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Abstract

Biological vision adopts a coarse-to-fine information
processing pathway, from initial visual detection and bind-
ing of salient features of a visual scene, to the enhanced
and preferential processing given relevant stimuli. On the
contrary, CNNs employ a fine-to-coarse processing, moving
from local, edge-detecting filters to more global ones ex-
tracting abstract representations of the input. In this paper
we reverse the feature extraction part of standard bottom-up
architectures and turn them upside-down: We propose top-
down networks. Our proposed coarse-to-fine pathway, by
blurring higher frequency information and restoring it only
at later stages, offers a line of defence against adversar-
ial attacks that introduce high frequency noise. Moreover,
since we increase image resolution with depth, the high res-
olution of the feature map in the final convolutional layer
contributes to the explainability of the network’s decision
making process. This favors object-driven decisions over
context driven ones, and thus provides better localized class
activation maps. This paper offers empirical evidence for
the applicability of the top-down resolution processing to
various existing architectures on multiple visual tasks.

1. Introduction

In human biological vision, perceptual grouping of vi-
sual features is based on Gestalt principles, where factors
such as proximity, similarity or good continuation of fea-
tures generate a salient percept [42]. Salient objects are
rapidly and robustly detected and segregated from the back-
ground in what is termed the “pop-out” effect [7, 22]. This
initial detection and grouping of salient features into a co-
herent percept, leads to preferential processing by the visual
system, described as stimulus-driven attention [52]. For rel-
evant visual stimuli, the exogenously directed attention is
sustained, and results in a more detailed visual evaluation
of the object. This typical pipeline of perception and atten-
tion allocation in biological vision represents an efficient,
coarse-to-fine processing of information [14]. In contrast,
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Figure 1. A coarse-to-fine versus fine-to-coarse processing path-
way. The conventional fine-to-coarse pathway in a CNN sacri-
fices localization for semantically richer information. The oppo-
site path, proposed in this paper, starts from the coarsest input and
focuses on the context: given the sky, grass and building, it is
clearly a landscape scene of a building. Moving to finer represen-
tations of the input, the focus shifts to local information. Archi-
tectural aspects of the building, and the cross on the top, are now
the most informative for classifying the image as a church. Our
proposed coarse-to-fine pathway is in line with human biological
vision, where detection of global features precedes the detection of
local ones, for which further processing of the stimuli is required.

modern CNNs (Convolutional Neural Networks) do not in-
corporate this perspective [12, 23, 38, 40].

Standard CNNs begin with the high resolution input, and
propagate information in a fine-to-coarse pathway. Early
layers learn to extract local, shareable features, whereas
deeper layers learn semantically rich and increasingly in-
variant representations. In this paper we propose the rever-
sal of the conventional feature extraction of standard CNNs,
as depicted in Figure 1. More specifically, we suggest the
adoption of a coarse-to-fine processing of the input, which



can be interpreted as gradual focusing of visual attention.
The top-down hierarchy first extracts the gist of a scene,
starting from a holistic initial representation, and subse-
quently enhances it with higher frequency information.

A growing body of literature since the seminal work
of [10, 41] shows that adversarial perturbations with high-
frequency components may cause substantial misclassifica-
tions. Suppressing higher frequencies in the input image, as
proposed in our top-down paradigm, can provide a first line
of defence. At the same time, explainability of the decision
making process of CNNs has recently emerged as an impor-
tant research direction [36, 54]. In this context, our coarse-
to-fine processing scheme, having feature maps with higher
spatial resolution at deeper layers, favors object-driven de-
cisions over context-driven ones, and provides better local-
ized class activation maps.

We make the following contributions: (i) We propose
biologically inspired top-down network architectures, ob-
tained by reversing the resolution processing of conven-
tional bottom-up CNNs; (ii) We analyze various methods
of building top-down networks based on bottom-up coun-
terparts as well as the difference in resolution-processing
between these models, providing a versatile framework
that is directly applicable to existing architectures; (iii)
We compare our proposed model against the baseline on
a range of adversarial attacks and demonstrate enhanced
robustness against certain types of attacks. (iv) We find
enhanced explainability for our top-down model, with
potential for object localization tasks. Trained models
and source code for our experiments are available online:
https://github.com/giannislelekas/topdown.

