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Abstract

Target encoding is an effective technique to boost perfor-

mance of classical and deep neural networks based classi-

fication models. However, the existing target encoding ap-

proaches require significant increase in the learning capacity,

thus demand higher computation power and more training

data. In this paper, we present a novel and efficient target

encoding method, Inter-class Ambiguity Driven Multi-hot

Target Encoding (MUTE), to improve both generalizability

and robustness of a classification model by understanding

the inter-class characteristics of a target dataset. By evaluat-

ing ambiguity between the target classes in a dataset, MUTE

strategically optimizes the Hamming distances among target

encoding. Such optimized target encoding offers higher clas-

sification strength for neural network models with negligible

computation overhead and without increasing the model size.

When MUTE is applied to the popular image classification

networks and datasets, our experimental results show that

MUTE offers better generalization and defense against the

noises and adversarial attacks over the existing solutions.

1. Introduction

Artificial intelligent systems require efficient deep neural

network design methodologies that can learn semantics of

the training dataset, generalize well, and resist adversarial

attacks. However, existing methods have been shown to

learn dataset bias [30, 29, 24], and failed to deliver suffi-

cient generalization capability. Poor generalization makes

models unpredictable, causes potential ethical issues, and

mis-guides neural network design [36, 10]. To tackle the gen-

eralization problems, target encoding has been studied for

Figure 1. TSNE [25] visualizations of a ConvNet (refer Section 4.2

for architecture) with one-hot encoding trained on MNIST (a, c)

and a ConvNet with MUTE trained on MNIST (b, d). Classes that

are well-separated in features space in models trained with one-

hot encodings (a), remain well separated in models trained with

MUTE (b). However, classes not-well-separated in features space

in models trained with one-hot encodings (c), get well-separated in

feature space when trained with MUTE (d).

both conventional machine learning and deep neural network

architectures and proven to be highly effective [2, 9, 15, 4].

Yet, many prior works in target encoding require a long en-

coding sequence (which increases the model size) and fail

to tailor the encoding for a given task or dataset. Further-

more, they do not investigate the effects of different target

encodings against noisy data and adversarial attacks.

In this work, we propose MUTE, a systematic approach

to make deep learning models generalize better by optimiz-

ing the target encoding [2, 9, 15, 4]. Unlike the conventional

one-hot method where the Hamming distance between la-

bels is fixed at 2, MUTE generates a multi-hot encoding by

exploiting the expression power of a given output encoding

length. MUTE and one-hot encoding have the same number

of output encoding length. So, models trained from both

methods have same size, however MUTE effectively utilizes

the available learning capacity.

MUTE strategically extracts the ambiguity between pairs

of classes in a dataset, and leverages on that information to
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Figure 2. MUTE generation. The inter-class ambiguity for a given data is used to compute weights between classes. These weights are used

in Algorithm 1 to optimally assign target codes to classes. The chosen set of MUTE are highlighted in green color. Details are in Section 3.

obtain a multi-hot encoding such that semantically closer

classes are forced to be further apart in the label space in

terms of the Hamming distance. MUTE ensures that Stochas-

tic Gradient Decent (SGD) algorithm extracts distinctive

features between two easy-to-confuse classes, which in turn

reduces the chance of mis-prediction under noisy and noise-

less conditions. Learning good feature representations also

help to utilize the features for any downstream tasks [35].

An intuitive explanation is that MUTE makes the Ham-

ming distance between labels larger (and controllable) than

one-hot encoding. With one-hot encoding, a large error in a

single logit could alter the classification result. Whereas in

MUTE, a large error in a single logit alone would not alter

the result, since there are still k − 1 more logits that has to

agree on the decision (like error correcting codes). This, we

conjecture, enables MUTE to learn separable features.

Figure 1 illustrates the high-level idea in MUTE by

showing a case where two classes with higher-level of mis-

classification are assigned to the multi-hot encodings with a

larger Hamming distance. In order to find such high-quality

encoding in MUTE, we formulate the encoding generation

as a subgraph isomorphism problem [32] and develop effi-

cient heuristics to solve the combinatorics. Figure 2 gives

an overview of the MUTE generation which is discussed in

detail in Section 3.

