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Abstract

Biological vision adopts a coarse-to-fine information

processing pathway, from initial visual detection and bind-

ing of salient features of a visual scene, to the enhanced

and preferential processing given relevant stimuli. On the

contrary, CNNs employ a fine-to-coarse processing, moving

from local, edge-detecting filters to more global ones ex-

tracting abstract representations of the input. In this paper

we reverse the feature extraction part of standard bottom-up

architectures and turn them upside-down: We propose top-

down networks. Our proposed coarse-to-fine pathway, by

blurring higher frequency information and restoring it only

at later stages, offers a line of defence against adversar-

ial attacks that introduce high frequency noise. Moreover,

since we increase image resolution with depth, the high res-

olution of the feature map in the final convolutional layer

contributes to the explainability of the network’s decision

making process. This favors object-driven decisions over

context driven ones, and thus provides better localized class

activation maps. This paper offers empirical evidence for

the applicability of the top-down resolution processing to

various existing architectures on multiple visual tasks.

1. Introduction

In human biological vision, perceptual grouping of vi-

sual features is based on Gestalt principles, where factors

such as proximity, similarity or good continuation of fea-

tures generate a salient percept [42]. Salient objects are

rapidly and robustly detected and segregated from the back-

ground in what is termed the “pop-out” effect [7, 22]. This

initial detection and grouping of salient features into a co-

herent percept, leads to preferential processing by the visual

system, described as stimulus-driven attention [52]. For rel-

evant visual stimuli, the exogenously directed attention is

sustained, and results in a more detailed visual evaluation

of the object. This typical pipeline of perception and atten-

tion allocation in biological vision represents an efficient,

coarse-to-fine processing of information [14]. In contrast,
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Figure 1. A coarse-to-fine versus fine-to-coarse processing path-

way. The conventional fine-to-coarse pathway in a CNN sacri-

fices localization for semantically richer information. The oppo-

site path, proposed in this paper, starts from the coarsest input and

focuses on the context: given the sky, grass and building, it is

clearly a landscape scene of a building. Moving to finer represen-

tations of the input, the focus shifts to local information. Archi-

tectural aspects of the building, and the cross on the top, are now

the most informative for classifying the image as a church. Our

proposed coarse-to-fine pathway is in line with human biological

vision, where detection of global features precedes the detection of

local ones, for which further processing of the stimuli is required.

modern CNNs (Convolutional Neural Networks) do not in-

corporate this perspective [12, 23, 38, 40].

Standard CNNs begin with the high resolution input, and

propagate information in a fine-to-coarse pathway. Early

layers learn to extract local, shareable features, whereas

deeper layers learn semantically rich and increasingly in-

variant representations. In this paper we propose the rever-

sal of the conventional feature extraction of standard CNNs,

as depicted in Figure 1. More specifically, we suggest the

adoption of a coarse-to-fine processing of the input, which



can be interpreted as gradual focusing of visual attention.

The top-down hierarchy first extracts the gist of a scene,

starting from a holistic initial representation, and subse-

quently enhances it with higher frequency information.

A growing body of literature since the seminal work

of [10, 41] shows that adversarial perturbations with high-

frequency components may cause substantial misclassifica-

tions. Suppressing higher frequencies in the input image, as

proposed in our top-down paradigm, can provide a first line

of defence. At the same time, explainability of the decision

making process of CNNs has recently emerged as an impor-

tant research direction [36, 54]. In this context, our coarse-

to-fine processing scheme, having feature maps with higher

spatial resolution at deeper layers, favors object-driven de-

cisions over context-driven ones, and provides better local-

ized class activation maps.

We make the following contributions: (i) We propose

biologically inspired top-down network architectures, ob-

tained by reversing the resolution processing of conven-

tional bottom-up CNNs; (ii) We analyze various methods

of building top-down networks based on bottom-up coun-

terparts as well as the difference in resolution-processing

between these models, providing a versatile framework

that is directly applicable to existing architectures; (iii)

We compare our proposed model against the baseline on

a range of adversarial attacks and demonstrate enhanced

robustness against certain types of attacks. (iv) We find

enhanced explainability for our top-down model, with

potential for object localization tasks. Trained models

and source code for our experiments are available online:

https://github.com/giannislelekas/topdown.

