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Abstract

Landmark detection algorithms trained on high resolu-

tion images perform poorly on datasets containing low res-

olution images. This degrades the performance of facial

verification, recognition and modeling that rely on accurate

detection of landmarks. To the best of our knowledge, there

is no dataset consisting of low resolution face images along

with their annotated landmarks, making supervised train-

ing infeasible. In this paper, we present a semi-supervised

approach to predict landmarks on low resolution images by

learning them from labeled high resolution images. The ob-

jective of this work is to show that predicting landmarks

directly on low resolution images is more effective than the

current practice of aligning images after rescaling or super-

resolution. In a two-step process, the proposed approach

first learns to generate low resolution images by modeling

the distribution of target low resolution images. In the sec-

ond stage, the model learns to predict landmarks for target

low resolution images from generated low resolution im-

ages. With extensive experimentation, we study the impact

of the various design choices and also show that prediction

of landmarks directly in low resolution, improves perfor-

mance on the critical task of face verification in low reso-

lution images. As a byproduct, the proposed method also

achieves competitive land mark detection results for high

resolution images, with a single U-Net.

1. Introduction

Convolution Neural Networks (CNNs) have revolution-

ized the computer vision field, to the point that current sys-

tems can recognize faces with more than 99.7% accuracy or

achieve detection, segmentation and pose estimation results

up to sub-pixel accuracy. However, CNN-based methods

assume access to good quality images. ImageNet [23], CA-

SIA [31] or 300W[24] datasets all consist of high resolu-

tion images. As a result of domain shift much lower perfor-

mance is observed when networks trained on these datasets

Figure 1: Inaccurate landmark detections on LR images. We

show landmark predicted by different systems. (a) MTCNN and

(b) 2D-FAN are not able to detect any face in the LR image. (c)

Bilinear upsampling. (d) Output from a network trained on down-

sampled version of HR images. (e) Landmark detection using

super-resolved images. ∗ Results from the proposed method in

Figure 6.

are applied to images which have suffered degradation due

to intrinsic or extrinsic factors. In this work, we address

landmark localization in low resolution images and evalu-

ate its impact on face verification. Although, we use face

images in our case, the proposed method is also applicable

to other tasks, such as human pose estimation. Through-

out this paper we use HR and LR to denote high and low

resolutions respectively.

Facial landmark localization, also known as key-point or

fiducial detection, refers to the task of detecting specific

points such as eye corners and nose tip on a face image.

The detected key-points are used to align images to canon-

ical coordinates for further processing. It has been exper-

imentally shown in [2], that accurate face alignment leads

to improved performance in face verification. Though great

strides have been made in this direction, mainly address-

ing large-pose face alignment, landmark localization for LR

images, still remains an understudied problem, mostly be-

cause of the absence of large scale labeled dataset(s). To the

best of our knowledge, Semi-Supervised Landmark Detec-

tion (S2LD) is the first attempt to address landmark local-

ization directly on LR images.

Main motivation: In Figure 1, we examine possible sce-
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narios which are currently practiced for LR images. Fig-

ure 1 shows the predicted landmarks when the input image

size is less than 32 × 32 pixels. Typically, landmark de-

tection networks are trained with 224 × 224 crops of HR

images taken from AFLW [13] and 300W datasets. Dur-

ing inference, irrespective of resolution, the input image is

re-scaled to 224 × 224. We deploy two methods: MTCNN

[33] and 2D-FAN [4], which have detection and localiza-

tion built in a single system. In Figures 1(a) and (b) we see

these networks fail to detect face in the given image. Figure

1(c), shows the output when a Landmark Detector network

trained on HR images (HR-LD) is applied to a re-scaled

LR one; It is important to note that this network achieves

state of the art performance on AFLW and 300W test sets.

A possible solution is to train this network on sub-sampled

images as a substitute for LR images. Figure 1(d) shows

the output of one such network. It is evident from these

experiments that networks trained with HR images or sub-

sampled images are not effective for genuine LR images. It

can also be concluded that sub-sampled images are unable

to capture the distribution of real LR images.

