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Abstract

Deep Learning has seen an unprecedented increase in vi-

sion applications since the publication of large-scale object

recognition datasets and introduction of scalable compute

hardware. State-of-the-art methods for most vision tasks

for Autonomous Vehicles (AVs) rely on supervised learning

and often fail to generalize to domain shifts and/or outliers.

Dataset diversity is thus key to successful real-world de-

ployment. No matter how big the size of the dataset, captur-

ing long tails of the distribution pertaining to task-specific

environmental factors is impractical. The goal of this paper

is to investigate the use of targeted synthetic data augmenta-

tion - combining the benefits of gaming engine simulations

and sim2real style transfer techniques - for filling gaps in

real datasets for vision tasks. Empirical studies on three

different computer vision tasks of practical use to AVs -

parking slot detection, lane detection and monocular depth

estimation - consistently show that having synthetic data in

the training mix provides a significant boost in cross-dataset

generalization performance as compared to training on real

data only, for the same size of the training set.

1. Introduction

Data-hungry Deep Neural Networks (DNNs) thrive

when trained on large datasets. The release of large-scale

datasets (such as ImageNet [4], COCO [24], KITTI [10] and

the relatively recent BDD100K [43]) coupled with progress

in scalable compute has led to the use of DNNs for a wide

variety of vision tasks for autonomous driving. State-of-the-

art methods for most of these tasks, such as object detec-

tion, semantic segmentation and depth estimation to name

a few [13, 29, 11], rely on supervised learning and often

fail to generalize to unseen scenarios and/or datasets. Thus,

dataset diversity is key to achieving successful deployment

of DNNs for real-world vision tasks, especially in safety-

critical applications.

Presence of bias in static datasets, such as selection bias,

capture bias, label bias and negative set bias [40, 33] is

Figure 1: Comparison of confusion matrices from the

ResNet-50 [14] based Name That Dataset classifiers de-

scribed in Section 3.1 trained to distinguish between five

different lane-detection datasets (left) and between the same

five datasets with two of them (3 and 5) augmented with

synthetic data (right). Note that synthetic data augmentation

helps diffuse the strength of the diagonal indicating deflated

dataset bias.

a known problem in computer vision famously shown by

the Name That Dataset experiment from Torralba et al.

[40]. However, most of these well studied biases are task-

agnostic and too general in nature. For instance, consider

the task of lane detection which is one of the most com-

mon vision applications in autonomous driving. One way

of addressing generic dataset selection biases is to simply

augment data from multiple sources like highways, cities

etc. But no matter how big the size of the dataset, it is

extremely difficult to capture long tails of the distribution,

and on the contrary, as shown in [40, 22], mixing different

datasets often ends up hurting the final performance! This

begs the question if it is ever possible to completely avoid

such biases in realistic settings by means of careful data col-

lection [32].

In this work, we focus on bias in the context of the noise

distribution pertaining to task-specific environmental fac-

tors. We refer to it as noise factor distribution bias. For

instance, instead of handling diversity by blindly collect-

ing more data in our lane detection example, we chose to

augment data with respect to task-specific noise factors,

such as diversifying lane marker types, number of lanes in

the scene, condition of lane markers, type of lane markers,
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weather and lighting effects etc. We show how this could go

a long-way in improving algorithm performance. Hoping to

obtain such targeted diversity in real data from dashboard

cameras in cars is likely futile because of the time it will

take and the unavailability of sources.

One approach is to leverage advances in generative mod-

eling to generate synthetic data for augmentation. Gener-

ative Adversarial Networks (GANs) [12] have shown im-

mense progress in the past few years in image generation

[20, 21]. While they have had huge success in graph-

ics applications [30, 38, 23], synthetic data augmentation

for improving performance of recognition models has seen

limited success. One reason is the presence of noisy ar-

tifacts and semantic inconsistencies in the generated im-

ages [17, 31]. Alternatively, gaming-engine simulations can

be used to generate semantically consistent data of desired

task-specific scenarios, but the perceptual quality is far from

realistic. Why not have the best of both worlds? In contrast

to performing augmentation with either generated or simu-

lated data, we first simply simulate candidate examples and

then translate via unsupervised sim2real generative models

[25, 18, 45].

