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Abstract

Segmenting skin lesions images is relevant both for itself

and for assisting in lesion classification, but suffers from

the challenge in obtaining annotated data. In this work,

we show that segmentation may improve with less data,

by selecting the training samples with best inter-annotator

agreement, and conditioning the ground-truth masks to re-

move excessive detail. We perform an exhaustive experi-

mental design considering several sources of variation, in-

cluding three different test sets, two different deep-learning

architectures, and several replications, for a total of 540 ex-

perimental runs. We found that sample selection and detail

removal may have impacts corresponding, respectively, to

12% and 16% of the one obtained by picking a better deep-

learning model.

1. Introduction

Withholding data to improve machine learning is

counter-intuitive, but we will show it brings promising im-

provements for skin lesion segmentation, by selecting the

training samples with best inter-annotator agreement, and

conditioning the ground-truth masks to remove excessive

detail.

Segmenting skin lesions images, i.e., delimiting the le-

sion from the surrounding skin, is frequently employed both

as an end-result and as an adjutant for lesion classification.

Segmentation, however, is a very challenging task, in part

due to the difficulty in obtaining properly annotated data.

All supervised machine-learning models need annotated

data to be trained, posing unique challenges for medical

tasks, where the annotators are specialists whose time is

costly and scarce. Segmentation poses additional chal-

lenges since the annotations are intricate region borders in-

stead of a single label. Researchers have attempted circum-

venting the need for data, with techniques like data augmen-

tation [5, 34], the creation of artificial data from generative

models [6], or even the use of self-supervision, which al-

lows performing part of the training of supervised models

without labels [21].

Quality of training data is another important dimension,

in addition to quantity. For skin lesion images, recent

works have addressed that issue, exploring the lack of inter-

annotator agreement in the ground truth of segmentation

images [36], and the possibility of using annotations of dif-

ferent levels of confidence and granularity to learn segmen-

tation masks [28].

In this work, we will follow a novel perspective: instead

of finding ways to amplify training data, we will show how

less of it can enhance results. The two main contributions

of this work are:

• We show how training sample selection, based on

inter-annotator agreement, can improve segmentation

results, even when such selection is not applied to the

test sets;

• We show how removing details from the ground-truth

masks — using very simple “conditionings” — can

improve segmentation results, even when the same de-

tails are still required in the test set, i.e., when the test

masks are not “conditioned”.

We evaluate those contributions thoroughly, in an ex-

haustive experimental design that considers several sources

of variation, including three different test sets, two different

deep-learning architectures, and several replications, for a

total of 540 experimental runs.

The remainder of the text is organized as follows. We

survey the related works in section 2. We present the sample

selection technique in section 3, and the ground-truth condi-

tioning in section 4. We provide details about our datasets,

models, implementation, and experimental design in sec-

tion 5, with results following in section 6. We conclude the

paper in section 7.

2. Literature Review

Segmenting skin-lesion images has attracted scientific

interest since the inception of automated skin-lesion anal-



ysis [13, 29]. Early lesion classification tended to mimic

medical procedures [16], such as the ABCD rule [30],

in which estimating, e.g., Border irregularity and large

Diameter relied on segmentation. Such methods were also

consonant with early computer vision art, in which segmen-

tation was considered a crucial preliminary step for classi-

fication (e.g., to allow extracting shape features). Celebi

et al. [7] provide a comprehensive survey of early works on

skin-lesion image segmentation.

We limit our analysis in this section to an overview

of the field and promising methods proposed after deep

learning. For a more comprehensive view, we reference

a survey published by Celebi et al. [7] that presents an

overview of 50 published articles describing the state of

the art of border detection algorithms. The survey reviews

the pre-processing, segmentation methods, post-processing,

and evaluation criteria of several works related to the area.

It then presents a comparison of the methods concerning

different aspects.

The transition of computer vision art to bags-of-words

models in the 2000s [39], and to deep learning in the 2010s

[24] spelled the end of the viewpoint of segmentation as an

ancillary technique in preparation for classification. That

understanding, however, also increased the appreciation of

segmentation for its own merits. With the accumulated

experience brought by collective efforts like the PASCAL

VOC [15] and ImageNet [12] challenges, we now under-

stand not only that segmentation and classification can be

tackled independently, but also that segmentation is usually

much more challenging than classification.

Those advances in computer vision appear in the cur-

rent art in skin lesion analysis [42, 32], in which, although

lesion segmentation is sometimes still used to help in the

classification, it is largely understood as an important and

challenging task in itself.