Super-resolution is widely used to resolve LR images to

reveal more details. Significant developments have been

made in this field and methods based on encoder-decoder

architectures and GANs [10] have been proposed. We

employ two recent deep learning based methods, SRGAN

and ESRGAN [27] to resolve a given LR image. Figure

1(e) shows the result when super-resolved image is passed

through HR-LD. It can be hypothesized that possibly, the

super-resolved images do not lie in the same space of im-

ages using which HR-LD was trained and this result can be

generalized to other state of the art methods. Super reso-

lution networks are trained using synthetic LR images ob-

tained by down-sampling the image after applying Gaus-

sian smoothing. In some cases, the training data for super-

resolution networks consists of paired LR and HR images.

Neither of the mentioned scenarios is effective in real world

situations.

Contribution: Different from these approaches, S2LD
is based on the concept of ‘learning from synthetic data’.

This work aims to show that landmark localization in LR

can not only be achieved, but it also improves the perfor-

mance over the current practice. To this end, we first train a

deep network which generates LR from HR images and tries

to model the distribution of target LR images. Since, there is

no publicly available dataset, containing LR images along

with landmark annotations, we take a semi-supervised ap-

proach and train an adversarial landmark localization net-

work on the generated LR. We design a Heatmap confi-

dence discriminator (with three sets of inputs) in a way that

to be fooled, the heatmap generator learns the structure of

the face in the target unlabeled LR dataset. We perform ex-

tensive set of experiments explaining all the design choices.

In addition, we also propose a new state of the art landmark

detector (HR-LD) for HR images.

2. Related Work

Being one of the most important pre-processing steps

in face analysis tasks, facial landmark detection has been

a topic of immense interest among computer vision re-

searchers. MTCNN [34] and KEPLER [14] proposed meth-

ods based on direct regression. The CNNs in MTCNN

and KEPLER act as non-linear regressors and learn to di-

rectly predict the landmarks. Both works are designed

to predict other attributes along with key-points such as

2D pose, visibility of key-points, gender and many oth-

ers. Hyperface [22] has shown that learning multiple tasks

using a single network does in fact, improves the perfor-

mance of individual tasks. Recently, architectures based

on Encoder-Decoder paradigm have become popular and

are used extensively for tasks that require per-pixel labeling

such as semantic segmentation [21] and key-point detection

[15, 1, 32]. Despite making significant progress in this field,

predicting landmarks on LR faces still remains a relatively

unexplored topic. All of the works mentioned above are

trained on high quality images and their performance de-

grades on LR images.

One of the closely related works, is Super-FAN [5]

which predicts landmarks on LR images using a super-

resolution approach. However, as shown in experi-

ments section, face verification performance degrades even

on super-resolved images. This necessitates that super-

resolution, face-alignment and face verification be learned

in a single model, trained end to end, making it not only

slow in inference stage but also limited by the GPU mem-

ory constraints. The proposed work is different from Super-

FAN in many aspects as it needs labeled data only in HR

and learns to predict landmarks in LR images in an unsuper-

vised way. Due to adversarial training, S2LD not only acts

as a facial parts detector but also learns the inherent struc-

ture of the facial parts. The proposed method makes the

pre-processing task faster and independent of face verifica-

tion training. During inference, only the heatmap generator

network is used which is based on the fully convolutional

architecture of U-Net and works at the spatial resolution of

32× 32 making the alignment process real time.

3. Proposed Method

S2LD predicts landmarks directly on a LR image of spa-

tial size less than 32 × 32 pixels. We show that predict-

ing landmarks directly in LR is more effective than the cur-

rent practices of rescaling or super-resolution. The entire

pipeline can be divided into two stages: (a) Generation of

LR images in an unpaired manner (b) Generating heatmaps

for target LR images in a semi-supervised fashion. An
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Figure 2: Overview of the proposed approach. HR input is passed through High-to-Low generator G1 (shown in cyan colored block).