We show that this simple two-stage augmentation when

targeted to encourage task-specific noise diversity leads to

huge gains in cross-dataset generalization performance. We

demonstrate this empirically using three different case stud-

ies of computer vision tasks in an AV perception stack: (i)

parking slot detection; (ii) lane detection; and (iii) monocu-

lar depth estimation. To isolate the effect of simply training

on more data, in all of these tasks, synthetic data was used

to replace some amount of real data in the training set. Re-

sults showed a significant boost in cross-dataset generaliza-

tion performance, especially in cases where the real dataset

was small in size and heavily biased. Moreover, model per-

formance on the original test set was not hurt which further

confirms that targeted synthetic data augmentation can go a

long way in enriching the real biased dataset.

2. Related Work

Related work on dealing with dataset bias falls under

two main categories: (i) Domain Adaptation (DA); and (ii)

Transfer Learning. DA is one way of dealing with inher-

ent bias in datasets and the problem of perception algo-

rithms failing to generalize to different datasets. Fernando

et al. [7] addressed DA by learning a mapping between the

source and target datasets in the form of a common sub-

space between their distributions. One can also learn data

specific embeddings subject to minimization of MMD be-

tween them [34] in an effort to bring the two distributions

closer. A classifier can then act on the learnt embeddings.

Optimal transport techniques have also been used to solve

DA, with [2] minimizing the Wasserstein distance between

the joint embedding and classifier label distributions of the

two datasets. Wang et al. [41] provide a good taxonomy

of DA techniques, including the more recent adversarial

techniques based on GANs. Instead of relying on a hand-

engineered loss function to bring the source and target data

distributions close, these techniques use an adversarially

trained discriminator network that attempts to differentiate

between data from the two distributions. This discrimina-

tion can happen in: (i) the pixel space - where data from

one domain is translated into the other using style transfer

before being passed to the discriminator [26, 36]; (ii) la-

tent space - where a discriminator learns to differentiate be-

tween the learned embeddings from the two domains [37]

and; (ii) both the pixel and embedding space [15]. In cases

where one has access to unpaired and unannotated data only

from the two domains, one can use cycle consistency losses

[25, 42, 45] for learning a common embedding between the

two spaces. Often, we are concerned with DA for a particu-

lar task - for example image segmentation or depth estima-

tion. Recent work has shown that using losses from an aux-

iliary task like image segmentation can help regularize the

feature embeddings [15, 37]. These methods are most rele-

vant to our work and future work will investigate how they

fare against our approach of targeted synthetic data augmen-

tation.

Transfer Learning is another way of dealing with dataset

bias [39]. In contrast to such approaches, our method as-

sumes no training data is available from the target domain

(both for the task network and sim2real models), and that

the target task is the same as the source task. Recent work

[1, 19] has also focused on using synthetic data to aug-

ment real datasets for AV perception tasks. Meta-sim [19]

parameterizes scene-grammar to generate a synthetic data

distribution that is similar to real data and is optimized

for a down-stream task and Alhaija et al. [1] augment real

scene backgrounds with synthetically inserted objects for

improved instance segmentation and object detection per-

formance on real datasets. Our method, in contrast, investi-

gates a general purpose, task agnostic approach to enriching

real-world datasets using synthetic data.

3. Deflating Dataset Bias

The main objective of this paper is to test the hypothesis

that targeted synthetic data augmentation can help deflate

inherent bias in large-scale image datasets. For brevity, we

will refer to this hypothesis as H. One way of testing H is to

compare cross-dataset generalization performance of mod-

els trained on the original dataset (real) with models trained

on augmented datasets (real+synthetic). In this paper, three

supervised learning-based computer vision tasks: (i) park-

ing slot detection; (ii) traffic lane detection; and (iii) monoc-

ular depth estimation are used as test-beds for the motivat-

ing hypothesis H, using the following methodology:



1. Simulate images and corresponding annotation using

gaming engines for a diverse set of task-specific noise

factors.

2. Use unsupervised generative modeling based sim2real

methods such as [25, 18, 45] to translate the simulated

images into photorealistic ones, that look like they are

from the training domain.