Deep learning underpins current art on skin-lesion seg-

mentation. In this survey, we will highlight only a few

works relevant to our discussion, and refer the reader to the

reviews of Tajbakhsh et al. [41] and Kalinin et al. [22], on

medical image segmentation, for a more broad survey of

deep-learning-based techniques.

The ISIC Challenges of 2017 [10] and 2018 [11] in-

cluded a segmentation task, and fostered several tech-

niques. In 2017, a fully convolutional-deconvolutional net-

work achieved 1st place [45], while the U-Net [38] appeared

in 2nd place [3], and the ResNet [17] appeared in 3rd [4].

In 2018, a two-stage method based on MaskRCNN [18],

DeepLab [9] and PSPNet [46] achieved 1st place [35], while

a simpler scheme with the DeepLab and transfer learning

from VOC PASCAL 2012 achieved 2nd place [14], and

a traditional “U-Net-like” architecture, with ResNet-based

encoder and decoder achieved 3rd place [20].

A recent development in skin-lesion segmentation is the

use of generative models. Xue et al. [44] proposed SegAN,

an end-to-end adversarial network architecture with multi-

scale loss, and achieved 4th place at the 2018 ISIC Chal-

lenge.

Training, and especially, evaluating machine-learning

models, require accurate annotations. Ribeiro et al. [36]

find, however, that information about inter-annotator agree-

ment in visual datasets is very scarce, and when present,

suggest a large variation among different tasks. In partic-

ular, for skin-lesion segmentation, they find the degree of

agreement is only moderate, with a considerable portion of

the samples having very poor inter-annotator agreements.

There are different solutions to that issue. On the one

hand, we may ameliorate the quality of the annotations.

Because reannotating the data is very expensive, Ribeiro

et al. [36] suggest conditioning operations on the ground-

truth masks that remove details, improving their agreement.

On the other hand, we may render our models less sen-

sitive to noise. Deep learning models are, by nature, fairly

insensitive to noisy annotations [37]. An in-depth survey

of segmentation techniques for medical images from noisy

datasets [40] addresses both the issue of scarce and im-

perfect annotations, and, for the latter, lists techniques to

deal with weak labels (in the technical sense of weakly

supervised learning), sparse labels (only part of the im-

age is annotated), and noisy labels (labels with ambigui-

ties and inaccuracies). Specifically for skin-lesion segmen-

tation, Mirikharaji et al. [28] address a continuum of anno-

tations, ranging from fully detailed ground-truths until pro-

gressively weaker ones, by using polygons with fewer ver-

tices, and ending with just a bounding box. They proposed

a spatial-adaptive reweighting to treat clean and noisy pixel-

level annotations in the loss function.

In this work, we propose a third alternative: removing

the noisy samples from the dataset and, following Ribeiro

et al. [36], removing excessive detail from the ground truths

on the remaining samples. While the focus of Ribeiro et al.

was improving the inter-annotator agreement on the dataset,

here we focus on the machine-learning models and evaluate

the impact of removing those details on them.

3. Sample Selection based on Inter-Annotator

Agreement

As mentioned, Ribeiro et al. [36] found a broad diversity

in the inter-annotator agreement for the ISIC dataset im-

ages. In particular, the authors noticed a fairly “heavy tail”

of very discordant annotations in their observation.

In this work, we evaluate the actual effect of those ob-

servations on segmentation models, by contrasting models

learned the usual way, without any data selection, with mod-

els learned with fewer samples, eliminating the worst dis-

cordant samples in the tail.



To perform a fair comparison, we first selected all sam-

ples from the online ISIC Archive dataset with at least two

segmentation ground-truth annotations. For each of those

samples, we computed the average pairwise Cohen’s Kappa

score [26] for all existing ground-truth annotations. All

samples with an average score above 0.5 went to the best

samples dataset, and all samples, however the score, went

to the all samples dataset.

Details about the data and selection procedure are in Sec-

tions 5.1, 5.2, 6.1 and 6.2.

4. Detail Elimination with Label Conditioning

In order to enhance inter-annotator agreement, Ribeiro

et al. [36] propose applying “conditionings” on the ground-

truth segmentation masks, which consist of eliminating de-

tails from them. They evaluate (in growing aggressiveness)

the morphological operations of opening and closing, the

convex hull, the morphological operations combined with

the convex hull, and a bounding box.