The discriminator D1 learns to distinguish generated LR images vs. real LR images in an unpaired fashion. This generated image is fed to

heatmap generator G2. Heatmap discriminator D2 distinguishes generated heatmap vs. groundtruth heatmaps. The pair G2, D2 is inspired

by BEGAN [3]. In addition to generated and groundtruth heatmaps, the discriminator D3 also receives predicted heatmaps for real LR

images. This enables the generator G2 to generate realistic heatmaps for unannotated LR images.

overview of the proposed approach is shown in Figure 2.

Being a semi-supervised method, it is important to first de-

scribe the datasets chosen for the experiments.

High Resolution Dataset: We construct the HR dataset

by combining the 20, 000 training images from AFLW and

the entire 300W dataset. We divide the Widerface dataset

[30] into two groups based on their spatial size. The first

group consists of images with spatial size between 20× 20
and 40 × 40, whereas the second group consists of images

with more than 100 × 100 pixels. We combine the second

group in HR training set, resulting in a total of 35, 543 HR

faces. The remaining 4, 386 images from AFLW are used

as validation images for the ablative study and test set for

the landmark localization task.

Low Resolution Datasets:

• The first group from Widerface dataset consists of

47, 046 faces is used as real LR images for ablative

study.

• For face verification experiments, we use recently pub-

lished TinyFace dataset [7] as the target LR dataset.

• Due to the unavailability of an LR annotated dataset,

we create a real LR landmark detection dataset which

we call Annotated LR Faces (ALRF https://

sites.google.com/view/amitumd) by manu-

ally annotating 700 LR images of TinyFace dataset.

The details of ALRF creation are discussed in the sup-

plementary.

3.1. High to Low Generator and Discriminator

High to low generator G1, shown in Figure 3, is designed

following the Encoder-Decoder architecture, where both

encoder and decoder consists of multiple residual blocks.

The input to the first convolution layer is the HR image

concatenated with the noise vector which has been pro-

jected using a fully connected layer and reshaped to match

the input size. Similar architectures have also been used

in [6, 16]. The encoder in the generator consists of eight

residual blocks each followed by a convolution layer to in-

crease the dimensionality. Max-pooling is used after every

2 residual block to decrease the spatial resolution to 4 × 4,

for HR image of 128×128 pixels. The decoder is composed

of six residual units followed by up-sampling and convolu-

tion layers. Finally, one convolution layer is added in order

to output a three channel image. BatchNorm is used after

every convolution layer.

The discriminator D1, shown in Figure 3 is also con-

structed in a similar way, except that due to low spatial res-

olution of the input image, max-pooling is only used in the

last three layers. In Figure 2, we use IHR for HR input

images of size 128 × 128, ILR
G for generated LR images

of size 32 × 32 and ILR
R for target LR images of the same

size. Spectral Normalization [20] is also used in the con-

volutional layers of D1 to satisfy the Lipschitz constraint

σ(W) = 1, where the weights W presented in Equation 1:

WSN (W) = W

σ(W) (1)

We train G1 using a weighted combination of GAN loss;

L2 pixel loss to encourage convergence in initial training

iterations and perceptual loss [12] back-propagated from a

pre-trained VGG network. The final loss is summarized in

Equation 2.

lG1
= αlGGAN + βlpixel + γlperceptual (2)

where α, β and γ are hyperpameters which are empiri-

cally set. Following recent developments in GANs we ex-



Encoder Decoder

H

W
H/4

W/4

H
R
 Im

ag
e

LR
 Im

ag
e 32

32

No max­pooling

LR
 Im

ag
e

256­d fc

(a) (b)

Figure 3: (a) High to low generator G1. Each → represents two

residual blocks followed by a convolution layer. (b) Discrimina-

tor used in D1 and D2. Each → represents one residual block

followed by a convolution layer.