2. Related work

Coarse-to-fine processing. Coarse-to-fine processing is an

integral part of efficient algorithms in computer vision. It-

erative image registration [30] gradually refines registration

from coarser variants of the original images, while in [16] a

coarse-to-fine optical flow estimation method is proposed.

Coarse-to-fine face detection is performed by processing

increasingly larger edge arrangements in [8], and coarse-

to-fine face alignment using stacked auto-encoders is in-

troduced in [50]. Efficient action recognition is achieved

in [44] by using coarse and fine features coming from

two LSTM (Long Short-Term Memory) modules. In [34]

coarse-to-fine kernel networks are proposed, where a cas-

cade of kernel networks are used with increasing complex-

ity. Existing coarse-to-fine methods consider both coarse

input resolution, as well as gradually refined processing.

Here, we also focus on coarse-to-fine image resolution,

however we are the first to do this in a single deep neural

network, trained end-to-end, rather than in an ensemble.

Bottom-up and top-down pathways. Many approaches

exploit high spatial resolution for finer feature localization,

which is crucial for semantic segmentation. The U-net [33]

and FPN (Feature Pyramid Networks) [29] merge informa-

tion from bottom-up and top-down pathways, combining

semantically rich information of the bottom-up with the fine

localization of the top-down stream. Similarly, combina-

tions of a high-resolution and a low-resolution branch were

proposed for efficient action recognition [5], for face hal-

lucination [25], and depth map prediction [3]. Top-down

signals are also used to model neural attention via a back-

propagation algorithm [49], and to extract informative lo-

calization maps for classification tasks in Grad-CAM [36].

Similarly, we also focus on top-down pathways where we

slowly integrate higher levels of detail, however our goal

is biologically-inspired resolution processing, rather than

feature-map activation analysis.

Multi-scale networks. Merging and modulating infor-

mation extracted from multiple scales is vastly popular

[15, 21, 47, 48, 46]. In [48] feature maps are resized by a

factor to obtain cascades of multiple resolutions. Incremen-

tal resolution changes during GAN (Generative Adversar-

ial Network) training are proposed in [20]. Convolutional

weight sharing over multiple scales is proposed in [1, 47].

Similarly [6] performs convolutions over multiple scales in

combination with residual connections. In [21] convolu-

tions are performed over a grid of scales, thus combining

information from multiple scales in one response, and [39]

combines responses over multiples scales, where filters are

defined using 2D Hermite polynomials with a Gaussian en-

velope. Spatial pyramid pooling is proposed in [11] for ag-

gregating information at multiple scales. In this work, we

also extract multi-resolution feature maps, in order to start

processing from the lowest image scale and gradually re-

store high frequency information at deeper layers.

Beneficial effects of blurring. Suppressing high frequency

information by blurring the input can lead to enhanced ro-

bustness [43, 53]. Models trained on blurred inputs ex-

hibit increased robustness to distributional shift [19]. The

work in [9] reveals the bias of CNNs towards texture, and

analyzes the effect of blurring distortions on the proposed

Stylized-ImageNet dataset. Anti-aliasing by blurring before

downsampling contributes to preserving shift invariance in

CNNs [51]. By using Gaussian kernels with learnable vari-

ance, [37] adapts the receptive field size. Rather than chang-

ing the receptive field size, works such as [27, 26, 31] use

spatial smoothing for improved resistance to adversarial at-

tacks. Similarly, we also rely on Gaussian blurring before

downsampling the feature maps to avoid aliasing effects,

and as a consequence we observe improved robustness to

adversarial attacks.
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Figure 2. Left: The bottom-up (BU ) baseline network. Feature maps decrease in spatial resolution with network depth. Right: The

proposed top-down (TD) network. The TD model reverses the feature extraction pathway of the baseline network. It employs three inputs

from highest to lowest scale, starts processing from the lowest resolution and progressively adds high resolution information.