2. Related work

Coarse-to-fine processing. Coarse-to-fine processing is an
integral part of efficient algorithms in computer vision. It-
erative image registration [30] gradually refines registration
from coarser variants of the original images, while in [16] a
coarse-to-fine optical flow estimation method is proposed.
Coarse-to-fine face detection is performed by processing
increasingly larger edge arrangements in [8], and coarse-
to-fine face alignment using stacked auto-encoders is in-
troduced in [50]. Efficient action recognition is achieved
in [44] by using coarse and fine features coming from
two LSTM (Long Short-Term Memory) modules. In [34]
coarse-to-fine kernel networks are proposed, where a cas-
cade of kernel networks are used with increasing complex-
ity. Existing coarse-to-fine methods consider both coarse
input resolution, as well as gradually refined processing.
Here, we also focus on coarse-to-fine image resolution,
however we are the first to do this in a single deep neural
network, trained end-to-end, rather than in an ensemble.

Bottom-up and top-down pathways. Many approaches
exploit high spatial resolution for finer feature localization,
which is crucial for semantic segmentation. The U-net [33]
and FPN (Feature Pyramid Networks) [29] merge informa-
tion from bottom-up and top-down pathways, combining
semantically rich information of the bottom-up with the fine
localization of the top-down stream. Similarly, combina-
tions of a high-resolution and a low-resolution branch were
proposed for efficient action recognition [5], for face hal-
lucination [25], and depth map prediction [3]. Top-down
signals are also used to model neural attention via a back-
propagation algorithm [49], and to extract informative lo-
calization maps for classification tasks in Grad-CAM [36].
Similarly, we also focus on top-down pathways where we
slowly integrate higher levels of detail, however our goal
is biologically-inspired resolution processing, rather than
feature-map activation analysis.

Multi-scale networks. Merging and modulating infor-
mation extracted from multiple scales is vastly popular
[15, 21, 47, 48, 46]. In [48] feature maps are resized by a
factor to obtain cascades of multiple resolutions. Incremen-
tal resolution changes during GAN (Generative Adversar-
ial Network) training are proposed in [20]. Convolutional
weight sharing over multiple scales is proposed in [1, 47].
Similarly [6] performs convolutions over multiple scales in
combination with residual connections. In [21] convolu-
tions are performed over a grid of scales, thus combining
information from multiple scales in one response, and [39]
combines responses over multiples scales, where filters are
defined using 2D Hermite polynomials with a Gaussian en-
velope. Spatial pyramid pooling is proposed in [11] for ag-
gregating information at multiple scales. In this work, we
also extract multi-resolution feature maps, in order to start
processing from the lowest image scale and gradually re-
store high frequency information at deeper layers.

Beneficial effects of blurring. Suppressing high frequency
information by blurring the input can lead to enhanced ro-
bustness [43, 53]. Models trained on blurred inputs ex-
hibit increased robustness to distributional shift [19]. The
work in [9] reveals the bias of CNNs towards texture, and
analyzes the effect of blurring distortions on the proposed
Stylized-ImageNet dataset. Anti-aliasing by blurring before
downsampling contributes to preserving shift invariance in
CNNs [51]. By using Gaussian kernels with learnable vari-
ance, [37] adapts the receptive field size. Rather than chang-
ing the receptive field size, works such as [27, 26, 31] use
spatial smoothing for improved resistance to adversarial at-
tacks. Similarly, we also rely on Gaussian blurring before
downsampling the feature maps to avoid aliasing effects,
and as a consequence we observe improved robustness to
adversarial attacks.
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Figure 2. Left: The bottom-up (BU) baseline network. Feature maps decrease in spatial resolution with network depth. Right: The
proposed top-down (7' D) network. The T'D model reverses the feature extraction pathway of the baseline network. It employs three inputs
from highest to lowest scale, starts processing from the lowest resolution and progressively adds high resolution information.

