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Abstract

Deep Learning has seen an unprecedented increase in vi-

sion applications since the publication of large-scale object

recognition datasets and introduction of scalable compute

hardware. State-of-the-art methods for most vision tasks

for Autonomous Vehicles (AVs) rely on supervised learning

and often fail to generalize to domain shifts and/or outliers.

Dataset diversity is thus key to successful real-world de-

ployment. No matter how big the size of the dataset, captur-

ing long tails of the distribution pertaining to task-specific

environmental factors is impractical. The goal of this paper

is to investigate the use of targeted synthetic data augmenta-

tion - combining the benefits of gaming engine simulations

and sim2real style transfer techniques - for filling gaps in

real datasets for vision tasks. Empirical studies on three

different computer vision tasks of practical use to AVs -

parking slot detection, lane detection and monocular depth

estimation - consistently show that having synthetic data in

the training mix provides a significant boost in cross-dataset

generalization performance as compared to training on real

data only, for the same size of the training set.

1. Introduction

Data-hungry Deep Neural Networks (DNNs) thrive

when trained on large datasets. The release of large-scale

datasets (such as ImageNet [4], COCO [24], KITTI [10] and

the relatively recent BDD100K [43]) coupled with progress

in scalable compute has led to the use of DNNs for a wide

variety of vision tasks for autonomous driving. State-of-the-

art methods for most of these tasks, such as object detec-

tion, semantic segmentation and depth estimation to name

a few [13, 29, 11], rely on supervised learning and often

fail to generalize to unseen scenarios and/or datasets. Thus,

dataset diversity is key to achieving successful deployment

of DNNs for real-world vision tasks, especially in safety-

critical applications.

Presence of bias in static datasets, such as selection bias,

capture bias, label bias and negative set bias [40, 33] is

Figure 1: Comparison of confusion matrices from the

ResNet-50 [14] based Name That Dataset classifiers de-

scribed in Section 3.1 trained to distinguish between five

different lane-detection datasets (left) and between the same

five datasets with two of them (3 and 5) augmented with

synthetic data (right). Note that synthetic data augmentation

helps diffuse the strength of the diagonal indicating deflated

dataset bias.

a known problem in computer vision famously shown by

the Name That Dataset experiment from Torralba et al.

[40]. However, most of these well studied biases are task-

agnostic and too general in nature. For instance, consider

the task of lane detection which is one of the most com-

mon vision applications in autonomous driving. One way

of addressing generic dataset selection biases is to simply

augment data from multiple sources like highways, cities

etc. But no matter how big the size of the dataset, it is

extremely difficult to capture long tails of the distribution,

and on the contrary, as shown in [40, 22], mixing different

datasets often ends up hurting the final performance! This

begs the question if it is ever possible to completely avoid

such biases in realistic settings by means of careful data col-

lection [32].

In this work, we focus on bias in the context of the noise

distribution pertaining to task-specific environmental fac-

tors. We refer to it as noise factor distribution bias. For

instance, instead of handling diversity by blindly collect-

ing more data in our lane detection example, we chose to

augment data with respect to task-specific noise factors,

such as diversifying lane marker types, number of lanes in

the scene, condition of lane markers, type of lane markers,
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weather and lighting effects etc. We show how this could go

a long-way in improving algorithm performance. Hoping to

obtain such targeted diversity in real data from dashboard

cameras in cars is likely futile because of the time it will

take and the unavailability of sources.

One approach is to leverage advances in generative mod-

eling to generate synthetic data for augmentation. Gener-

ative Adversarial Networks (GANs) [12] have shown im-

mense progress in the past few years in image generation

[20, 21]. While they have had huge success in graph-

ics applications [30, 38, 23], synthetic data augmentation

for improving performance of recognition models has seen

limited success. One reason is the presence of noisy ar-

tifacts and semantic inconsistencies in the generated im-

ages [17, 31]. Alternatively, gaming-engine simulations can

be used to generate semantically consistent data of desired

task-specific scenarios, but the perceptual quality is far from

realistic. Why not have the best of both worlds? In contrast

to performing augmentation with either generated or simu-

lated data, we first simply simulate candidate examples and

then translate via unsupervised sim2real generative models

[25, 18, 45].