3. Top-down networks

Top-down (TD) networks mirror the baseline bottom-up

(BU ) networks, and reverse their feature extraction path-

way. Information flows in the opposite direction, moving

from lower to higher resolution feature maps. The initial in-

put of the network corresponds to the minimum spatial reso-

lution occurring in the BU baseline network. Downscaling

operations are replaced by upscaling, leading to the coarse-

to-fine information flow. By upscaling, the network can

merely “hallucinate” higher resolution features. To restore

the high frequency information, we use resolution merges,

which combine the hallucinated features with higher fre-

quency inputs, after each upscaling operation. Figure 2 de-

picts the difference between the BU architecture and our

proposed TD architecture.

3.1. Input and feature map resizing

To avoid artifacts hampering the performance of the net-

work [51], we blur the inputs before downsampling. For the

upsampling operation we use interpolation followed by con-

volution. We have experimented with both nearest neigh-

bour and bilinear interpolation, and have noticed improved

robustness against adversarial attacks for nearest neighbor

interpolation. We have also considered the use of transpose

convolutions, however we did not adopt these due to detri-

mental checkerboard artifacts.

3.2. Merging low and high resolution

Figure 3 depicts the considered method for merging the

high resolution input with the low resolution information.

We first upsample the low resolution input via a 1× 1 con-

volution and use an element-wise addition with the high-

resolution branch. This information is then concatenated

with the original high resolution information on the channel

dimension. We subsequently use a 3× 3 convolution to ex-

pand the receptive field of the filters. The proposed merging

of information slightly increases the number of parameters,

while being effective in practice.

ERF (effective receptive field) size computation. Neu-

rons in each layer i of a typical bottom-up network has a

single ERF size ri determined by the kernel size ki and the

cumulative stride mi (given stride si at layer i).

ri = ri−1 + (ki − 1) mi−1

mi = mi−1 · si (1)

Assuming only 3× 3 convolutions with stride 1, the exam-

ple BU architecture in Figure 2 will have an ERF size of 3

pixels, and 18 pixels in each direction after the first and final

convolutional layers, respectively. In contrast, for the TD
network, considering a Gaussian blurring window of width

6σ, the lowest resolution branch will already have an ERF

size of 12σ+2 at the input level and of 12σ+10 after the

first convolutional layer (comparable to the final layer of a

BU network already with σ = 2/3 pixels). Furthermore,

in contrast to BU , output from neurons with varying ERFs

are propagated through the merging points. To get a lower

bound on the TD ERF sizes, we consider resolution merg-

ing methods which do not provide RF enlargement (e.g. as

depicted in fig. 3, but without the 3 × 3 convolution at the

end). Thus, at the final merging point of the TD architec-

ture, ERF sizes of 3 pixels and 12σ+14 pixels are merged

together. In conclusion, already from the first layer, TD has

the ERF size that the BU only obtains at the last layer.

Figure 3. Merging low and high-frequency feature maps: we use a

1×1 convolution followed by an element-wise addition; this infor-

mation is concatenated with the high-resolution input and followed

by a 3× 3 convolution that expands the receptive field size.



3.3. Filter arrangement

Feature extraction pathway of the TD network reverses

the BU : information propagates from lower to higher spa-

tial dimensions in a TD network, while the number of fil-

ters shrinks with increasing depth. The choice of expand-

ing the number of filters at deeper layers in the BU net-

work is efficiency-oriented. As the feature map resolution

decreases, the number of channels increases, retaining the

computational complexity roughly fixed per layer. Typi-

cally, in standard architectures the filters are doubled every

time dimensions are halved [12, 38].

In our method we consider three options for deciding the

number of filters per layer: the TD model which is exactly

the opposite of the BU in that the number of channels are

reduced with depth; the uniform model (TDuni) where the

layers have a uniform number of filters; and the reversed

model (TDrev) which follows the BU filter arrangement,

with channel dimension widened with depth.