We evaluate MUTE by training multiple convolu-

tional neural network (CNN) architectures with benchmark

datasets such as MNIST [23], CIFAR-10 [19] and ICON-

50 [13], and testing on a validation set which consists of

original, noisy (i.e., negative of the original images, Gaus-

sian blurred images, images with salt-and-pepper noise) and

adversarial images similar to real-world conditions. Our re-

sults show that the models built by MUTE have comparable

accuracy on original clean images, yet delivered better test

accuracy against noisy images than the traditional one-hot

encoding and prior work, especially when the learning ca-

pacity of a model is limited. Our contributions in MUTE in-

clude the following: a) novel target encoding scheme based

on inter-class ambiguity in a given dataset and weighted

Hamming distance, b) effective heuristics for subgraph iso-

morphism in the target encoding context, c) study the impact

of MUTE on various datasets and CNN architectures, and d)

comprehensive study on the effects of our target encoding

scheme on both noisy and adversarial images.

2. Related Work

In this section, we review various encoding techniques

used in classification problems.

Multi-class Single-label: Each sample in a dataset be-

longs to only one class. One-hot (1-of-N) encoding is com-

monly used in this case. One-hot encoding represents the

target labels numerically without any semantic meaning and

is prone to noisy inputs or adversarial attacks [13, 28, 26, 11].

MUTE is a multi-bit code that takes dataset semantics into

account.

Multi-class Multi-label: This is the superposition of

multiple one-hot encodings for the case where a sample

belongs to multiple semantic classes [15, 4]. This contrasts

with multi-hot encoding (i.e. MUTE) where a sample be-

longs to only one class, but represented in multiple bits.

Label Embedding: This is a technique to embed target

labels with meta information like attributes [2] or hierar-

chies [31] to capture various structures of the output space at

the cost of additional labelling and expert knowledge [9, 15].

In some cases, the embedding is jointly learned from input

and output data [3, 33]. MUTE does not need any addi-

tional meta-data but leverages on the dataset semantics for

its performance boost.

Target Encoding: These are methods that explore alter-

natives to one-hot encoding [18, 7, 22, 21, 5, 27], similar to

MUTE. Yet, the key innovations in MUTE over them are as

follows: a) MUTE has the same encoding length as one-hot

unlike [18], and could be used as a drop-in-replacement of
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any existing one-hot encoding, b) MUTE strategically opti-

mizes the encoding w.r.t. the given inter-class characteristics.

Target Encoding in the context of Error-Correcting Out-

put Codes (ECOC) has been extensively studied in [7, 22,

21, 5, 27] where ECOC concept is applied to represent out-

put labels. While these approaches benefit from the error-

correcting capability (as in MUTE), they are not optimized

for a given task or dataset. Unlike MUTE, they do not cap-

ture the inherent characteristics of the dataset, specifically

the relationships between classes, thus not necessarily in-

creasing the predictive power of a network model. For exam-

ple, [35] used Hadamard codes to learn deep representations

and showed that such presentations are more separable than

the ones learned with one-hot encodings, but failed to ex-

tract/utilize the useful information from the dataset.

Also, there is recent interest in exploring alternatives to

one-hot encoding for multi-class classification problems with

a focus on improving the performance against adversarial

examples. In the multi-way encoding method [18], the au-

thors proposed to use datatset-oblivious Random Orthogonal

(RO) encodings [18]. RO encodings are in real-numbers and

have larger encoding dimension than the number of output

classes (which increases the number of trainable weights),

whereas MUTE has the same encoding dimension as the

number of output classes. Unlike [18], MUTE does not

require additional adversarial training.