In this work, we follow up on the idea of conditioning

the ground-truth masks, from a different point of view: the

machine-learning model. Instead of measuring how much

different conditionings affect the mask agreement, we will

measure how they affect both the training and the evaluation

(when applied to the test set) of segmentation models.

In addition to the original images, we selected the two

most promising conditionings proposed by Ribeiro et al.

[36] for evaluation (Figure 1):

None no conditioning: the original images — used as a

control;

Opening this morphological operation removes details like

small protrusions in the lesion area. The structuring

element was a 5-pixel-wide square;

Convex Hull opening, just as above, followed by taking

the convex hull, i.e., finding the tightest convex poly-

gon that contains the lesion area.

We may interpret conditioning as denoising operations,

aiming at preserving the cogent information while discard-

ing details that arise from choosing a particular annota-

tor. Our hypothesis, in this work, is that those annotator-

dependent details may prove an expensive distraction for

the models to learn.

Details about the procedure are in Sections 5.2 and 6.3.

5. Materials and Methods

5.1. Datasets

All training data used in this work came from the ISIC

Archive [1] — curated by the International Skin Imag-

ing Collaboration — the largest publicly available dataset

Original Ground Truth Opening Opening + Convex Hull

Figure 1. Three ground-truth segmentation masks from the ISIC

Archive and the result of their conditioning with the two tech-

niques we assessed. Conditioning removes the small details which

may prove distracting for the models.

Figure 2. The three methods used to create the ISIC Archive seg-

mentation masks. A flood-fill algorithm controlled by the annota-

tor (top) tends to create very irregular borders; Manual polygon

tracing (middle) creates very smooth borders; Fully-automated

annotation validated by human annotator (bottom) is in-between,

with borders that appear pixelated.

of images of skin lesions. Although a few other datasets

also provide segmentation information [2, 27], as far as we

know, the ISIC Archive is the only public dataset with more



# of Masks # of Samples

1 11 546

2 2 094

3 100

>4 39

Total 13 779

Table 1. Distribution of samples by number of ground-truth seg-

mentation masks in our ISIC Archive collection.

than one segmentation annotation per lesion, and thus the

only one where inter-annotator agreement can be appraised.

The ground truth annotations are highly variable due, in

part, to three different methods to create the annotations

(Figure 2) and, in part, to differences of opinion and other

specificities of human annotators.

At the time we collected our data, the ISIC Archive

dataset contained 13 779 images with segmentation ground

truth masks, 2 233 of those having multiple masks (Table 1).

This latter number limited the training set for our exper-

iments. We derived two training sets: one containing all

2 233 samples (all samples), and other whose average pair-

wise Cohen’s Kappa score between ground-truth masks was

higher than 0.5, (best samples). The latter had 1 808 lesion

images, i.e., only 81% of the available samples.

We employed three datasets for testing the models. The

first was formed by a random selection of 2 000 images

from the 11 546 images of our ISIC Archive collection

with only one segmentation mask. Two others are the PH2

dataset [27] collected at the Porto University, with 200 der-

moscopic images, and the Edinburgh Dermofit Library [2],

with 1 300 focal high-quality clinical images. Since the

inter-annotator agreement in those datasets cannot be ap-

praised, all three of them represent “in-the-wild” situations,

without sample filtering. The first dataset represents the typ-

ical machine-learning evaluation pipeline, with training and

evaluation being subsamples of the same dataset. In con-

trast, the two others represent a cross-dataset scenario, that

challenges the generalization abilities of the models.

5.2. Models and conditionings

LinkNet [8] is a traditional “U-Net-like” architecture:

encoder–decoder with skip connections between them.

DeepLab V3+ [9], in contrast, uses ResNet as the primary

feature extractor, introduces new residual blocks for learn-

ing multi-scale features, and employs atrous convolutions

with different dilation rates in the last residual block to bet-

ter context understanding and scale invariance.

To train the networks, we split the training samples into

80/20 training and validation sets (Table 2). All lesions have

more than one ground-truth mask during training; we ran-

domly select which mask to use every time we pick a sample

Training Set

Split All Samples Best Samples

Training 1 786 1 449

Validation 447 359

Total 2 233 1 808

Table 2. Training sets and their splits.

to compose a batch. Thus, different masks may appear at

different times during training. For model selection during

validation, for each sample, we evaluate the target metric

(Jaccard index) using all available annotations and retain

the best (i.e., the highest). The test datasets have a single

annotation per lesion, so mask selection and metric compu-

tation are straightforward.