3. Train task networks with different ratios of real and

simulated data (from Step 1) or real and sim2real data

(from Step 2). The size of the training set is kept con-

stant across all experiments to isolate the improvement

one can obtain by simply training on more data from

the improvement due to deflated dataset bias. Also, the

ratio of synthetic data in the training set was increased

from 0% to 100% in continuous intervals of 10%.

4. Evaluate and compare cross-dataset generalization

performance of all models from Step 3.

Sections 4, 5 and 6 describe the task-specific datasets, ex-

periments and results.

3.1. Revisiting “Name That Dataset”

Torralba et al. [40] investigated the then state of object

recognition datasets using the Name That Dataset experi-

ment in which a 12-way linear SVM classifier was trained to

distinguish between 12 datasets. The results showed strong

signatures for each dataset - indicating inherent bias - de-

spite the best efforts of their creators. We repeat the Name

That Dataset experiment in the era of deep learning with a

ResNet-50 [14] (pre-trained on ImageNet) trained to distin-

guish between five different lane-detection datasets - Apol-

loScape [16], BDD100K [43], CULane [29], Mapillary [28]

and TuSimple1. 6000 images were randomly selected from

each dataset and divided into training, validation and test

sets. In a subsequent experiment, we replace 50% of the

real data in two datasets - CULane and TuSimple - with

sim2real translated images from VAE-GAN models based

off of [25, 18] and trained on unpaired simulated and real

CULane and simulated and real TuSimple images respec-

tively. We chose to apply data augmentation to only these

two datasets as they are also used for the lane detection ex-

periments in Section 5 with readily available sim2real data

on hand. Fig. 1 compares the confusion matrices of the two

classifiers, with and without synthetic data augmentation.

Here, the labels 1, 2, 3, 4 and 5 denote the ApolloScape,

BDD100K, CULane, Mapillary and TuSimple datasets re-

spectively. Consistent with the motivating hypothesis H,

synthetic data augmentation diffuses the strength of the di-

agonal indicating deflated dataset bias.

1https://github.com/TuSimple/

tusimple-benchmark/tree/master/doc/lane_detection

4. Case Study: Parking Slot Detection

The objective of this task is to detect empty parking slots

in images taken from side vehicle cameras (see Fig. 2).

Figure 2: Illustrative example of empty parking slots de-

tected (right) in a parking lot image (left).

4.1. Dataset Description

Real Data: An internal parking dataset of bright day-

time scenarios from two different parking lots (in Dearborn

and Palo Alto) is used as the source of real data for this

task. The Dearborn dataset has a total of 5907 images, for

brevity, we will refer to this dataset as Parking A. The Palo

Alto dataset has 602 images. We will refer to this dataset as

Parking B. Fig. 3a and Fig. 3b show example images from

the Parking A and Parking B datasets respectively to further

motivate the large domain gap between them.

Synthetic Data: Simulated data for this task is generated

using an Unreal Engine2-based simulation pipeline for a

diverse set of noise factors such as different times of the

day, cloud density, shadow intensity/cast location, ground

textures, parking line damage levels and parking density.

The variety of shadow intensities and locations, along with

parking line damage and car density are in stark contrast to

the homogeneity of the parking A dataset. Fig. 3c shows

an example simulated image, visualizing the large domain

gap between the simulated and real data from parking A.

A sim2real VAE-GAN model (based on [25, 18]) trained

on unpaired simulated images and real images from the

Parking A dataset is used to translate the generated simu-

lated data to look photorealistic. Fig. 3d shows the sim2real

translated output for Fig. 3c. Note the realistic ground tex-

tures and lighting effects in Fig. 3d in contrast to Fig. 3c.