3. Inter-class Ambiguity Driven Multi-hot Tar-

get Encoding

We propose a new target encoding system, MUTE, where

multiple output bits are activated. For an N−class classifi-

cation problem with MUTE, the output layer has N−bits,

out of which K bits are 1s (hereafter referred to as K−hot),

where K > 1. The specific target codes are generated using

Algorithm 1. Each output bit has a bounded non-linear acti-

vation function and trained such that the binary cross entropy

loss between the prediction and target code is minimized.

When a deep neural network is trained with back-

propagation, it is being optimized to learn features that distin-

guish classes. When it is able to learn distinct features, these

classes are well separated in feature space and have a low

probability of mis-prediction (i.e., Figure 1(a), (b) and (d)).

However, when a network is not able to learn distinguish-

able features, these classes are not well separated, which

may result in low accuracy (i.e., Figure 1(c)). The core idea

of MUTE is to identify such ambiguous classes and assign

target codes that have large Hamming distances between

them. By training with such target codes, the network is

optimized to learn features to separate ambiguous classes.

Having clear decision boundaries between classes reduces

classification error and improves performance against noisy

and adversarial inputs.

The neural network training using MUTE starts by com-

puting the ambiguity between classes in a given dataset,

which is then quantified into weights. After that, a set of

target codes are generated such that the Hamming distances

among all classes are maximized, and a pair of ambigu-

ous classes (i.e., classes with higher weights between them)

are assigned codes with larger Hamming distance. This in-

creases the distance between classes in the feature space as

illustrated in Figure 1, thereby reducing the probability of

mis-prediction, enhancing the generalization of the classi-

fier, and encouraging a model to learn the semantics rather

than spatial correlation among pixels. Finally, any chosen

deep neural network could be trained and tested with MUTE

without increasing the number of parameters. MUTE gen-

eration is illustrated in Figure 2, which will be discussed in

the following sections.

3.1. Generating Weights For MUTE

The objective of this step is to quantitatively identify am-

biguous classes and assign weights by the level of ambiguity.

Note that this step is optional, and can be skipped by setting

Wij = 1 in Equation 1. However, using the weights gener-

ated by this step gives better results as shown in Section 4.2.

A confusion matrix (CM ) is a method to represent inter-

class characteristics. CM is essentially a N ×N matrix for

a N−class dataset with the elements being the confusion

metric between a pair of classes as shown in Figure 2 (top-

left). CM can be obtained by inferencing using a validation

set on an already trained target model. We use the method

proposed in [17] to generate CM where the confusion-level

between classes of a dataset can be determined by recon-

structing data for each class using an autoencoder trained

using class Ci and determining the reconstruction error for

every other class Cj in the dataset.

Once CM is obtained for a given dataset, MUTE can

convert it into weights to be used in Section 3.2. [17] pro-

vides the reconstruction error, rij , between two classes Ci

and Cj in CM , which is small for ambiguous classes and

large for unambiguous classes. The inter-class ambiguity

between classes Ci and Cj can be inferred from CM(i, j)
and CM(j, i). First, the diagonal of CM (self-error val-

ues) are subtracted. Since, CM is not symmetric, but we

need only one ambiguity metric between classes Ci and

Cj , we choose the minimum error between the upper and

lower triangles of CM to consolidate and to give best-case

scenario for ambiguity. In order for the Fast-convergence

algorithm (discussed in Section 3.2) to focus separating on

ambiguous classes, we remove rij from unambiguous pairs

of classes by eliminating rij greater than threshold τ where

τ = mean(rij) + α · std(rij). The remaining rij are in-

versely scaled to obtain weights Wij where Wij = β/rij .

The outcome of this process is illustrated on the top-left of

Figure 2.
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3.2. Generating MUTE

The next step in MUTE is to generate and assign a code

to each class. Our goal is twofold: a) to generate a code-set1

that maximizes the Hamming distances among all pairs of

codes, and b) to assign a pair of codes with a larger Ham-

ming distance to more ambiguous classes. In this light, we

put the total minimum Hamming distance and the Hamming

distances between codes with weights (obtained from Sec-

tion 3.1) together for our objective function, Equation 1, to

be maximized. Since weights indicate inter-class ambiguity,

maximizing the objective function assigns a larger Hamming

distance to a pair of more ambiguous classes.