We trained each model for 100 epochs, without early

stopping, with an Adam optimizer [23] and learning rate of

0.003. The loss function was a weighted sum of the soft Jac-

card with the Binary Cross Entropy with Logits [19], with

weights, respectively, of 8 and 1.

We applied three data augmentations, aiming to teach

our model to be invariant to noise, color, and contrast. We

add to each sample a Gaussian noise with zero mean and

standard deviation of 2. We also add a color and a contrast

enhancement, each parameterized by a Gaussian factor with

mean 0.5 and standard deviation of 0.1, implemented using

the Pillow image library [25].

We implemented the models, training, and evaluation

pipelines using the PyTorch framework for deep learn-

ing [33]. We developed all the conditionings in Python,

using the morphology package of the scikit-image li-

brary [43], and auxiliary code in NumPy [31]. During vali-

dation, we always apply to the masks the same conditioning

used for training.

All code necessary to reproduce this work is available at

our Github repository1.

5.3. Experimental design

We ran a single exhaustive experimental design to val-

idate both the sample selection and the ground-truth con-

ditioning. The design also aimed at capturing sources of

variation present in the actual deployment of segmentation

models and included the following factors:

Training set This can be either all samples of our ISIC

collection, or a selection of the best samples, whose

ground-truth segmentation masks have an average

pairwise Cohen’s Kappa agreement above 0.5 (details

in subsection 5.1).

1https://github.com/vribeiro1/skin-lesion-segmentation-agreement



Percentile

Conditioning 5 25 50 75 100

none 0.12 0.57 0.72 0.80 0.88

opening 0.13 0.66 0.81 0.90 0.96

convex hull 0.13 0.67 0.83 0.90 0.96

Table 3. Percentiles of the average pairwise Cohen’s kappa score

for the all samples subset of our ISIC Archive collection.

Test set A split from our ISIC subset (no sample selec-

tion), the PH2 dataset, or the Dermofit dataset. The

latter two are a cross-dataset evaluation (details in sub-

section 5.1).

Training conditioning Conditioning applied on the

ground-truth of the samples used for training the

model. None for the original image, opening for

the morphological operator removing small details,

and convex hull for opening followed by taking the

convex hull (details in section 4).

Test conditioning Conditioning applied on the ground-

truth of the samples used for evaluating the model. The

levels are the same as above.

Model One of two deep-learning models: LinkNet or

DeepLab (details in subsection 5.2).

Each treatment was replicated 5 times for a total of 540

runs. In all experiments, the outcome was the segmenta-

tion accuracy, measured by the Jaccard index (sometimes

named Intersection over Union or IoU). The Jaccard index

is vastly employed in the semantic segmentation literature

and it is the primary metric of the segmentation task in the

2017 editions of the ISIC Challenge.

The statistical analysis was a full factorial analysis of

variance (ANOVA), which we used both to measure sig-

nificance (p-values) and effect sizes (η2). In addition to the

statistical test, we employed interaction plots to elucidate

the relationship between the factors.

6. Results

6.1. Dataset analysis and sample selection

Figure 3 shows the distribution of inter-annotator agree-

ment, measured as the average pairwise Cohen’s kappa

score of the ground-truth masks, found in the 2 233 samples

of the all samples subset from our ISIC Archive collection.

The plots show both the original data (none conditioning)

and the data after the application of the opening and convex

hull conditionings.

The improvement in agreement brought by the condi-

tionings is visible as both the mode and the mean of the

distributions are pushed towards higher kappa values. The

conditionings are not, however, able to deal with large dis-

cordances in the annotations, and all distributions have a

fairly heavy tail of very low kappa values. The percentiles

of the kappa values in Table 3 also reinforce those findings.

The dotted red line shows the threshold of 0.5 used to

select the 1 808 samples of the best samples subset. Notice

that this set has a fixed size since the selection is made on

the unconditioned kappa values, regardless of the condition-

ings used in the experiment.

6.2. Impact of sample selection

Figure 3 is an interaction plot highlighting the effect of

sample selection, the choice between the all samples vs.

best samples in the training set factor of our experimental

design. The average effect of that choice can be appreci-

ated on the solid lines in that plot, where selecting the best

samples for training appears systematically above picking

all samples. Recall that this implies discarding almost 20%

of the training samples, and that such selection is not per-

formed on the test sets. Those results are far from trivial,

since deep-learning if fairly robust to noise [37] and of-

ten presents better results in larger noisier dataset than in

smaller cleaner ones.