3. Top-down networks

Top-down (1'D) networks mirror the baseline bottom-up
(BU) networks, and reverse their feature extraction path-
way. Information flows in the opposite direction, moving
from lower to higher resolution feature maps. The initial in-
put of the network corresponds to the minimum spatial reso-
lution occurring in the BU baseline network. Downscaling
operations are replaced by upscaling, leading to the coarse-
to-fine information flow. By upscaling, the network can
merely “hallucinate” higher resolution features. To restore
the high frequency information, we use resolution merges,
which combine the hallucinated features with higher fre-
quency inputs, after each upscaling operation. Figure 2 de-
picts the difference between the BU architecture and our
proposed T'D architecture.

3.1. Input and feature map resizing

To avoid artifacts hampering the performance of the net-
work [51], we blur the inputs before downsampling. For the
upsampling operation we use interpolation followed by con-
volution. We have experimented with both nearest neigh-
bour and bilinear interpolation, and have noticed improved
robustness against adversarial attacks for nearest neighbor
interpolation. We have also considered the use of transpose
convolutions, however we did not adopt these due to detri-
mental checkerboard artifacts.

3.2. Merging low and high resolution

Figure 3 depicts the considered method for merging the
high resolution input with the low resolution information.
We first upsample the low resolution input viaa 1 x 1 con-
volution and use an element-wise addition with the high-
resolution branch. This information is then concatenated
with the original high resolution information on the channel
dimension. We subsequently use a 3 x 3 convolution to ex-
pand the receptive field of the filters. The proposed merging
of information slightly increases the number of parameters,
while being effective in practice.

ERF (effective receptive field) size computation. Neu-
rons in each layer ¢ of a typical bottom-up network has a
single ERF size r; determined by the kernel size k; and the
cumulative stride m; (given stride s; at layer ¢).

ri =ri—1+ (ki — 1) mi_q
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Assuming only 3 x 3 convolutions with stride 1, the exam-
ple BU architecture in Figure 2 will have an ERF size of 3
pixels, and 18 pixels in each direction after the first and final
convolutional layers, respectively. In contrast, for the 7'D
network, considering a Gaussian blurring window of width
60, the lowest resolution branch will already have an ERF
size of 12042 at the input level and of 120+ 10 after the
first convolutional layer (comparable to the final layer of a
BU network already with o = 2/3 pixels). Furthermore,
in contrast to BU, output from neurons with varying ERFs
are propagated through the merging points. To get a lower
bound on the T'D EREF sizes, we consider resolution merg-
ing methods which do not provide RF enlargement (e.g. as
depicted in fig. 3, but without the 3 x 3 convolution at the
end). Thus, at the final merging point of the T'D architec-
ture, ERF sizes of 3 pixels and 120414 pixels are merged
together. In conclusion, already from the first layer, 7'D has
the ERF size that the BU only obtains at the last layer.
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Figure 3. Merging low and high-frequency feature maps: we use a
11 convolution followed by an element-wise addition; this infor-
mation is concatenated with the high-resolution input and followed
by a 3 x 3 convolution that expands the receptive field size.



3.3. Filter arrangement

Feature extraction pathway of the T'D network reverses
the BU: information propagates from lower to higher spa-
tial dimensions in a T'D network, while the number of fil-
ters shrinks with increasing depth. The choice of expand-
ing the number of filters at deeper layers in the BU net-
work is efficiency-oriented. As the feature map resolution
decreases, the number of channels increases, retaining the
computational complexity roughly fixed per layer. Typi-
cally, in standard architectures the filters are doubled every
time dimensions are halved [12, 38].

In our method we consider three options for deciding the
number of filters per layer: the 7'D model which is exactly
the opposite of the BU in that the number of channels are
reduced with depth; the uniform model (T'D,,,;) where the
layers have a uniform number of filters; and the reversed
model (T'D,..,,) which follows the BU filter arrangement,
with channel dimension widened with depth.

4. Experiments

In Exp 1 we evaluate the three different filter arrange-
ment options proposed for the top-down model. We com-
pare these model variations with the bottom-up baseline on
the MNIST, Fashion-MNIST and CIFARI10 classification
tasks. In Exp 2 we evaluate the robustness of our pro-
posed model against various adversarial attacks applied on
the same datasets. Finally, in Exp 3 we illustrate the ex-
plainability capabilities of our top-down model when com-
pared to the bottom-up, and demonstrate its benefits for a
small object localization task.