WminHmin +
N−1∑

i=0

N∑

j=i+1

WijHij (1)

where Wmin denotes the weight of the minimum Hamming

distance Hmin, N denotes the total number of classes, Wij

and Hij denote inter-class ambiguity and the Hamming dis-

tance between class i and class j, respectively. N and Wij

are given constants (i.e., Wij is computed as in Section 3.1).

Wmin should be larger than Wij because maximizing Hmin

drives the overall model performance. We set Wmin as the

number of pairs of classes, N(N − 1)/2, in our experiments.

In one-hot encoding, Hmin is fixed at 2, while Hmin is

maximized in MUTE.

Figure 2 shows an example of possible outcomes from

the optimization step. With one-hot encoding (bottom-center

in red), all possible solutions have the same objective value,

which is the lowest among the solutions illustrated. Figure 2

also shows the difference between the optimal and a possible

solution in terms of the Hamming distance and the generated

code. The optimal solution picks and assigns the codes to

the four classes such that more ambiguous classes (i.e., 2 vs.

3 with weight 0.9) are assigned a pair of codes with a larger

Hamming distance.

Optimization in Figure 2 can be formulated as an Inte-

ger Linear Programming (ILP) due to the discrete nature of

the encoding itself, and solved by a commercial package.

However, it requires a large amount of computation time

to find an optimal solution because it explores the solution

space in an exhaustive branch-and-bound manner. Yet, one

useful observation on this combinatorics is that the distri-

bution of Hamming distance values are very discrete and

narrow, and has high-density only on a few integer values.

Therefore, we expect that there should be a number of possi-

ble solutions that have the same objective values. In other

words, this maximization problem has a wide and sparse

solution space, allowing us to develop an efficient heuristic,

Narrow-and-converge approach on top of Fast-convergence

1Here we use the term code to denote the bits assigned for a single class,

and the term code-set to indicate the collection of codes that are used to

represent all the classes in the dataset.

algorithm (Algorithm 1), which is inspired from [8] and

finds a solution to Equation 1 significantly faster than ILP

optimizations.

Narrow-and-converge approach narrows down the solu-

tion space and finds a solution with Fast-convergence algo-

rithm. First, Equation 1 without weights (i.e., Wij = 1) is

optimized with ILP for a short time until it narrows down

the solution space. The time limit is a user parameter that de-

pends on the given number of hot bits(K) and total bits used

to represent the classes in the output layer (N ) (number of

total bits and classes are same in our case). In our setting, it

was sufficient to run ILP for 10 seconds on 4−hot codes for

10−classes, and 3 minutes for 20−hot codes for 50−classes.

Second, we capture the intermediate code-set from the first

step and shuffle them to obtain a number of objective val-

ues of Equation 1 with weights. We pick the code-set that

maximizes the objective value to initialize Algorithm 1.

The Fast-convergence algorithm (Algorithm 1) visits all

the codes in the code-set in a random permutation. Each time

a code is visited, a candidate pool is generated by swapping

a randomly selected 0 and 1 until the number of candidates

becomes NumCand. The number of bits to swap is a user

parameter, which defines a distance between the code and its

candidate. Having a longer distance enables Algorithm 1 to

explore a wider solution space. Since our goal was to quickly

converge to one of the optimal solutions, we minimize the

distance between the code and its candidate by swapping

only one bit. Therefore, the maximum number of candidates

becomes the number of zeros × the number of ones.

The algorithm picks the candidate that maximizes Equa-

tion 1 over the candidate pool, and replaces the code with

the chosen candidate even if the chosen candidate is worse

than the current one. This procedure is repeated until every

code is visited. Then, it starts over from the best code-set

observed from the whole cycle. The iteration is stopped

when the objective function does not improve for NumIter
cycles. As a result of starting over from the best code-set of

the previous cycle, and the algorithm keeps finding a better

solution. The main difference between ILP optimization

and Narrow-and-converge approach is the search strategy.