For the slot detection experiments in this paper, Mo-

bileNetV2 SSD [35, 27], pre-trained on COCO [24], was

trained and tested on 300 × 300 parking lot images to de-

tect open parking slots, as shown in Fig. 2. The Parking

A dataset was split into a train and test set with 3545 im-

ages and 2362 images respectively. Given the small size of

the Parking B dataset (602 images), it was used for testing

only. Intersection over Union (IoU) of detected slots with

ground truth empty slots is used as the metric for quanti-

tative evaluation. Post training, model checkpoint with the

2https://www.unrealengine.com/en-US/



(a) Real - Parking A (b) Real - Parking B

(c) Simulated (d) Sim2Real Translated

Figure 3: Example images from the real and synthetic data

used for the slot detection experiments.
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Figure 4: Plot of F-measure for slot detection models

trained on a mix of real (Parking A) and synthetic images

(either from simulation or from sim2real GAN) and tested

on real Parking B images. As you move from left to right,

the ratio of synthetic data in the training set increases.

best F-measure for 50% IoU on the Parking A test set is

used for inference. The rest of this section describes the

experiments performed to test our motivating hypothesis H.

4.2. Results

Fig. 4 shows the results of all slot detection models on

the Parking B test set. Notice models trained on a mix

of real and synthetic data (green and blue) significantly

outperform the model trained on real data only (yellow).

Moreover, across all ratios, models trained on a mix of real

Parking A images and sim2real translated images (blue) do

better than the models trained on a mix of real Parking A

images and corresponding simulated images from Unreal

Engine (green). Overall best performance (F-measure of

32.4%) is achieved by the model trained on a mix of real

and GAN data in a 50:50 ratio. Table 1 summarizes the

results from the plots in Fig. 4. For the synthetic data aug-

mentation experiments, results are shown for the best model

in terms of F-measure on cross-dataset testing. Additional

insights into the number of true positives and false positives

for cross-dataset testing with the models from Table 1 are

provided in the Supplementary Material.

Table 1: Summary of results in Fig. 4. Here, A and B denote

the Parking A and Parking B datasets. S denotes simulated

images and G denotes the sim2real translated equivalent of

S. For synthetic data augmentation rows, results are shown

for the best model in terms of F-measure on cross-dataset

testing in green for A + S and in blue for A + G.

Train Test Precision (↑) Recall (↑) F-Measure (↑)

A A 95.1% 87.9% 91.4%

A + S (40%) A 93.8% 87.7% 90.7%

A + G (50%) A 94.2% 86.5% 90.2%

A B 0% 0% 0%

A + S (40%) B 71.8% 6.3% 11.6%

A + G (50%) B 67.0% 21.4% 32.4%

4.3. Experiment Details

As shown in Table 1, MobileNetV2 SSD trained on Park-

ing A results in a F-Measure of 91.4% on the Parking A test

set (1st row). However, the same model when tested on the

Parking B dataset results in a F-measure of 0% (4th row). It

is a well known fact that supervised learning-based methods

do not generalize across different domains. In this particu-

lar case the generalization performance is much worse than

one might expect because of two main reasons: (i) the small

size (relative to large-scale image datasets such as ImageNet

[4] and COCO [24]) and low diversity (all daytime images

from the same parking lot) of the Parking A dataset; (ii)

the large domain gap between the two datasets. Increasing

dropout regularization did not help improve generalization

performance either - F-Measure remained constant at 0%

for varying levels of dropout. The only improvement ob-

served was in the number of false positives (more details

are provided in Supplementary Material).

Thus, these results are consistent with the motivating hy-

pothesis H. Additionally, as shown in the 2nd and 3rd rows

of Table 1, synthetic data augmentation did not adversely

affect the results on the Parking A test set which further

strengthens the case for the use of synthetic data and espe-

cially GAN-translated data to enrich real-world datasets for

supervised learning tasks.

5. Case Study: Traffic Lane Detection

The objective of this task is to detect lane boundaries

in images taken from a front vehicle camera (see Fig. 5).

Pan et al. [29] achieved state-of-the-art performance on this

task with Spatial Convolutional Neural Networks (SCNNs).

Their formulation is used as-is for all the lane detection ex-

periments in this paper.



Figure 5: Lane detection schematic.

5.1. Dataset Description

Real Data: Following Pan et al. in [29], the CULane

and TuSimple3 datasets are used as real-world data sources.

The CULane dataset has 88880 training images, 9675 vali-

dation images and 34680 test images - collected across di-

verse scenarios including urban, rural and highway environ-

ments. The TuSimple dataset has 3268, 358, and 2782 im-

ages for training, validation and testing respectively. Com-

pared to CULane, TuSimple has highway scenes only.