4. Experiments

In Exp 1 we evaluate the three different filter arrange-

ment options proposed for the top-down model. We com-

pare these model variations with the bottom-up baseline on

the MNIST, Fashion-MNIST and CIFAR10 classification

tasks. In Exp 2 we evaluate the robustness of our pro-

posed model against various adversarial attacks applied on

the same datasets. Finally, in Exp 3 we illustrate the ex-

plainability capabilities of our top-down model when com-

pared to the bottom-up, and demonstrate its benefits for a

small object localization task.

Experimental setup. We compare our TD proposal with

its respective BU baseline on MNIST, Fashion-MNIST and

CIFAR10. For the simpler MNIST tasks we consider as

baselines the “LeNetFC”, a fully-convolutional variant of

LeNet [24] and following [28], a lightweight version of

the NIN (Network-In-Network) architecture, namely “NIN-

light” with reduced filters. The original architecture was

used for the CIFAR10 task, along with the ResNet32 intro-

duced in [12] incorporating the pre-activation unit of [13].

Batch Normalization [17] is used in all the networks prior

to the non-linearities. The corresponding TD networks are

defined based on their BU baselines. Table 1 depicts the

number of parameters of different models. For TD we con-

sider three variants: TD – which is mirroring the BU archi-

tecture also in terms of filter depth; TDuni using uniform

filter depth; and TDrev where the filter depth of the TD
is reversed, thus following the filter depth of BU . There

is an increase in the number of parameters for the TD net-

works, because we need additional convolutional layers for

merging the high and low resolution information.

We abide by the setup found in the initial publications

for the BU models. For the TD networks we performed a

Model
#parameters

BU TD TDuni TDrev

LeNetFC 8k 14k 23k 58k

NIN-light 62k 213k 215k 214k

ResNet32 468k 528k 320k 563k

NIN 970k 3,368k 3,397k 3,388k

Table 1. Number of trainable parameters for the different architec-

tures considered. Different rows correspond to the different base-

line architectures and columns indicate the bottom-up model and

the three top-down variants with different filter arrangements (sec-

tion 3.3). There is an increase in the number of parameters for

the TD networks, because they merge the high and low resolution

information using additional convolutional layers.

linear search for learning rate, batch size, and weight decay.

For all cases we train with a 90/10 train/val split, using SGD

with momentum of 0.9 and a 3-stage learning rate decay

scheme, dividing the learning rate by 10 at 50% and 80%
of the total number of epochs. For the CIFAR10 dataset we

test with and without augmentation—employing horizon-

tal translations and flips. We repeat runs four times, with

dataset reshuffling and extracting new training and valida-

tion splits, and report mean and standard deviation of the

test accuracy.

4.1. Exp. 1: Bottom­up versus top­down

Figure 4 shows the test accuracy of the considered mod-

els across datasets. The TD networks are on par with, and

in some cases surpassing the corresponding baseline BU
performance. When considering the different filter depth

configurations, TDrev performs best due to increased rep-

resentational power at higher scales, coming though at cost

of increased complexity. The NIN architecture adopts a

close to uniform filter arrangement, hence the three TD
variants reach roughly the same performance. We adopt

the TD variants henceforth, on account of the small gap

in performance and reduced complexity. This experiment

provides empirical evidence of the applicability of the pro-

posed pipeline to different network architectures.

4.2. Exp. 2: Adversarial robustness

We evaluate the robustness of BU versus TD against

various attacks, where we attack the test set of each dataset

using the Foolbox [32]. For all the attacks, the default pa-

rameters were used. To make the attack bound tighter, we

repeat each attack three times and keep the worst case for

each to define the minimum required perturbation for fool-

ing the network.

Figure 6 provides for each attack, plots of loss in test

accuracy versus the L2 distance between the original and

the perturbed input. TD networks are visibly more re-
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Figure 5. Exp 2: Test accuracy when extracted adversarial perturbations are fed to either the highest, medium, or lowest scale input of

the TD network (refer to figure 2), using the NIN-light baseline on MNIST and Fashion-MNIST, and NIN on CIFAR10. The remaining

two inputs are fed the original, unperturbed samples. As the dataset becomes more challenging, the highest vulnerability moves from the

medium input to the highest scale input. This is attributed to the absence of information in the high frequency region for the simpler cases:

i.e. MNIST. (See supplementary material for additional results.)

silient against attacks introducing uncorrelated noise, due

to the coarse-to-fine processing adopted, with downscaled

inputs diminishing the noise. For attacks introducing cor-

related noise such as the “Pointwise” attack [35], the per-

turbed pixels tend to lie in smooth regions of the image.