We show that this simple two-stage augmentation when

targeted to encourage task-specific noise diversity leads to

huge gains in cross-dataset generalization performance. We

demonstrate this empirically using three different case stud-

ies of computer vision tasks in an AV perception stack: (i)

parking slot detection; (ii) lane detection; and (iii) monocu-

lar depth estimation. To isolate the effect of simply training

on more data, in all of these tasks, synthetic data was used

to replace some amount of real data in the training set. Re-

sults showed a significant boost in cross-dataset generaliza-

tion performance, especially in cases where the real dataset

was small in size and heavily biased. Moreover, model per-

formance on the original test set was not hurt which further

confirms that targeted synthetic data augmentation can go a

long way in enriching the real biased dataset.

2. Related Work

Related work on dealing with dataset bias falls under

two main categories: (i) Domain Adaptation (DA); and (ii)

Transfer Learning. DA is one way of dealing with inher-

ent bias in datasets and the problem of perception algo-

rithms failing to generalize to different datasets. Fernando

et al. [7] addressed DA by learning a mapping between the

source and target datasets in the form of a common sub-

space between their distributions. One can also learn data

specific embeddings subject to minimization of MMD be-

tween them [34] in an effort to bring the two distributions

closer. A classifier can then act on the learnt embeddings.

Optimal transport techniques have also been used to solve

DA, with [2] minimizing the Wasserstein distance between

the joint embedding and classifier label distributions of the

two datasets. Wang et al. [41] provide a good taxonomy

of DA techniques, including the more recent adversarial

techniques based on GANs. Instead of relying on a hand-

engineered loss function to bring the source and target data

distributions close, these techniques use an adversarially

trained discriminator network that attempts to differentiate

between data from the two distributions. This discrimina-

tion can happen in: (i) the pixel space - where data from

one domain is translated into the other using style transfer

before being passed to the discriminator [26, 36]; (ii) la-

tent space - where a discriminator learns to differentiate be-

tween the learned embeddings from the two domains [37]

and; (ii) both the pixel and embedding space [15]. In cases

where one has access to unpaired and unannotated data only

from the two domains, one can use cycle consistency losses

[25, 42, 45] for learning a common embedding between the

two spaces. Often, we are concerned with DA for a particu-

lar task - for example image segmentation or depth estima-

tion. Recent work has shown that using losses from an aux-

iliary task like image segmentation can help regularize the

feature embeddings [15, 37]. These methods are most rele-

vant to our work and future work will investigate how they

fare against our approach of targeted synthetic data augmen-

tation.

Transfer Learning is another way of dealing with dataset

bias [39]. In contrast to such approaches, our method as-

sumes no training data is available from the target domain

(both for the task network and sim2real models), and that

the target task is the same as the source task. Recent work

[1, 19] has also focused on using synthetic data to aug-

ment real datasets for AV perception tasks. Meta-sim [19]

parameterizes scene-grammar to generate a synthetic data

distribution that is similar to real data and is optimized

for a down-stream task and Alhaija et al. [1] augment real

scene backgrounds with synthetically inserted objects for

improved instance segmentation and object detection per-

formance on real datasets. Our method, in contrast, investi-

gates a general purpose, task agnostic approach to enriching

real-world datasets using synthetic data.

3. Deflating Dataset Bias

The main objective of this paper is to test the hypothesis

that targeted synthetic data augmentation can help deflate

inherent bias in large-scale image datasets. For brevity, we

will refer to this hypothesis as H. One way of testing H is to

compare cross-dataset generalization performance of mod-

els trained on the original dataset (real) with models trained

on augmented datasets (real+synthetic). In this paper, three

supervised learning-based computer vision tasks: (i) park-

ing slot detection; (ii) traffic lane detection; and (iii) monoc-

ular depth estimation are used as test-beds for the motivat-

ing hypothesis H, using the following methodology:



1. Simulate images and corresponding annotation using

gaming engines for a diverse set of task-specific noise

factors.