ILP takes a breadth-first search approach to find an optimal

solution, whereas our approach takes a depth-first search

strategy. Figure 3 describes how this approach maximizes

objective value over iterations in two cases, including 8−hot

codes for 20−classes and 10−hot codes for 50−classes.

3.3. Training Method

MUTE could be used with any CNN model with no

changes to the architecture. The only change required is

to replace the softmax layer with a sigmoid layer. The CNN

is trained by back-propagating the binary cross entropy loss

at each bit. CNN is optimized by SGD with momentum.

An overview of training a CNN with MUTE is given in
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Algorithm 1 Fast-convergence Algorithm

Input: codesetinit
Output: codesettarget
Parameters: NumIteration,NumCandidates

1: procedure FASTCONVERGENCE(codesetinit)
2: codesettarget ← codesetinit
3: while not StopCondition do ⊲ StopCondition: no improvements for NumIteration
4: codesetnew ← codesettarget
5: while not every code in codesetnew is updated do

6: codetarget ← pick(codesetnew) ⊲ randomly picks a codetarget from codesetnew
7: candidates← generate(codetarget) ⊲ generate NumCandidates of candidates

8: codecandidate ← find(candidates) ⊲ find the best candidate

9: replace(codetarget, codecandidate) ⊲ replace the codetarget with the best candidate

10: if hamm dist(codesetnew) > hamm distbest then

11: hamm distbest ← hamm dist(codesetnew) ⊲ the best objective value

12: codesettarget ← argmax
codeset

(hamm distbest) ⊲ update the target code-set

13: return codesettarget ⊲ the optimized target code-set

Figure 3. Convergence trend of Fast-convergence algorithm. Exam-

ples of (a) 8−hot for 20−classes, and (b) 10−hot for 50−classes.

Figure 4(a). In this method, the number of neurons in the

CNN and the computational complexity is the same as using

one-hot target encoding.

3.4. Inferencing Method

As shown in Figure 4(b), an input image is forward prop-

agated through the trained model. The output of the sig-

moid layer is thresholded by setting all but the top − K
activated bits to 0, where K is the number of hot bits used

in the MUTE. Then, the Euclidean distance between the

thresholded output and the code-set is computed. The label

corresponding to the closest MUTE code is the classifica-

tion result. We experimented with binarizing the top −K
output, computing L1 distance between output code and the

code-set, and setting the label to be the closest code’s label

(any ties were broken at random). However, empirically we

found that keeping the top−K values, setting the rest to 0,

and computing the euclidean distance to be the best method

as L2 distance takes advantage of the higher dimensional

space.

In the one-hot case, the model has to activate only 1
bit to deliver a classification. However, in the proposed

method, the model has to activate K output bits to deliver

(a)

(b)

Figure 4. Overview of the (a) training and (b) inferencing methods

a classification. Even if one or two bits flip due to noise,

it may not change the nearest label. Hence, MUTE can

make a neural network robust enough to produce the correct

prediction despite noise. Computing Euclidean distance

between the set of target encoding may have a potential

impact on inference latency. The latency could be minimized

by optimizing the Euclidean distance computation using a

fast XOR method.

4. Results & Discussion

4.1. Generation of MUTE

We compared our Narrow-and-converge approach with

ILP optimization using CPLEX [1] in terms of the solu-

tion quality and computation time (Table 1). We broke-
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down ILP optimization into two approaches: optimization

with weights, and optimization without weights followed

by shuffling with weights. The experiment was to generate

10−bits with 4−hot MUTE codes for 10 classes. Our ex-

periment environment includes 56 CPU cores with 120GB

RAM. CPLEX ran with parallel threads utilizing 32 cores in

the experiment.