Thus each single pixel value of 0 (or 1) in a region of 1s

(or 0s) essentially acts as a Dirac delta function. Based on

the convolutional nature of CNNs this type of attack “pol-

lutes” the input with imprints of the learned filters1, which

gradually span a greater part of the feature map as more

convolutions are applied. Due to the highly correlated na-

ture of the perturbation, the blurred downsampling can not

completely eradicate the noise, but helps decrease the in-

troduced pollution. On the contrary, for BU networks, the

noise is directly propagated down the network. Addition-

ally, the blurred downsampling wired in the network archi-

tecture offers enhanced robustness against blurring attacks,

as the network encounters the input image at multiple scales

1For imperfect delta function, this yields blurred versions of the filters.

during training, and is, thus, more resilient to resolution

changes. Since anti-aliasing before downsampling is sug-

gested to better preserve shift-invariance [51], we expected

our networks to also be more robust against the “Spatial”

attack [4]. However, no enhanced robustness is reported

for TD networks; a substantial difference in robustness is

observed for ResNet32, which could be due to the perfor-

mance gap measured in Exp 1 between the TD and its BU
baseline. We also tested with the TDuni and TDrev vari-

ants of the ResNet32 architecture, with respective results

provided in the supplementary material.

To get a better insight on TD robustness, we introduce

the generated attacks to a single resolution branch of the

TD networks using the NIN-light architecture on MNIST

and Fashion-MNIST, and NIN on CIFAR10. This is dis-

played in figure 5. We feed the extracted perturbations to

either the low, medium or high resolution input branch, as

illustrated in the model architecture in figure 2. For the sim-

pler MNIST task, the medium-resolution input of the net-

work is the most vulnerable, which is mainly attributed to
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Figure 6. Exp 2: Comparison of adversarial robustness considering different datasets, models and attacks. The x-axis of each figure

corresponds to the L2 distance between the original and the perturbed image and the y-axis is the introduced loss in test accuracy. A lower

curve suggests increased robustness. Green curves corresponding to TD are consistently underneath the respective red curves of the BU

networks, for most attacks. The TD networks are more robust against both correlated and uncorrelated noise attacks due to the coarse-

to-fine processing, suppressing high frequency information on earlier stages. Additionally, the blurred downsampling offers enhanced

robustness against blurring attacks. For spatial attacks, we see no increased robustness. (See supplementary material for additional results.)

the absence of information in the high frequency region of

the input’s spectrum. Moving to more challenging Fashion-

MNIST and CIFAR10 tasks, the high frequency input be-

comes the easiest path for fooling the network. Please see

the supplementary material for additional results when per-

turbing two inputs simultaneously.

4.3. Exp 3: Explainability and localization

(a) Grad-CAM heatmap visualizations. Grad-CAM [36]

provides class-discriminative localization maps, based on

the feature maps of a convolutional layer, highlighting the

most informative features for the classification task. Here,

we use the features of the last convolutional layer. The ex-

tracted heatmap is restored to the original image scale, thus

producing a coarser map in the case of the BU whose fea-

ture map size at the final layer is smaller. On the contrary,

for TD the corresponding scale of the feature maps matches

the scale of the input, hence Grad-CAM outputs a finer map.

The Grad-CAM heatmaps corresponding to a BU and

TD network are provided in figure 7. These are ob-

tained from various layers of a ResNet18 architecture [12]

trained on the Imagenette dataset [18]. For further infor-

mation about the setup please refer to supplementary ma-

terial. “Layer 1” corresponds to the activation of the in-

put to the first group of residual blocks, and “Layer 2” to

“Layer 5” to the activations of the output of each of these

four groups, each one corresponding to different spatial res-

olution. The visualizations demonstrate that TD follows an

opposite, coarse-to-fine path starting from a coarser repre-

sentation and gradually enriching it with higher frequency

information. Hence, TD networks do not only mirror the

BU solely in the architectural design, but also in their learn-

ing process.