2. Use unsupervised generative modeling based sim2real

methods such as [25, 18, 45] to translate the simulated

images into photorealistic ones, that look like they are

from the training domain.

3. Train task networks with different ratios of real and

simulated data (from Step 1) or real and sim2real data

(from Step 2). The size of the training set is kept con-

stant across all experiments to isolate the improvement

one can obtain by simply training on more data from

the improvement due to deflated dataset bias. Also, the

ratio of synthetic data in the training set was increased

from 0% to 100% in continuous intervals of 10%.

4. Evaluate and compare cross-dataset generalization

performance of all models from Step 3.

Sections 4, 5 and 6 describe the task-specific datasets, ex-

periments and results.

3.1. Revisiting “Name That Dataset”

Torralba et al. [40] investigated the then state of object

recognition datasets using the Name That Dataset experi-

ment in which a 12-way linear SVM classifier was trained to

distinguish between 12 datasets. The results showed strong

signatures for each dataset - indicating inherent bias - de-

spite the best efforts of their creators. We repeat the Name

That Dataset experiment in the era of deep learning with a

ResNet-50 [14] (pre-trained on ImageNet) trained to distin-

guish between five different lane-detection datasets - Apol-

loScape [16], BDD100K [43], CULane [29], Mapillary [28]

and TuSimple1. 6000 images were randomly selected from

each dataset and divided into training, validation and test

sets. In a subsequent experiment, we replace 50% of the

real data in two datasets - CULane and TuSimple - with

sim2real translated images from VAE-GAN models based

off of [25, 18] and trained on unpaired simulated and real

CULane and simulated and real TuSimple images respec-

tively. We chose to apply data augmentation to only these

two datasets as they are also used for the lane detection ex-

periments in Section 5 with readily available sim2real data

on hand. Fig. 1 compares the confusion matrices of the two

classifiers, with and without synthetic data augmentation.

Here, the labels 1, 2, 3, 4 and 5 denote the ApolloScape,

BDD100K, CULane, Mapillary and TuSimple datasets re-

spectively. Consistent with the motivating hypothesis H,

synthetic data augmentation diffuses the strength of the di-

agonal indicating deflated dataset bias.

1https://github.com/TuSimple/

tusimple-benchmark/tree/master/doc/lane_detection

4. Case Study: Parking Slot Detection

The objective of this task is to detect empty parking slots

in images taken from side vehicle cameras (see Fig. 2).

Figure 2: Illustrative example of empty parking slots de-

tected (right) in a parking lot image (left).

4.1. Dataset Description

Real Data: An internal parking dataset of bright day-

time scenarios from two different parking lots (in Dearborn

and Palo Alto) is used as the source of real data for this

task. The Dearborn dataset has a total of 5907 images, for

brevity, we will refer to this dataset as Parking A. The Palo

Alto dataset has 602 images. We will refer to this dataset as

Parking B. Fig. 3a and Fig. 3b show example images from

the Parking A and Parking B datasets respectively to further

motivate the large domain gap between them.

Synthetic Data: Simulated data for this task is generated

using an Unreal Engine2-based simulation pipeline for a

diverse set of noise factors such as different times of the

day, cloud density, shadow intensity/cast location, ground

textures, parking line damage levels and parking density.

The variety of shadow intensities and locations, along with

parking line damage and car density are in stark contrast to

the homogeneity of the parking A dataset. Fig. 3c shows

an example simulated image, visualizing the large domain

gap between the simulated and real data from parking A.

A sim2real VAE-GAN model (based on [25, 18]) trained

on unpaired simulated images and real images from the

Parking A dataset is used to translate the generated simu-

lated data to look photorealistic. Fig. 3d shows the sim2real

translated output for Fig. 3c. Note the realistic ground tex-

tures and lighting effects in Fig. 3d in contrast to Fig. 3c.