(a1) Real TuSimple Frame

(a2) GAN Translated Cloudy

(a3) GAN Translated Night

(b1) Real CULane Frame

(b2) Simulated

(b3) GAN Translated Daytime

Figure 6: Example real, simulated and GAN-translated im-

ages used for lane detection.

Synthetic Data: For augmenting CULane, 88880 day-

time highway images were generated using Unreal Engine

by varying several noise factors such as the number of lanes,

traffic density, sun intensity, location and brightness, road

curvature, lane marker wear and tear etc. In testing the

original implementation of SCNN, we found that the model

performed poorest when lane lines were faint, in shadows or

occluded by other vehicles. The change in sun intensity, its

location and brightness helped create different shadow ef-

fects around the lane lines, giving the network more diverse

data to train on. Varying traffic density and road curvature

allowed for different occlusions of the lane line markings

to produce more diverse data. Example synthetic images

generated for this task are shown in Fig. 6. Following the

method outlined in Section 3, a sim2real VAE-GAN model

3https://github.com/TuSimple/

tusimple-benchmark/tree/master/doc/lane_detection

(based on [25, 18]) trained on unpaired simulated images

and real images from CULane was used to translate the gen-

erated simulated data to look photorealistic. Fig. 6 shows

the sim2real translated output for the given simulated im-

age. Note the realistic ground textures and lighting effects

in the GAN image in contrast to the simulated image.
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Figure 7: Plot of F-measure for models trained on a mix

of CULane and synthetic images (from simulation or from

sim2real VAE-GAN) and tested on TuSimple images.

5.2. Experiment Details

For the lane detection experiments in this paper, two

types of experiments were performed:

Experiment I: Following Section 3, SCNN [29] is trained

on a mix of CULane and synthetic images and tested on

TuSimple. For results from SCNN trained on a mix of

TuSimple and synthetic images and tested on CULane,

please refer Supplementary Material. Models are trained

on 800 × 288 images. For cross-testing, TuSimple images

are padded (along width) to match the training resolution

of 800× 288 while simultaneously maintaining the original

aspect ratio. IoU of detected lane lines with ground truth

lane lines is used as the metric for quantitative evaluation.

Experiment II: In addition to the experiments described in

Section 3, given that the TuSimple dataset has only day-

time images while the CULane dataset has a diverse set

of weather and lighting conditions (refer Section 5.1), we

performed an additional set of experiments for this task to

further test the motivating hypothesis H particularly in sce-

narios where synthetic data augmentation addresses the spe-

cific bias of weather and lighting effects. All synthetic data

was generated by applying day-to-night and clear-to-cloudy

VAE-GAN models (based off of the architecture in Ref.

[25] and trained on BDD100K [43]) to TuSimple images.

Fig. 6 shows an example GAN night and cloudy image.

SCNN was trained on 512 × 288 images for this set of ex-

periments and tested on downsized and then padded (along

height) versions of CULane images that match the training

resolution of 512 × 288 while simultaneously maintaining

the original aspect ratio.



Table 2: Summary of results in Fig. 7. Here, A, AN and

B denote the CULane, CULane Night only and TuSimple

datasets. S denotes simulated images and G denotes the

sim2real translated equivalent of S. GN and GC denote real

TuSimple images translated to nighttime and cloudy respec-

tively. For synthetic data augmentation rows, results are

shown for the best model in terms of F-measure on cross-

dataset testing in green for A + S and in blue for A + G.

Train Test Precision (↑) Recall (↑) F-Measure (↑)