Additional heatmaps corresponding to correctly classi-

fied images, taken from the last convolutional layer of the

networks are visualized in figure 8. The figures depict the

coarse localization in BU versus the fine localization in

TD. We selected intentionally images with multiple ob-

jects. The TD networks recognize objects based on fine-

grained information: such as the spots on the dog, the cross

on the church or boundary information of various objects.
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Figure 7. Exp 3.(a): Fine-to-coarse versus coarse-to-fine processing. We show Grad-CAM heatmaps for ResNet18 BU versus its respective

TD, trained on the Imagenette dataset [18] for a random validation image. Higher layer index means increased depth in the architecture:

“Layer 1” corresponds to the activation of the input to the first group of residual blocks, and “Layer 2” to “Layer 5” to the activations of the

output of each of these four groups, each one corresponding to different spatial resolution. Top: the BU network, employing fine-to-coarse

processing. Bottom: the respective TD network following the opposite path, starting with a holistic representation and gradually adding

higher frequency information in deeper layers.
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Figure 8. Exp 3.(a): Grad-CAM heatmaps corresponding to the last convolutional layer in the network. Top: The original input image,

randomly selected from the validation set. Middle: Corresponding Grad-CAM heatmaps for the BU ResNet18. Bottom: Grad-CAM

heatmaps for the TD ResNet18. Contrary to the coarse output of the BU , the TD network outputs high frequency feature maps, based on

which the final classification is performed. TD recognized objects based on their fine-grained attributes: such as the spots on the dogs, or

the cross on the church, or shape information. (See supplementary material for additional results.)
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Figure 9. Exp 3.(b): Precision and recall for the MNIST and

Fashion-MNIST datasets using the NIN-light architecture. The

numbers are reported over four runs and we also plot standard de-

viations. For each run, models are trained from scratch and the

set of TP (true positive), FP (false positive), FN (false negative) is

computed, between the Grad-CAM heatmaps and the segregated

objects. The TD model has higher precision on both MNIST and

Fashion-MNIST due to more accurate object localization, while

having slightly lower recall than BU on the Fashion-MNIST.

(b) Weakly-supervised object localization. For a quan-

titative evaluation of the localization abilities of TD, we

used the MNIST and Fashion-MNIST datasets and the NIN-

light model as a backbone architecture. Figure 9 shows

mean precision and recall scores for the TD and BU mod-

els over four runs. For each run models were trained from

scratch, then TP (true positive), FP (false positive), FN

(false negative) values were computed between the Grad-

CAM heatmaps and the thresholded objects, corresponding

to the test set of the considered task. We used a threshold

empirically set to t = 0.2. Based on the computed values

precision and recall scores were extracted and aggregated

over the four runs. For a fair comparison only the samples

correctly classified from both TD and BU were considered.

The TD models report higher precision for both tasks

considered, suggesting finer object localization. The lower

recall scores for the Fashion-MNIST is attributed to the

higher number of FN compared to the BU model. The

larger object sizes of the Fashion-MNIST task, along with

the coarse output of the BU model, being able to capture a

greater extent of them, leads to fewer FN. On the contrary,

the TD models focus on finer aspects of the objects, which

are informative for the classification task. Considering

the fine-grained focus in the Grad-CAM outputs and the

potential for weakly-supervised object localization, our

proposed TD networks comprise a promising direction for

future research.

5. Discussion

The current work aims at providing a fresh perspective

on the architecture of CNNs, which is currently taken for

granted. The coarse-to-fine pathway is biologically inspired

by how humans perceive visual information: first under-

standing the context and then filling in the salient details.