For the slot detection experiments in this paper, Mo-

bileNetV2 SSD [35, 27], pre-trained on COCO [24], was

trained and tested on 300 × 300 parking lot images to de-

tect open parking slots, as shown in Fig. 2. The Parking

A dataset was split into a train and test set with 3545 im-

ages and 2362 images respectively. Given the small size of

the Parking B dataset (602 images), it was used for testing

only. Intersection over Union (IoU) of detected slots with

ground truth empty slots is used as the metric for quanti-

tative evaluation. Post training, model checkpoint with the

2https://www.unrealengine.com/en-US/



(a) Real - Parking A (b) Real - Parking B

(c) Simulated (d) Sim2Real Translated

Figure 3: Example images from the real and synthetic data

used for the slot detection experiments.
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Figure 4: Plot of F-measure for slot detection models

trained on a mix of real (Parking A) and synthetic images

(either from simulation or from sim2real GAN) and tested

on real Parking B images. As you move from left to right,

the ratio of synthetic data in the training set increases.

best F-measure for 50% IoU on the Parking A test set is

used for inference. The rest of this section describes the

experiments performed to test our motivating hypothesis H.

4.2. Results

Fig. 4 shows the results of all slot detection models on

the Parking B test set. Notice models trained on a mix

of real and synthetic data (green and blue) significantly

outperform the model trained on real data only (yellow).

Moreover, across all ratios, models trained on a mix of real

Parking A images and sim2real translated images (blue) do

better than the models trained on a mix of real Parking A

images and corresponding simulated images from Unreal

Engine (green). Overall best performance (F-measure of

32.4%) is achieved by the model trained on a mix of real

and GAN data in a 50:50 ratio. Table 1 summarizes the

results from the plots in Fig. 4. For the synthetic data aug-

mentation experiments, results are shown for the best model

in terms of F-measure on cross-dataset testing. Additional

insights into the number of true positives and false positives

for cross-dataset testing with the models from Table 1 are

provided in the Supplementary Material.

Table 1: Summary of results in Fig. 4. Here, A and B denote

the Parking A and Parking B datasets. S denotes simulated

images and G denotes the sim2real translated equivalent of

S. For synthetic data augmentation rows, results are shown

for the best model in terms of F-measure on cross-dataset

testing in green for A + S and in blue for A + G.

Train Test Precision (↑) Recall (↑) F-Measure (↑)

A A 95.1% 87.9% 91.4%

A + S (40%) A 93.8% 87.7% 90.7%

A + G (50%) A 94.2% 86.5% 90.2%

A B 0% 0% 0%

A + S (40%) B 71.8% 6.3% 11.6%

A + G (50%) B 67.0% 21.4% 32.4%

4.3. Experiment Details

As shown in Table 1, MobileNetV2 SSD trained on Park-

ing A results in a F-Measure of 91.4% on the Parking A test

set (1st row). However, the same model when tested on the

Parking B dataset results in a F-measure of 0% (4th row). It

is a well known fact that supervised learning-based methods

do not generalize across different domains. In this particu-

lar case the generalization performance is much worse than

one might expect because of two main reasons: (i) the small

size (relative to large-scale image datasets such as ImageNet

[4] and COCO [24]) and low diversity (all daytime images

from the same parking lot) of the Parking A dataset; (ii)

the large domain gap between the two datasets. Increasing

dropout regularization did not help improve generalization

performance either - F-Measure remained constant at 0%

for varying levels of dropout. The only improvement ob-

served was in the number of false positives (more details

are provided in Supplementary Material).

Thus, these results are consistent with the motivating hy-

pothesis H. Additionally, as shown in the 2nd and 3rd rows

of Table 1, synthetic data augmentation did not adversely

affect the results on the Parking A test set which further

strengthens the case for the use of synthetic data and espe-

cially GAN-translated data to enrich real-world datasets for

supervised learning tasks.