A A 53.6% 70.6% 60.9%

A + S (30%) A 53.5% 70.8% 60.9%

A + G (60%) A 51.6% 68.0% 58.7%

A B 47.8% 51.9% 49.8%

A + S (30%) B 63.6% 70.6% 66.9%

A + G (60%) B 67.8% 71.6% 69.7%

B B 80.2% 91.7% 85.6%

B + GN (10%) B 80.3% 91.9% 85.7%

B + GC (80%) B 79.4% 90.6% 84.7%

B A 2.8% 3.7% 3.2%

B + GN (10%) A 5.9% 7.8% 6.7%

B + GC (80%) A 6.6% 8.7% 7.5%

B AN 0.2% 0.3% 0.2%

B + GN (10%) AN 2.3% 3.1% 2.6%

5.3. Results

Experiment I: Consistent with the cross-testing results

in Section 4, as shown in Table 2, SCNN trained on CULane

results in a F-Measure of 60.9% on the CULane test set (1st

row) versus 49.8% on the TuSimple test set (4th row). This

drop in accuracy can again be attributed to the large domain

gap between the two datasets (see Fig. 6). Fig. 7 shows that

models trained with a mix of real and sim2real translated

data (blue) consistently outperform models trained with a

mix of real and simulated data (green) in cross-testing.

Moreover, as the ratio of synthetic data in the training set in-

creases, the gap between models trained on GAN data and

simulated data grows wider. Both these observations to-

gether verify the closeness of the GAN data to the real data

as compared to just simulated data. More interestingly, for

certain ratios of synthetic data, the models trained on a mix

of real and synthetic data significantly outperform models

trained with 100% real data. Table 2 (top) summarizes the

results from the best models in terms of F-Measure - 69.7%

for model trained on a 40:60 mix of real and GAN data and

66.9% for model trained on a 70:30 mix of real and sim data

versus just 49.8% for model trained on 100% real data (note

the size of the training dataset was held constant across all

experiments). These results confirm that synthetic data aug-

mentation can help deflate dataset bias and thus improve

cross-dataset generalization performance. Again, similar to

the observations in Section 4.2, the drop in accuracy on the

original test set is minimal.

Experiment II: Consistent with previous results, SCNN

trained on TuSimple gives an F-measure of 85.6% on the

TuSimple test set versus only 3.2% on the CULane test set

(7th row vs. 10th row in Table 2). The drop in accuracy

is more prominent in this case as TuSimple is a much sim-

pler dataset as compared to CULane both in terms of quan-

tity and diversity. Table 2 shows that adding nighttime and

cloudy data helps improve cross-dataset generalization per-

formance, with models trained on a mix of real and GAN-

generated cloudy data faring the best among all (12th row

in green). Since CULane had the nighttime images labeled

in their test set, we compared the performance of models

trained on TuSimple only with models trained on a mix of

TuSimple and GAN nighttime images and again, consistent

with our motivating hypothesis H, the latter models do bet-

ter (last row).

6. Case Study: Monocular Depth Estimation

Figure 8: From top to bottom: KITTI RGB, vKITTI RGB,

sim2real, ground truth depth, estimated depth A+S (60%),

estimated depth A+G (60%) and estimated depth A+G

(20%). Networks were trained with unpaired data. Paired

images are used for illustrative purposes only.

In this case study, experiments are conducted for the task

of estimating the depth in a scene from a single RGB image

[6, 9, 11, 44]. We employ an encoder-decoder architecture

with skip connections and train the network in a supervised

fashion with MSE and edge-aware losses [11] between the

ground truth and estimated depth maps.



6.1. Dataset Description

We use KITTI [10] and virtual KITTI (vKITTI) [8] as

our real and simulated datasets. The vKITTI dataset is a

scene-by-scene recreation of the KITTI tracking dataset,

also using the Unreal gaming engine. However, we don’t

use any paired data for our experiments. We also do not use

data from the same sequences as the real data for our simu-

lated data.

Real Data: We use the KITTI odometry sequence 00, with

a total of 4,540 images as our real training set - A. The

KITTI Odometry sequences 02 and 05, with a cumulative

500 images, are used as the real test set - B. Ground truth

depth is generated by using the OpenCV implementation of

the stereo algorithm SGBM with WLS filtering on the left

and right images. Note that since we did not make use of

paired images between the simulated and real datasets, we

could not use simulated depth as ground truth. Moreover,

while the simulated recreation in vKITTI approaches that

of real KITTI, the simulacrum is not exact, and this would

have resulted in systematic biases in the learning of depth.

This can be seen in rows 1 and 2 (KITTI and vKITTI) of

Figure 8, where the virtual clone of the tree trunk on the

right sidewalk is subtly different and slightly shifted.