Optimization approach Obj. value Min. HD Compute time

10−bit

4−hot

Narrow-and-converge 450.21 4 90sec
CPLEX (w/ weights) 450.31 4 > 11hrs
CPLEX (w/o weights) 447.75 4 > 50hrs

Table 1. The proposed Narrow-and-converge approach found the

same quality solution, and reduced run-time by more than 99.75%

compared to CPLEX. HD: Hamming Distance

For the 10−bits/4−hot case with weights derived from

MNIST dataset, Narrow-and-converge approach reduced the

time cost by more than 99.75%, while it performs as good

as ILP optimization. ILP with weighted objective function

takes more than 11 hours to reach an objective value of

450.31. We were not able to run more than 11 hours due to

memory limitations. Solving unweighted objective function

for 50 hours followed by shuffling with weights reaches an

objective value of 447.75.

Also, it took 46.3 minutes to generate MUTE for the

50−bit/20−hot case (N = 50 and K = 20). It is possible

to generate MUTE for hundreds of classes. But the memory

and compute needed to run ILP even for a short duration with

1000s classes is prohibitive. The worst case time complexity

of ILP is O(2n). Due to limitations of ILP, we are unable to

generate MUTE on datasets with a large number of output

classes, such as ImageNet [6]. Yet, most classification sys-

tems deployed in the real-world are specialized systems that

deal with hundreds of classes at most. Hence, we believe a

robust encoding system such as MUTE is a useful method.

Whereas, methods such as adversarial training to achieve

robustness is not sustainable as the space of noisy data is

much larger than that of clean data.

4.2. Performance of MUTE

Datasets. We used the MNIST [23], CIFAR-10 [19] and

ICON-50 [13] datasets for experiments. MNIST is a dataset

of handwritten digits. CIFAR-10 is a dataset of 32×32 color

images belonging to 10 classes. ICON-50 is a set of 10, 000
color icons of size 32 × 32 belonging to 50 classes and

collected from various companies. The icons from different

companies exhibit different styles and versions. This is a

challenging dataset because of style differences among icons

collected from different companies, and class imbalance of

icons from companies.

We used the standard train/test split for MNIST and

CIFAR-10 datasets. For ICON-50, 80% of images in each

class were randomly assigned to the train set and rest were

allocated to the test set. In addition to the original test set,

we created noisy and adversarial versions of the original test

sets as shown in Figure 5 to evaluate the robustness of the

trained models. Negative images [14] have the same spatial

structure as the original images but are in a diagonally op-

posite color space. These images are useful to evaluate if

the trained models have learned the semantic structure of the

dataset or merely memorized the spatial pixel correlations in

the training images. Typical noisy images such as Gaussian

blurred images with σ = 1 and 2 and Salt & Pepper noise

at 2% and 5% were created. We also created adversarial

images with Fast Gradient Sign Method (FGSM) [11] with

ǫ = 0.05, 0.1 and 0.2. This creates a comprehensive test set

that evaluates models for their generalization and robustness.

CNN Architectures. We utilized a wide range of CNN

architectures in our experiments. MNIST dataset was trained

and tested with two CNNs: LeNet [23] and ConvNet. Con-

vNet has 2 convolutional layers with 5× 5 kernel size, fol-

lowed by a fully connected layer with 50 neurons and a final

sigmoid layer. CIFAR-10 and ICON-50 datasets are trained

and tested with AlexNet [20], DenseNet [16], ResNet [12],

and ResNeXt [34] architectures. DenseNet has depth of 40
and growth rate of 24. ResNet has depth of 20. ResNeXt has

depth of 29 and cardinality of 8.