One downside of our proposed TD networks is that ex-

panding dimensions at increased network depth leads to

memory and computational bottlenecks. This is due to the

feature map size being larger at higher depths. Moreover,

for the same reason, adding fully-connected layers before

the output layer of the TD architectures leads to a vast in-

crease in the number of model parameters. Hence, fully

convolutional networks are preferable. This increase in

memory is also more visible with large-scale datasets such

as ImageNet [2]. A simple workaround requiring no ar-

chitectural adaptations would be to employ mixed-precision

training, which would decrease the memory requirements,

but would increase the computational complexity. Instead

of increasing the spatial resolution of the feature maps at

later depths, we could use patches of the input of limited

sizes. The selection of these informative patches could

be defined using the Grad-CAM heatmaps by selecting the

high-activation areas of the heatmap, or considering self-

attention mechanisms [45]. In addition to addressing the

aforementioned limitations, we find the weakly-supervised

setting to be a promising area of future research.

6. Conclusion

In the current work, we revisit the architecture of con-
ventional CNNs, aiming at diverging from the manner in
which resolution is typically processed in deep networks.
We propose novel network architectures which reverse the
resolution processing of standard CNNs. The proposed
TD paradigm adopts a coarse-to-fine information process-
ing pathway, starting from the low resolution information,
providing the visual context, and subsequently adding back
the high frequency information. We empirically demon-
strate the applicability of our proposed TD architectures
when starting from a range of baseline architectures, and
considering multiple visual recognition tasks. TD networks
exhibit enhanced robustness against certain types of adver-
sarial attacks. This resistance to adversarial attacks is in-
duced directly by the network design choices. Additionally,
the high spatial dimensions of the feature maps in the last
layer significantly enhance the explainability of the model,
and demonstrate potential for weakly-supervised object lo-
calization tasks.
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Rüdiger von der Heydt. A century of gestalt psychology in

visual perception: I. perceptual grouping and figure-ground

organization. Psychological bulletin, 2012.

[43] Haohan Wang, Xindi Wu, Pengcheng Yin, and Eric P Xing.

High frequency component helps explain the generalization

of convolutional neural networks. CoRR, 2019.

[44] Zuxuan Wu, Caiming Xiong, Yu-Gang Jiang, and Larry S

Davis. Liteeval: A coarse-to-fine framework for resource ef-

ficient video recognition. In Advances in Neural Information

Processing Systems, pages 7778–7787, 2019.

[45] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron

Courville, Ruslan Salakhudinov, Rich Zemel, and Yoshua

Bengio. Show, attend and tell: Neural image caption gen-

eration with visual attention. In International conference on

machine learning, 2015.

[46] Yichong Xu, Tianjun Xiao, Jiaxing Zhang, Kuiyuan Yang,

and Zheng Zhang. Scale-invariant convolutional neural net-

works. CoRR, 2014.

[47] Taojiannan Yang, Sijie Zhu, Shen Yan, Mi Zhang, Andrew

Willis, and Chen Chen. A closer look at network resolution

for efficient network design. CoRR, 2019.

[48] Chengxi Ye, Chinmaya Devaraj, Michael Maynord, Cornelia

Fermüller, and Yiannis Aloimonos. Evenly cascaded convo-

lutional networks. In 2018 IEEE International Conference

on Big Data (Big Data), pages 4640–4647, 2018.

[49] Jianming Zhang, Zhe Lin, Jonathan Brandt, Xiaohui Shen,

and Stan Sclaroff. Top-down neural attention by excitation

backprop. In European Conference on Computer Vision,

2016.

[50] Jie Zhang, Shiguang Shan, Meina Kan, and Xilin Chen.

Coarse-to-fine auto-encoder networks (cfan) for real-time

face alignment. In European conference on computer vision,

pages 1–16, 2014.

[51] Richard Zhang. Making convolutional networks shift-

invariant again. International Conference on Machine

Learning, 2019.

[52] Xilin Zhang, Li Zhaoping, Tiangang Zhou, and Fang Fang.

Neural Activities in V1 Create a Bottom-Up Saliency Map.

Neuron, 2012.

[53] Zhendong Zhang, Cheolkon Jung, and Xiaolong Liang. Ad-

versarial defense by suppressing high-frequency compo-

nents. CoRR, 2019.

[54] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva,

and Antonio Torralba. Learning deep features for discrimi-

native localization. In Proceedings of the IEEE conference

on computer vision and pattern recognition, 2016.