Synthetic Data: We use data from vKITTI scenes 1, 2, 6,

18 and 20, under the Clone, Morning, 15L and 15R subsets,

resulting in a total of 2,126 images per subset, and an overall

total of 8,504 images. These vKITTI scenes are clones of

the KITTI Tracking dataset (Clone), with variation in cam-

era angles (15L/R) and time of the day (Morning). Note that

the KITTI Tracking sequences (duplicated in vKITTI) are

captured in a different environment compared to the KITTI

Odometry dataset, which form part of our Real set. This

variation in sequence geographical location, time of the day

and camera pan angles represent the noise factors for this

task. A set of randomly picked 4,540 images from this to-

tal is used as the source of simulated data for training - S.

We use cycleGAN [45], trained with unpaired images from

KITTI and vKITTI to convert the 4,540 sampled images

from vKITTI to make them more realistic. This forms our

sim2real translated dataset - G.

6.2. Experiment Details

As with the other tasks, we train the task network with

different percentages of simulated (A + S) and sim2real (A

+ G) data, starting from 0% to 100% and test on KITTI

sequences that were not seen during training (B). We use

the Root Mean Squared Error (RMSE) metric to deter-

mine the performance of the network trained on a particular

sim/real or sim2real/real mix, after limiting maximum depth

to 100m. We provide detailed RMSE results in Figure 9. We

also tested this task based on accuracy of depth estimation,

measured as the ratio of correctly estimated depth pixels to

the total number of depth pixels. These results are sum-

marized, along with RMSE in Table 3 and more detailed

results for accuracy are provided in the Supplementary Ma-

terial. RMSE and accuracy are common metrics used in

prior work on single image depth [6]. A lower value of

RMSE indicates better performance while the same is true

for a higher value for accuracy.

6.3. Results

Figure 9 shows RMSE for the different mixes of real

(yellow), real + simulated (A+S, Sim, green) and real +

sim2real (A+G, GAN, blue) training data. Some important

highlights of the same are shown in Table 3.
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Figure 9: RMSE results for the single image depth task

(lower is better).

From the RMSE numbers, one result is clear: having ei-

ther simulated or sim2real data in the training mix is better

than using only real data, for the same amount of total train-

ing data. This is shown by the yellow bar (only real data) be-

ing higher than the other mixes. Equally, having simulated

(sim/sim2real) data alone (the last pair of bars in the RMSE

figure) gives the worst results. The trends indicate that

mixing sim2real (after converting the simulated data with

the sim2real GAN pipeline) with real is better than mixing

sim with real, when the percentage of sim/sim2real data is

lower or equal to the percentage of real data (10 − 50%

sim/sim2real), in the left half of the bar graphs. In other

words, A + G seems to give a slight performance gain over

A + S in the 10 − 50% range. From Table 3, we see that

the absolute best performer in terms of RMSE is 20% A +

G and 60% A + S. Qualitative results are shown for a sin-

gle image in Figure 8. Visually, the A + G (60%) network

(trained with a 40/60 mix of real and sim2real data) seems

to perform the best on this image, followed by A + S (60%).

The top performer in terms of RMSE, A + G (20%) looks

visually slightly worse.

Another important result to be highlighted is the fact that

the network trained on just simulation data gains about 7%

in terms of RMSE with the sim2real transformation, when

tested on real data when using the accuracy numbers. This

shows that sim2real from simulation to the source dataset,



Table 3: Summary of results for the single image depth task.

Best results for A + S are in green, and best results for A +

G are in blue.

Train Test RMSE (↓) Accuracy(↑)

A B 6.7205 0.9559

A + S (20%) B 5.3366 0.9705

A + G (20%) B 5.0231 0.9712

A + S (50%) B 5.3218 0.9702

A + G (50%) B 5.0779 0.9721

A + S (60%) B 4.9840 0.9723

A + G (60%) B 5.2102 0.9682

without any labelling from the source set, already gives a

baseline boost. This, when mixed with real labelled data

from the source set allows single image depth performance

on the target set to rise further, and the perfect mix of real

and simulated data lies in the 80/20 to 40/60 range, with

sim2real showing minor improvements over just using sim-

ulated data in the mix.