Experiments. The CNN architectures were trained with

one-hot encoding, Hadamard encoding, and MUTE for dif-

ferent configurations of hot bits and weights on original

images in the training datasets for 200 epochs starting from

random initialization. The same set of hyper-parameters

were used across the different target encodings to eliminate

the impact of hyper-parameter choice on the model perfor-

mance and for fair comparison. The trained models were

then tested with original, noisy and adversarial images in the

test set. We did not augment MNIST, however augmented

CIFAR-10 and ICON-50 data using randomized affine trans-

formations, color jitter and cropping in random order. The

augmentation parameters were chosen by trial and error. The

batch size was 128. CNNs were optimized using SGD with

0.9 momentum, 0.0001 weight decay, and 0.1 initial learning

rate. All experiments were conducted on an Intel(R) machine

with Xeon(R) CPU E5-2680 v4 at 2.40 GHz frequency. It

has 504 GB RAM and 56 CPU cores. The machine has 4
Tesla P100-PCIE GPUs. Models were trained using only 1
GPU at a time.

The results of our experiments are shown in Fig-

ures 6, 7, 8, 9 and Table 2. In the legends, ”MUTE K−hot”

shows the proposed method with K−hot bits and without

ambiguity weight generation by setting Wij = 1 in Equa-

tion 1, and ”MUTE Weighted K−hot” shows the proposed

technique with K−hot bits and ambiguity weights generated

to model the distance between the ambiguous classes.

In our experiments, we compared MUTE against the

conventional one-hot encoding and the state-of-the-art

Hadamard target encoding methods. Hadamard encod-

4326



Figure 5. Images from the various test sets. The images in the first row is from the ICON-50 [13] dataset, second row is from the

CIFAR-10 [19] dataset and the third row is from the MNIST [23] dataset. (a) Original images. (b) Negative [14] of the original images. (b -

d) Original images blurred with Gaussian kernels of σ = 1 and σ = 2 respectively. (e - f) Salt & pepper noise added to the original images

at 2% and 5% respectively. (g - l) Adversarial images with FGSM [11] noise with ǫ = 0.2, 0.1, 0.05, 0.01, 0.005 and 0.001 respectively.

Figure 6. MUTE with LeNet and ConvNet architectures trained on MNIST data improves the one-hot average test accuracy by 2.8% and

7.1% respectively. Whereas Hadamard target encoding improves one-hot performance only by 1.7% and 3.5%.

ings (details in [35]), are derived from a Hadamard Matrix,

H ∈ {+1,−1}m×m such that HHT = mI where I is an

identity matrix. In this method, the model size is signifi-

cantly increased by adapting to the target code lengths of 63,

127 or 255. Also, code assignment does not take inter-class

ambiguity in to account. In addition to directly comparing

with Hadamard encoding results in [35], we used Hadamard

codes with our train and test methods. Hadamard results are

shown as H-63, H-127 and H-255 in the Figures 6 and 7.

Figure 6 shows the test accuracy of LeNet and ConvNet ar-

chitectures with different target encodings trained on original

images in the MNIST training dataset and tested on original,

noisy and adversarial versions of the MNIST test dataset.

The barplots illustrate the central tendency for different test

datasets and uncertainty (error bars) for test images impacted

by varying amounts of Gaussian blur, Salt & Pepper noise

and FGSM. The proposed MUTE method has better average

test performance than one-hot encoding or Hadamard target

encoding (H-63, H-127, and H-255). The best test accu-

racy on original images reported by [35] using Hadamard

Codes on MNIST is 85.47% using direct classification with

H-255. The authors [35] use a CNN architecture with 3
convolutional layers, 1 locally connected layer and 2 fully-

connected layers. The proposed MUTE method improves

this result by 13.61 percentage points on average.

For n classes, [18] uses n vectors of length l (l = 2000 for

MNIST) whereas MUTE codes are n bits. Also, there is no

notion of inter-class ambiguity in [18]. The model ARO [18]

CNN Arch.

Target Encoding

1-hot
MUTE

15-hot 20-hot Weighted 15-hot Weighted 20-hot

AlexNet 21.85 33.78 34.45 32.72 32.83

DenseNet 31.02 34.07 33.72 31.77 34.95

ResNet 29.87 32.31 31.56 32.21 33.31

ResNeXt 34.68 34.86 34.66 34.51 34.76

Table 2. Average test accuracy on noisy data of the ICON-50 sub-

type robustness experiment in [13].

tested with FGSM attacks of = 0.2 achieves 88.7% while

various MUTE encodings achieve more than 98% accuracy.