Figure 4: Sample outputs of High to Low generation of AFLW

dataset. For more results please refer to the supplementary mate-

rial.

perimented with different loss functions. However, we set-

tled on the hinge loss. In Equation 2, lGGAN is computed

as:

lGGAN = Ex̂∈Pg
[min(0,−1 +D1(x̂))] (3)

where Pg is the distribution of generated images ILR
G . Also

L2 pixel loss, lpixel, is derived from the following expres-

sion:

lpixel =
1

H×W

W∑

i=1

H∑

i=1

(F (IHR)− ILR
G )2 (4)

where W and H represent the generated image width and

height respectively; also the operation F is implemented as

a sub-sampling operation obtained by passing IHR through

four average pooling layers. This loss is used to minimize

the distance between the generated and sub-sampled images

which ensures that the content is not lost during the gener-

ation process. To train discriminator D1 we use hinge loss

with gradient penalty and Spectral Normalization for faster

training. The discriminator D1 loss can be defined as:

lD1
= lDGAN +GP (5)

where

lDGAN = Ex∈Pr
[min(0,−1 +D1(x))] + Ex̂∈Pg

[min(0,−1−D1(x̂))]

(6)

and Pr is the distribution of real LR images ILR
R from

Widerface dataset. GP in Equation 5 represents the gradi-

ent penalty term. Figure 4 shows some sample LR images

generated from the network G1.

3.2. Semi­Supervised Landmark Localization

3.2.1 Heatmap Generator G2
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Figure 5: Architecture of the heatmap generator G2. Architecture

of this network is based on U-Net. Each → represents two residual

blocks. 99K represents skip connections between the encoder and

decoder.

The key-point heatmap generator, G2 in Figure 5 pro-

duces heatmaps corresponding to N (in our case 19 or 68)

key-points in a given image. As mentioned earlier, the ob-

jective of this paper is to show that landmark prediction di-

rectly on LR images is feasible even in the absence of la-

beled LR data. To this end, we choose a simple network

based on the U-Net architecture as the heatmap generator.

The network consists of 16 residual blocks where both en-

coder and decoder have eight residual blocks. In the last

layer, G2 outputs (N+1) feature maps corresponding to N

key-points and 1 background channel. After experimenta-

tion, this design for landmark detection has proven to be

very effective and results in state of the art resutls for HR

landmark predictions. Further architectural details are pre-

sented in the supplementary materials.

3.2.2 Heatmap Discriminator D2

The heatmap discriminator D2 follows the same architec-

ture as the heatmap generator G2 with different number of

input channels, i.e., input to the discriminator is a set of

heatmaps concatenated with their respective color images.

D2 receives two sets of inputs: generated LR image with

down-sampled groundtruth heatmaps and generated LR im-

ages with predicted heatmaps. This discriminator predicts

another set of heatmaps and learns whether the key-points

described by the input heatmaps are correct and correspond

to the input face image. The quality of the output heatmaps

is determined by their similarity to the input heatmaps, fol-

lowing the notion of an autoencoder. The loss is com-

puted as the error between the input and the reconstructed

heatmaps.



3.2.3 Heatmap Confidence Discriminator D3

The architecture of D3 is identical to D1 except for the

number of input channels. This discriminator receives

three inputs: generated LR image with corresponding

groundtruth heatmaps, generated LR image with predicted

heatmaps and target LR image with predicted heatmaps. D3

learns to distinguish between the groundtruth and predicted

heatmaps. To fool this discriminator, G2 should learn to: (a)

generate heatmaps for generated LR images similar to their

respective groundtruth, (b) generate heatmaps for unlabeled

target LR images with similar statistical properties to the

groundtruth heatmap, i.e., G2 should understand the inher-

ent structure of the face in LR images and generate accurate

and realistic heatmaps.

3.3. Semi­supervised Learning

The learning process of this setup is inspired by the semi-

nal works BEGAN [3] and [35] called Energy-based GANs.