5. Case Study: Traffic Lane Detection

The objective of this task is to detect lane boundaries

in images taken from a front vehicle camera (see Fig. 5).

Pan et al. [29] achieved state-of-the-art performance on this

task with Spatial Convolutional Neural Networks (SCNNs).

Their formulation is used as-is for all the lane detection ex-

periments in this paper.



Figure 5: Lane detection schematic.

5.1. Dataset Description

Real Data: Following Pan et al. in [29], the CULane
andTuSimple3 datasets are used as real-world data sources.
The CULane dataset has 88880 training images, 9675 vali-
dation images and 34680 test images - collected across di-
verse scenarios including urban, rural and highway environ-
ments. The TuSimple dataset has 3268, 358, and 2782 im-
ages for training, validation and testing respectively. Com-
pared to CULane, TuSimple has highway scenes only.

(a1) Real TuSimpleFrame

(a2) GAN Translated Cloudy

(a3) GAN Translated Night

(b1) Real CULaneFrame

(b2) Simulated

(b3) GAN Translated Daytime

Figure 6: Example real, simulated and GAN-translated im-
ages used for lane detection.

Synthetic Data: For augmenting CULane, 88880 day-
time highway images were generated using Unreal Engine
by varying several noise factors such as the number of lanes,
traf�c density, sun intensity, location and brightness, road
curvature, lane marker wear and tear etc. In testing the
original implementation of SCNN, we found that the model
performed poorest when lane lines were faint, in shadows or
occluded by other vehicles. The change in sun intensity, its
location and brightness helped create different shadow ef-
fects around the lane lines, giving the network more diverse
data to train on. Varying traf�c density and road curvature
allowed for different occlusions of the lane line markings
to produce more diverse data. Example synthetic images
generated for this task are shown in Fig.6. Following the
method outlined in Section3, a sim2real VAE-GAN model

3https://github.com/TuSimple/
tusimple-benchmark/tree/master/doc/lane_detection

(based on [25, 18]) trained on unpaired simulated images
and real images from CULane was used to translate the gen-
erated simulated data to look photorealistic. Fig.6 shows
the sim2real translated output for the given simulated im-
age. Note the realistic ground textures and lighting effects
in the GAN image in contrast to the simulated image.
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Figure 7: Plot of F-measure for models trained on a mix
of CULane and synthetic images (from simulation or from
sim2real VAE-GAN) and tested on TuSimple images.

5.2. Experiment Details

For the lane detection experiments in this paper, two
types of experiments were performed:
Experiment I: Following Section3, SCNN [29] is trained
on a mix of CULane and synthetic images and tested on
TuSimple. For results from SCNN trained on a mix of
TuSimple and synthetic images and tested on CULane,
please refer Supplementary Material. Models are trained
on 800� 288 images. For cross-testing, TuSimple images
are padded (along width) to match the training resolution
of 800� 288while simultaneously maintaining the original
aspect ratio. IoU of detected lane lines with ground truth
lane lines is used as the metric for quantitative evaluation.
Experiment II: In addition to the experiments described in
Section3, given that the TuSimple dataset has only day-
time images while the CULane dataset has a diverse set
of weather and lighting conditions (refer Section5.1), we
performed an additional set of experiments for this task to
further test the motivating hypothesisH particularly in sce-
narios where synthetic data augmentation addresses the spe-
ci�c bias of weather and lighting effects. All synthetic data
was generated by applying day-to-night and clear-to-cloudy
VAE-GAN models (based off of the architecture in Ref.
[25] and trained on BDD100K [43]) to TuSimple images.
Fig. 6 shows an example GAN night and cloudy image.
SCNN was trained on512� 288images for this set of ex-
periments and tested on downsized and then padded (along
height) versions of CULane images that match the training
resolution of512� 288while simultaneously maintaining
the original aspect ratio.












