameters being ex-

actly the same. The specific implementation details for the

various approaches used are as follows:-

Reptile: We created binary classification tasks for meta-

training and meta-testing stages for each of the 3 datasets

due to the fewer number of total classes in the datasets. For

the SD-198 dataset which contains 198 classes of which 90
have been used for experimentation (i.e., 20 train classes

and 70 test classes), we have additionally experimented

with 4-way classification tasks. We query 15 images from

the meta-train dataset for each of the classes in a task dur-

ing the meta-training stage. During meta-testing, k images

are sampled from the training split of each class involved in

the meta-test task. The value of k in our experiments is 1,

3, and 5 indicating 1-shot, 3-shot, and 5-shot respectively.

These images are used for fine-tuning the model obtained as

a result of meta-training. The final inference is performed

on the entire testing split of the classes in the meta-test task

to compute the accuracy and AUC values.

Prototypical Network: We trained prototypical networks

using Euclidean distance, with the training episodes con-

taining 4, 13, and 20 classes for the ISIC, Derm7pt, and the

SD-198 datasets respectively. The train-shot is set to 15,

which means that during the n-way training, 15 images per

class are randomly sampled per episode from the n classes,

and subsequently the model is trained on these images. The

models were trained via SGD with Adam [14] optimizer. At

test time on the meta-test skin lesion datasets, we created 2-

way classification tasks. We also experimented with 4-way

classification on the SD-198 meta-test dataset. Eventually,

analysis is conducted on the average accuracy and AUC val-

ues for the test tasks. In each episode during the meta-test

stage, n classes are randomly selected from the meta-test

dataset to construct an n-way classification task and 1, 3,

and 5 support points are selected per class within each task

corresponding to 1-shot, 3-shot, and 5-shot classification.

The final results are computed on the complete test dataset

for a particular task.

Baseline: Pre-trained Network: The pre-trained net-

work involves training a neural network on the entire train-

ing dataset of all the train classes, and subsequently fine-

tuning and evaluating on test classes. The fine-tuning stage

involves creating classification tasks, sampling k (1, 3, 5
for 1-shot, 3-shot, 5-shot respectively) images each from

the train splits of the classes in each task, fine-tuning the

model on the task, and finally evaluating the task on the test

split of the task. We create 2-way classification tasks for

all 3 datasets, and 4-way classification tasks for the SD-198

dataset. The average accuracy and AUC value is used for

the performance analysis.

5.2. Experimental Analysis

Comparative results for the various techniques on ISIC,

Derm7pt, and SD-198 datasets are summarized in Ta-

bles 1, 2, 3 respectively. In some 1-shot learning cases like

for the ISIC and Derm7pt datasets, the performance of pro-

totypical networks is slightly better than Reptile. However,

for most cases Reptile outperforms prototypical networks

significantly. The reason for prototypical network’s bet-

ter performance over Reptile for 1-shot learning is that in

some cases, the neural network is not able to fine-tune ef-

fectively on 1 single data sample and is thus unable to gen-

eralize on the test data. For slightly higher number of sam-

ples, Reptile outdoes prototypical networks since the avail-

ability of more data samples allows the neural network to

be fine-tuned effectively without over-fitting. In order to

further validate the idea that fine-tuning allows better gen-

eralization on novel classes, we tried fine-tuning the pro-

totypical network during the meta-test stage before com-

puting the prototype vectors. It was found that the per-



Table 3. Performance comparison of AUC (in %) and Accuracy (in %) on the SD-198 skin lesion dataset for 2-way classification tasks.