In addition to those averaged aggregate results, two other

results deserve attention. First, there are interactions among

sample selection on the training set, conditioning on the

training set, and conditioning on the test set, with those facts

act synergetically. We will explore those interactions in

more detail in subsection 6.4. Second, the results may vary

according to the test set. Indeed, for the PH2 dataset there

is a slight inversion of the results (although the experiments

are quite mixed, as the individual data points show). In con-

trast, the Edinburgh Dermofit dataset shows the largest pos-

itive differences, which is remarkable given that dataset has

focal clinical images instead of dermoscopic images and,

thus, poses the widest generalization gap for the models to

bridge.

6.3. Impact of ground truth conditioning

Figure 5 is an interaction plot highlighting the effect of

conditioning the ground-truth masks on the training and the

test sets. The plot shows only the results for the best sam-

ples dataset because we found important positive interac-

tions between conditioning and sample selections.

The most surprising result is that removing details from

the ground truths on the training set does not reduce the

performance, on average, of models — even when those

same details are required on the test sets (leftmost panel).

The exact results varied by test set, with PH2 showing a

slight decrease, and ISIC and Edinburgh Dermofit showing

a slight increase in performance. Those results showcase
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that adding excessive detail in the ground-truth masks may

be counterproductive.

That is particularly true when those details are not

needed for the target application. The rightmost panel
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sets highlights the two conditionings due to the interaction we found between the three factors.

shows that when the convex hull conditioning is applied to

both training and test ground truth masks — to evaluate,

e.g., an application where the rough contour of the lesion is

enough — the results sharply increase, for all three test sets.

6.4. Statistical analysis

We can divide, in our statistical analysis, the sources of

variation in three groups:

Design factors Those are the factors we could actively

control in the actual deployment of a machine-learning

model. In our experiment, those are model, training

set, training conditioning, and test conditioning.

Nuisance factors Those are the factors we cannot control

in any actual deployment of a model, but we can con-

trol in an experiment. In our experiment, the single

factor in this category is test set.

Uncontrolled sources Those are sources of variation we

cannot control in either situation: fluctuations in train-

ing (random seeds, numerical errors, etc.), hardware

fluctuations, etc.

The statistical analysis was a full factorial ANOVA. All

factors were found significant, with tiny p-values (∼ 10
−6

for test conditioning, ∼ 10
−16 for all others). We consid-

ered up to 3rd order interactions, and several of them were

significant, notably almost all 2nd order interactions (the ex-

ceptions were training set with test conditioning and model

with test conditioning).

The main source of variation was test set, which ex-

plained 88% of the global variation (i.e., η2 = 0.88 effect

size). That is perhaps unsurprising considering the three

datasets varied widely in difficulty, with the PH2 dataset

being much easier to segment than the other two. Uncon-

trolled sources accounted for less than 2% of the variation.

The remainder variation was scattered among the other fac-

tors and interactions, model being the largest by far (6% of

the variation).

Considering only the variation we can design for, model

was the most influential, explaining almost 57% of it. Sam-

ple selection was considerable, with training set gathering

over 7% of the variation. Training conditioning alone ex-

plained just a little over 1% of the variation, while test

conditioning alone gathered almost 9%. In addition, both

factors interacted to explain almost 4% of the “designable”

variation.

7. Conclusions

As previously observed by Ribeiro et al. [36], segmenta-

tion ground-truths for skin lesion images present substantial

inter-annotator disagreement. Although that, for the mo-

ment, can only be measured on the ISIC Archive, there is

no reason to believe the results would be different for other

datasets, if they had more than one annotation available per

sample. In this work, we showcased how a strategy of se-

lecting the samples with largest disagreement may result in

significantly improved performance. We also showed how

removing details on the segmentation masks (by condition-



ing them with simple operators) may improve the results,

especially if those details are not needed on prediction time.

To put our findings in perspective, consider the improve-

ment brought from moving from LinkNet to DeepLab: this

was the most important “designable” factor we found but,

of course, creating new deep learning architectures is a la-

borious and haphazardous enterprise. One can obtain 12%

of that improvement simply by throwing away 1/5th of the

training data. By giving up detail on the segmentation

masks, one can obtain 16% of that improvement. For many

applications of lesions segmentation (e.g., finding a rough

contour, or determining a lesion diameter) less is more, in a

very concrete sense.

The sample selection technique proposed in this paper

requires multiple annotations per sample, a condition that

makes it applicable to very few of the available training

data. In the future, we would like to extend it to samples

with a single ground-truth mask, greatly increasing its ap-

plicability.
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