It is worth recalling that HR images have annotations asso-

ciated with them and we assume key-point locations in a

generated LR image stay relatively the same as its down-

sampled version. Therefore, while training G2, the down-

sampled annotations are considered to be groundtruth for

the generated LR images.

The discriminator D2, when the input consists of

groundtruth heatmaps, is trained to recognize it and re-

construct a similar one to minimize the error between the

groundtruth and reconstructed heatmaps. On the other hand,

if the input consists of generated heatmaps, the discrimina-

tor is trained to reconstruct different heatmaps to drive the

error as large as possible. The losses are expressed as

lrealD =
N+1∑

i=1

(Hi −D2(Hi, I
LR
G ))2 (7)

l
fake
D =

N+1∑

i=1

(Ĥi −D2(Ĥi, I
LR
G ))2 (8)

l
kp
D = lrealD − ktl

fake
D (9)

where Hi and Ĥi represent the ith key-point groundtruth

and generated heatmap of the generated LR image ILR
G .

Inspired by BEGAN, we use a variable kt to control the

balance between heatmap generator and discriminator. The

variable is updated every t iterations. The adaptive term kt
is defined by:

kt+1 = kt + λk(γl
real
D − l

fake
D ) (10)

where kt is bounded between 0 and 1, and λk is a hyper-

parameter. As in Equation 9, kt controls the emphasis on

l
fake
D . When the generator is able to fool the discrimina-

tor, l
fake
D becomes smaller than γlrealD . As a result of this

kt increases, making the term l
fake
D dominant. The amount

of acceleration to train on l
fake
D is adjusted proportional to

Figure 6: Sample key-point detections on TinyFace images.

γlrealD − l
fake
D , i.e the distance the discriminator falls behind

the generator. Similarly, when the discriminator gets better

than the generator, kt decreases, to slow down the training

on l
fake
D making the generator and the discriminator train

together.

The discriminator D3 is trained using the loss function

from Least squares GAN [19] as shown in Equation 11.

This loss function was chosen to be consistent with the

losses computed by D2.

l
conf
D = Ex∈Pr

[(D3(x)− 1)2] + Ex̂∈Pg
[D3(x̂)

2] + Eŷ∈Pg
[D3(ŷ)

2]

(11)

It is noteworthy to mention in this case Pr represents the

groundtruth heatmaps distribution on generated LR images,

while Pg represents the distribution on generated heatmaps

of generated LR images and real LR images.

The generator G2 is trained using a weighted combina-

tion of losses from the discriminators D2 and D3 and lMSE

heatmap loss. The loss functions for the generator G2 are

described in the following equations:

lMSE
G =

N+1∑

i=1

(Hi −G2(I
LR
G ))2 (12)

l
kp
G =

N+1∑

i=1

(Ĥi −D2(Ĥi, I
LR
g ))2 (13)

l
conf
G = Ex∈Pg

[(D3(x)− 1)2] (14)

lG = alMSE
G + bl

kp
G + cl

conf
G (15)

where a, b and c are hyper parameters set empirically obey-

ing alMSE
G > bl

kp
G > cl

conf
G . We put more emphasis on

lMSE
G to encourage convergence of the model in initial it-

erations. Some target LR images with key-points predicted

from the G2 are shown in Figure 6.

4. Experiments and Results

4.1. Ablation Experiments

We qualitatively demonstrated in Figure 1 that networks

trained on HR images perform poorly on LR. Moreover,

as there are no LR image datasets with landmark annota-

tions available, we propose semi-supervised learning as an

alternative. Given the above mentioned networks and loss

functions; it is important to understand the implication of

each component. This section examines each of the design

choices quantitatively. To this end, we first train the high



to LR network, G1, on WiderFace dataset and then gener-

ate LR version of AFLW testset. In the absence of real LR

images with annotated landmarks, this is done to create a

substitute for LR dataset with annotations on which local-

ization performance can be evaluated. Data augmentation

techniques such as random scaling (0.9, 1.1), random rota-

tion (−30◦, 30◦) and random translation up to 20 pixels are

used.