Pre-trained Reptile Prototypical Networks

Avg. AUC Avg. Accuracy Avg. AUC Avg. Accuracy Avg. AUC Avg. Accuracy

w/o G-Conv

1-shot 56.4 55.7 64.1 63.0 59.4 59.8

3-shot 65.3 60.7 77.4 72.9 70.6 66.6

5-shot 77.9 73.6 84.6 80.4 80.7 78.3

w/ G-Conv 2-way

1-shot 57.4 56.9 68.6 65.3 62.9 64.5

3-shot 70.2 69.1 79.1 75.8 74.5 72.1

5-shot 84.2 76.5 89.5 83.7 85.6 80.2

formance of prototypical networks improves as a result of

fine-tuning, while still remaining lesser compared to Rep-

tile. This is due to the fact that prototypical networks rely

on a simple distance measure like Euclidean distance for

classification which does not perform very well for complex

fine-grained skin lesion images where the intra-class vari-

ability is higher compared to the inter-class variability. In

such cases, a neural network based classification performs

much better which is observed through our experiments. We

observe empirically that 5-shot meta-learning performance

surpasses 3-shot performance, which in turn exceeds the

performance for 1-shot meta-learning. This trend is con-

sistent for the baseline pre-training technique as well as the

meta-learning techniques across all datasets, with both spa-

tial and G-convolutions. The reasoning behind this obser-

vation is intuitive since more test data for fine-tuning and

creating the prototype vectors leads to better model adap-

tation and hence, higher performance on the test classes.

For instance, with G-Conv., Reptile achieves 1-shot AUC

of 68.1%, 3-shot AUC of 81.2% and 5-shot AUC of 86.8%
on ISIC 2018 dataset. Similarly for Derm7pt, AUC values

using prototypical networks are 63.7% (1-shot), 65.3% (3-

shot) and 72.8% (5-shot).

In addition to binary classification tasks, we have also

experimented with creating 4-way classification tasks for

the SD-198 dataset for which 4-way tasks are feasible due

to the sizeable number of categories present. The 4-way

setting validates all trends established by experiments so

far. Reptile outperforms prototypical network which in turn

performs better than the pre-training baseline. 4-way 5-shot

accuracy values 65.7% (Reptile), 55.9% (Prototypical Net-

works), and 49.8% (Pre-training) illustrate the trend. Sim-

ilarly, 4-way 3-shot accuracy values are 57.1% (Reptile),

50.4% (Prototypical Networks), and 42.6% (Pre-training).

A similar trend can be seen for 4-way 1-shot and 3-shot ac-

curacy values for the 3 different approaches.

Next, we incorporate G-convolutions into the meta-

learning network architecture which enhances the network’s

performance on the skin lesion datasets, as can be seen in

Tables 1, 2, 3 for ISIC 2018, Derm7pt and SD-198 skin le-

sion datasets respectively. Hence, this validates our hypoth-

esis that G-convolutions are effective in skin lesion images

as they make the neural network equivariant to image trans-

formations.

5.3. Comparison with stateoftheart

To the best of our knowledge, there have been no works

so far that have explored few-shot learning for skin lesion

datasets Derm7pt and SD-198. Thus, we provide the first

work which extends meta-learning to dermoscopic and clin-

ical skin lesion images present in the Derm7pt and SD-198

datasets. Our proposed Meta-DermDiagnosis model is able

to perform better than the DAML [20] model on the ISIC

2018 dataset. We make use of the Reptile algorithm along

with G-convolutions and a 6-layer CNN, while Li et al.

propose their own difficulty-aware meta-learning (DAML)

method that uses a 4-layer CNN. The meta-learning setting

is similar for DAML and our approach. We outperform

DAML for all 1, 3, 5 shot learning. Meta-DermDiagnosis

gives a 5-shot AUC of 86.8%, while DAML gives 83.3%.

The reason for this increase in performance is the more ex-

pressive 6-layer CNN, the use of Reptile algorithm and the

deployment of G-convolutions which allow the network to

achieve invariance to the different transformations present

in skin lesion images with much fewer images.

6. Conclusion and Future Work

We propose the use of meta-learning techniques together

with G-convolutions for skin disease identification and,

quick and efficient model adaptation for extremely low-data

scenarios. We show how our methodology outperforms the

conventional transfer learning or fine-tuning approach for

the data-scarce settings. We believe that further research in

this direction should focus on extending meta-learning for

other medical imaging datasets like X-rays, CT-Scans and

MRIs which can play a vital role in diagnosing and detect-

ing rare and new diseases like the recent COVID-19 which

have limited available patient data.
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