We also conducted single image depth experiments us-

ing the NuScenes dataset [3] for real data and the CARLA

simulation environment [5] for simulation data. These ex-

periments indicated that the estimation of a depth map from

a single image is highly dependent on the focal length and

other intrinsic camera parameters. We were able to get

good results on the NuScenes dataset by using data from

CARLA, when the simulated camera on CARLA had been

matched with the intrinsics the NuScenes camera. However,

any mix of KITTI with NuScenes/CARLA during training

completely confounded the algorithm and we do not include

these experiments in this paper. We consider camera intrin-

sics an important consideration when generating simulation

and sim2real data and one has to match these with the target

dataset. The mixing of data across datasets captured with

different focal length cameras requires more sophisticated

techniques that are beyond the scope of this paper.

7. Discussion

As motivated in Section 1, dataset bias is a known prob-

lem in computer vision. However, most of the well studied

sources of bias are task-agnostic. In this work, we focus

on bias in the context of the noise distribution pertaining to

task-specific environmental factors, referred to as noise fac-

tor distribution bias, and show that targeted synthetic data

augmentation can help deflate this bias. For empirical veri-

fication, we use three different computer vision tasks of im-

mense practical use - parking slot detection, lane detection

and monocular depth estimation. Synthetic data for these

tasks is generated via a simple two step process: (i) simulate

images for a diverse set of task-specific noise factors and

obtain corresponding ground truth; (ii) perform sim2real

translation using GANs to make simulated images look like

they are from the real training domain. The rest of this sec-

tion summarizes the key insights obtained.

Across all three tasks, having synthetic data in the train-

ing mix provides a significant boost in cross-dataset gener-

alization performance as compared to training on real data

only, for the same size of the training set. Moreover, per-

formance on the source domain test set was not adversely

impacted which makes the case for synthetic data augmen-

tation to enrich training datasets for these tasks stronger.

For both the slot detection and lane detection tasks, the

best models in terms of F-Measure were those trained on

a mix of real and sim2real translated data. For slot detec-

tion, the best model with 50% sim2real data in the training

mix provided about 30% absolute improvement over the

model trained on 100% real data. For lane detection, the

best model with 60% sim2real data in the training mix per-

formed about 40% better than the one trained on 100% real

data. Another consistent observation across the two tasks is

that models with a higher ratio of synthetic data (> 50%)

in the training mix do much better when the source of the

synthetic data is sim2real data as opposed to simulated data.

In contrast, for the depth estimation task, the best model

in terms of both RMSE and accuracy was the one with 60%

simulated data (and not sim2real data) in the training mix

that achieved a 25% improvement in RMSE over the model

trained with 100% real data. We think this is because of two

main reasons. First, depth estimation from a sensor (RGB

camera) that is missing the 3rd dimension is an inherently

hard task with every pixel contributing to the error metric.

If we were solving some other problem in which 3D estima-

tion can be parameterized - e.g. 3D bounding box detection

from 2D images - instead of requiring prediction on a pixel

level, we would expect to see a bigger gain with sim and

sim2real data added in the training mix. Secondly, slot de-

tection and lane detection are mostly dependent on higher-

level features (such as edges) and appearance (such as expo-

sure and lighting conditions). Sim2real is good at doing ex-

actly this - matching higher-level features between the gen-

erated and real images and thus these two tasks significantly

benefit from sim2real. Depth estimation, however, is depen-

dent more on low-level features. Artifacts introduced by the

GAN make it difficult to bridge the low-level feature dis-

crepancies between the sim2real images and corresponding

ground truth annotation obtained from simulation. Thus, as

expected, for this task, as you go higher in terms of the ra-

tio of synthetic data in the training mix (> 50%), models

trained on a mix of real and simulated data do better than

those trained on a mix of real and sim2real data. However,

the model trained on 100% sim2real data outperforms the

one trained on 100% simulated data for this task as well.

Another interesting finding is that across all three tasks,

the best models in terms of the chosen metrics were always

those with 50%-60% synthetic data in the training mix. Al-

though this makes intuitive sense, it requires more in-depth

investigation which will be part of future work.
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