Evaluation Metric: Following prior works, we use the

Normalized Root Mean Square Error (NRMSE) to measure

key-point localization performance.

Training Details: All the networks are trained in Py-

torch using the Adam optimizer with an initial learning rate

of 2e-4 and β1, β2 values of 0.5, 0.9. We train the networks

with a batch size of 32 for 200 epochs, while dropping the

learning rates by 0.5 after 80 and 160 epochs. Performance

is evaluated on generated LR AFLW test images and our

manually annotated ALRF dataset.

Setting S1: Train networks on sub-sampled images?

We train network G2 in a supervised manner with the sub-

sampled AFLW training images using the loss function in

Equation 12.

Setting S2: Train networks on generated LR images?

In this experiment, we train the network G2 using the gen-

erated LR images, in a supervised manner using the loss

function from Equation 12.

Observation: From the results summarized in Table 1, it

is evident that there is a significant reduction in the local-

ization error when G2 is trained on the generated LR im-

ages validating our hypothesis that sub-sampled images on

which many super-resolution networks are trained may not

represent real LR images. Hence, we need to train the net-

works on real LR images.

Setting S3: Does adversarial training help? This ques-

tion is relevant to understanding the importance of training

G2 in an adversarial way. In this experiment, we train D2

and G2 using the losses in Equations 7, 8, 12, 13.

Setting S4: Does G2 trained in adversarial manner

scale to real LR images? In this experiment, we wish to

examine if training networks G2, D2 and D3 jointly, im-

proves the performance on real LR images and whether D3

can help G2 to generate heatmaps that can characterize a

face image in LR.

Observation: From Table 1 we observe that the network

trained with setting S4 performs comparable to setting S3

for the AFLW dataset which is expected since G2, D2 and

D3 are only trained on the AFLW training dataset and G2

can learn the inherent LR face characteristics in AFLW us-

ing only D2. However; when we compare settings for the

ALRF dataset there is a significant boost from S3 to S4

which substantiate the knowledge that D3 provides to G2

once there is a domain shift between LR generated images

of AFLW and the target LR domain. Since D3 sees data

NRMSE

Dataset
Settings

S1 S2 S3 S4

AFLW Testset 11.33 4.23 4.12 4.12

ALRF 0.71 0.70 0.65 0.37

Table 1: Ablation experiment results under settings S1-S4 on syn-

thesized LR images.

from target LR images domain, it enforces G2 to learn the

structure of faces corresponding to target LR images and

generates accurate heatmaps for face alignment. We highly

encourage the readers to refer to the supplementary material

for more detailed explanations of S settings.

Method NRMSE (all) NRMSE (479) Time (s)

MTCNN - 0.9736 0.388

HRNet 0.4055 0.3107 0.076

SAN 0.3901 0.3141 0.0178

S2LD 0.257 0.1803 0.0105

Table 2: Numerical comparison with recent state of the arts key-

point Detection methods on the ALRF dataset. NRMSE(479) cor-

responds to images that MTCNN detected.

4.2. Comparison with State of the Art Methods

Here using the ALRF dataset, we perform a numerical

comparison with respect to recent state of the art methods

namely MTCNN, HRNet [25] and SAN [9]. Table 2 sum-

marizes the result of this comparison. Note that here we

use TinyFace dataset as real LR images. We also calculate

inference time per face image in a single gtx1080. Note

that MTCNN which has detection and alignment in a sin-

gle system, was able to detect only 479 faces out of 700
test images, therefore we add another column to have a fair

comparison.

4.3. Face Verification experiments

In the previous section we studied the generalization of

the S2LD to landmark detection in LR face images. There-

fore we choose to evaluate models from setting S3 and set-

ting S4 in previous section, by comparing the statistics ob-

tained by applying the two models to align the face images

for facial verification task. The reason stems from the fact

that performance of a face verification system is directly

impacted by the accuracy of face alignment.