CNN architectures with various MUTE were trained

on original images in the CIFAR-10 training dataset and

tested on original and noisy versions of the CIFAR-10 test

dataset as shown in Figure 7. The proposed MUTE method

with AlexNet, DenseNet, ResNet and ResNeXt architec-

tures improved average test accuracy over one-hot encod-

ing. However, choice of architecture seems to be important

when using Hadamard encodings, as performance dropped

when using DenseNet and ResNeXt architectures. MUTE

is particularly useful when a less robust architecture such as

AlexNet [13] is used.

We trained AlexNet, DenseNet, ResNet, and ResNeXt ar-

chitectures on an ICON-50 training set that contained images

from all 50 classes and tested on original and noisy images

in the test set (Figure 8). We did not include Hadamard

coding for ICON-50 as it was not provided by the origi-

nal paper. MUTE increased one-hot encoding performance

0.3% to 42.29% with AlexNet, the least robust CNN [13],
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Figure 7. MUTE encoding with AlexNet, DenseNet, ResNet and ResNeXt architectures trained on CIFAR-10 data improves the one-hot

average test accuracy by 41.5% , 4.2%, 3.6% and 3.8% respectively. Whereas Hadamard target encoding improves one-hot performance

only when used with AlexNet and ResNet architecture. When used with DenseNet and ResNeXt, the average test accuracy is worse than

using one-hot encoding.

Figure 8. AlexNet, DenseNet, ResNet, and ResNeXt architectures trained with various MUTE on ICON-50 data and tested with the original

and noisy testsets improved average test accuracy over one-hot by 42.29%, 0.37%, 4.70%, and 8.12% respectively.

Figure 9. Features learned with MUTE are well-separated and

condensed in multi-dimensional space such that model maintains

separation even when tested with noisy data. In comparison, fea-

tures learned by one-hot encodings lack isolation in feature space.

benefiting the most from MUTE. In another experiment us-

ing ICON-50 dataset, we trained the CNN architectures on

all original images belonging to the sub-type robustness ex-

periment in [13]. Then tested on the noisy versions (negative,

Gaussian blurred, and Salt & Pepper noise) of the held-out

sub-types. Table 2 lists the average test accuracy on the noisy

test sets. MUTE consistently obtains higher average test ac-

curacy for any number of hot bits or weighted configuration.

We used the TSNE [25] algorithm to visualize ConvNet and

AlexNet models trained with one-hot and MUTE on MNIST

and CIFAR-10 datasets, respectively. Figure 9 shows that

models trained with one-hot encodings fail to learn distin-

guishable features that give rise to good decision boundaries.

Thus, noisy data is easily mis-predicted. On the other-hand,

condensed features learned by MUTE enable clear decision

boundaries even when faced with noisy data.

MUTE improved average test accuracy on various CNN

architectures in the range of 42.29% to 0.37% (median =

4.45%). All experiment timing were recorded. However,

there was no statistically significant difference between one-

hot and MUTE train and inference times. We propose to use

MUTE during the design phase when it is hard to gauge if a

CNN architecture has sufficient learning capacity for a given

task. A key benefit of using MUTE is that it would extract

more robust features and better utilize the given learning

capacity in the CNN. As seen in Figure 6, the performance

of MUTE relative to one-hot encoding is more stronger on a

weaker CNN such as ConvNet, than on a stronger CNN as

LeNet. When a CNN has weak structure but has sufficient

learning capacity, MUTE better utilizes the excess neurons to

learn more predictive features than one-hot encoding. Even

with limited number of neurons (e.g., ConvNet), MUTE still

delivers the better accuracy and robustness than compara-

tive methods. Overall, our results are encouraging because

MUTE learns robust features for any given CNN architecture

which could lead to a smaller, thus faster model at the end

of CNN design exploration.
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