We use the TinyFace dataset [7] in the following exper-

iments. It is one of the very few datasets aimed towards

understanding LR face verification and consists of 5, 139
labeled facial identities with an average of three face im-

ages per identity, giving a total of 15, 975 LR face images.

5, 139 known identities is divided into two splits: 2, 570 for

training and the remaining 2, 569 for test.



Setting L1 L2 L3 L4 L5

top-1 31.17 35.11 39.03 39.87 43.82

(a)

Setting top-1 top-5 top-10 top-20 mAP

Baseline 34.71 44.82 49.01 53.70 0.32

I1 34.01 41.98 45.36 49.22 0.29

I2 45.04 56.30 60.11 63.71 0.43

I3 51.10 61.05 64.38 67.89 0.47

(b)

Table 3: Verification performance on TinyFace dataset under

different settings (a) LightCNN trained from scratch (b) Using

Inception-ResNet pre-trained on MsCeleb-1M

Evaluation Protocol: To compare model performance,

we adopt the closed-set face identification (1:N matching)

protocol. Specifically, the task is to match a given probe

face against a gallery set of face images with true match

from the gallery at top-1 of the ranking list. For each test

class, half of the face images are randomly assigned to the

probe set, and the remaining to the gallery set. For face

verification, we report statistics on Top-k (k=1,5,10,20) and

mean average precision (mAP).

Experiments with face verification network trained

from scratch: Since the number of images in TinyFace

dataset is much smaller compared to larger datasets such

as CASIA or MsCeleb-1M [11], we observed that train-

ing a very deep model like Inception-ResNet [26], quickly

leads to over-fitting. Therefore, we adopt a CNN with fewer

parameters, specifically, LightCNN [29]. Since inputs to

the network are images of size 32 × 32, we disable first

two max-pooling layers to keep the spatial resolution. Af-

ter detecting the landmarks, training and testing images are

aligned to the canonical coordinates using affine transfor-

mation. We train LightCNN with training split of TinyFace

dataset under the following settings:

Setting L1: Train networks using generated LR images?

Here, G2 from setting S2 of previous section is used to

extract key-points and align face images to be used for

LightCNN training.

Setting L2: Does adversarial training help? We use the

G2 trained from setting S3 to align the faces in training and

testing sets.

Setting L3: Does G2 trained in adversarial manner

scale to real LR images? Here G2 trained from setting S4

with the TinyFace train set as real LR images, is used for

key-point detection and image alignment in LightCNN.

Setting L4: End-to-end training? Here, we also train

the High to Low networks G1 and D1, using the TinyFace

train dataset as real LR images. With the obtained S2LD
model, landmarks are extracted and images are aligned for

training LightCNN.

Setting L5: End-to-end training with pre-trained

weights? This setting is similar to the setting L4 above,

except instead of training a LightCNN model from scratch

we initialize the weights from a pre-trained model, trained

with CASIA-Webface dataset.

Observation: Table 3a summarizes the results of the ex-

periments done under settings L1 to L5. We observe that

there is a significant gap in rank-1 performance between

setting L2 and L3. This indicates that with semi-supervised

learning G2 generalizes well to real LR data, and hence val-

idates our hypothesis of training G2, D2 and D3 together.

Unsurprisingly, insignificant difference is seen between set-

tings L3 and L4. More details about L settings is provided

in supplementary materials

Experiments with pre-trained network: Next, to fur-

ther understand the implications of joint semi-supervised

learning, we design another set of experiments. In these

experiments, we use a pre-trained Inception-ResNet model,

trained on MsCeleb-1M using ArcFace [8] and Focal Loss

[17]. This model expects an input of size 112× 112 pixels,

hence the images are re-sized after alignment in LR. Using

this network, we perform the following experiments:

Baseline: We follow the usual practice of re-scaling im-

ages to a fixed size irrespective of resolution. We trained

our own HR landmark detector (HR-LD) on 20, 000 AFLW

images. TinyFace gallery and probe images are re-sized to

128×128 and are fed to HR-LD and aligned similar to Arc-

Face. Baseline performance was obtained by computing co-

sine similarity between gallery and probe features extracted

from the network

Setting I1: Does adversarial training help? The model

trained for S3 is used to align the images directly in LR.

Features for gallery and probe images are extracted after

rescaling and cosine distance is measured.

Setting I2: Does G2 trained in adversarial manner scale

to real LR images? For this experiment, the model from

setting L3 is used for landmark detection in LR and face

verification is done on aligned and re-sized images.

Setting I3: End-to-end training? In this case, we align

images using the model from setting L4, re-size images and

measure face verification metrics.

Observation: As expected, in Table 3b we observe train-

ing the landmark detector in a semi-supervised manner and

aligning the images directly in LR, improves performance

of any face verification system trained on HR images.

4.4. Additional Experiments

Setting A1: Does super-resolution help? The aim of

this experiment is to understand if super-resolution can be

used to enhance the image quality for landmark detection.

We use SRGAN to super-resolve the images before using

2D-FAN face alignment method.

Setting A2: Does super-resolution help? In this case,

we use ESRGAN to super-resolve the images before using



Setting top-1 top-5 top-10 top-20 mAP

A1 11.75 14.58 24.57 30.47 0.10

A2 26.21 34.76 39.03 43.99 0.24

Table 4: Face verification performance using super-resolution

prior to face-alignment

HR-LD to align.

Observation: It is evident from Table 4 that face veri-

fication performance obtained after aligning super-resolved

images is not at par even with the baseline. It can be hypoth-

esized that possibly super-resolved images do not represent

HR images using which 2D-FAN or HR-LD are trained.

HR Landmark Detector (HR-LD) Here, we train G2

on HR images of size 128× 128 of AFLW and 300W using

MSE loss in Equation 12. We evaluate the performance of

this network on AFLW-Full and 300W test sets, shown in

Table 5. We would like to make a note that LAB [28] and

SAN either uses extra data or extra annotations or larger

spatial resolution to train deep networks. A few sample

outputs of HR-LD are shown in Figure 7. For details on

HR-LD architecture please refer to supplementary materi-

als.

300W AFLW

Method Common Challenge Full Full

LBF 4.95 11.98 6.32 4.25

CFSS 4.73 9.98 5.76 3.92

TCDCN 4.80 8.60 5.54 -

MDM 4.83 10.14 5.88 -

PCD-CNN 3.67 7.62 4.44 2.36

SAN* 3.34 6.60 3.98 1.91

LAB* 2.57 4.72 2.99 1.85

HR-LD 3.60 7.301 4.325 1.753

Table 5: Comparison of the HR-LD with state of the art methods

on AFLW and 300-W testsets. NMSEs on 300W dataset are taken

from the Table 3 of [18]. * uses extra annotation or data.

Figure 7: Sample outputs of HR-LD. First and second row show

samples from AFLW and 300W test sets respectively.

5. Conclusion

In this paper, we first present an analysis of landmark

detection methods when applied to LR images, and the im-

plications on face verification. We also discuss the proposed

method for predicting landmarks directly on LR images.

We show that the proposed method improves key-point de-

tection as well as face recognition performance over com-

monly used practices of rescaling and super-resolution. As

a by-product, we also developed a simple but state of the art

landmark detector. Although, LR is chosen as the source of

degradation, the proposed method can trivially be extended

to capture other degradation in the imaging process, such

as motion blur or atmospheric turbulence. In addition, the

proposed method can be applied to detect human pose in

LR to improve skeletal action recognition. In the era of

deep learning, LR landmark detection and face recognition

is a relatively understudied topic; however, we believe this

work will open new avenues in this direction.
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