Experimental setup. We compare our 7'D proposal with
its respective BU baseline on MNIST, Fashion-MNIST and
CIFAR10. For the simpler MNIST tasks we consider as
baselines the “LeNetFC”, a fully-convolutional variant of
LeNet [24] and following [28], a lightweight version of
the NIN (Network-In-Network) architecture, namely “NIN-
light” with reduced filters. The original architecture was
used for the CIFAR10 task, along with the ResNet32 intro-
duced in [12] incorporating the pre-activation unit of [13].
Batch Normalization [17] is used in all the networks prior
to the non-linearities. The corresponding 7'D networks are
defined based on their BU baselines. Table 1 depicts the
number of parameters of different models. For T'D we con-
sider three variants: 7D — which is mirroring the BU archi-
tecture also in terms of filter depth; 7' D,,,,; using uniform
filter depth; and T'D,..,, where the filter depth of the 7D
is reversed, thus following the filter depth of BU. There
is an increase in the number of parameters for the 7'D net-
works, because we need additional convolutional layers for
merging the high and low resolution information.

We abide by the setup found in the initial publications
for the BU models. For the T'D networks we performed a

Model #parameters

BU TD TDyni TDyey

LeNetFC 8k 14k 23k 58k
NIN-light 62k 213k 215k 214k
ResNet32 468k 528k 320k 563k
NIN 970k 3,368k 3,397k 3,388k

Table 1. Number of trainable parameters for the different architec-
tures considered. Different rows correspond to the different base-
line architectures and columns indicate the bottom-up model and
the three top-down variants with different filter arrangements (sec-
tion 3.3). There is an increase in the number of parameters for
the T'D networks, because they merge the high and low resolution
information using additional convolutional layers.

linear search for learning rate, batch size, and weight decay.
For all cases we train with a 90/10 train/val split, using SGD
with momentum of 0.9 and a 3-stage learning rate decay
scheme, dividing the learning rate by 10 at 50% and 80%
of the total number of epochs. For the CIFAR10 dataset we
test with and without augmentation—employing horizon-
tal translations and flips. We repeat runs four times, with
dataset reshuffling and extracting new training and valida-
tion splits, and report mean and standard deviation of the
test accuracy.

4.1. Exp. 1: Bottom-up versus top-down

Figure 4 shows the test accuracy of the considered mod-
els across datasets. The 7'D networks are on par with, and
in some cases surpassing the corresponding baseline BU
performance. When considering the different filter depth
configurations, 7'D,..,, performs best due to increased rep-
resentational power at higher scales, coming though at cost
of increased complexity. The NIN architecture adopts a
close to uniform filter arrangement, hence the three 7D
variants reach roughly the same performance. We adopt
the T'D variants henceforth, on account of the small gap
in performance and reduced complexity. This experiment
provides empirical evidence of the applicability of the pro-
posed pipeline to different network architectures.

4.2. Exp. 2: Adversarial robustness

We evaluate the robustness of BU versus T'D against
various attacks, where we attack the test set of each dataset
using the Foolbox [32]. For all the attacks, the default pa-
rameters were used. To make the attack bound tighter, we
repeat each attack three times and keep the worst case for
each to define the minimum required perturbation for fool-
ing the network.

Figure 6 provides for each attack, plots of loss in test
accuracy versus the L2 distance between the original and
the perturbed input. 7D networks are visibly more re-
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Figure 4. Exp 1: Comparison of MNIST, Fashion-MNIST, CIFAR10, and CIFAR10_aug (with augmentation) mean test accuracies between
BU and the three different configurations of 7"D proposed in subsection 3.3. T'D networks perform on par with, and at times surpassing,
the baseline performance of its respective BU. Regarding filter depth configurations, 7'D,.. displays the highest performance, at the
cost of increased parameters. Considering the small gap in performance and the increased cost for 7' D,..,,, we henceforth adopt the 7T'D
configuration.
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Figure 5. Exp 2: Test accuracy when extracted adversarial perturbations are fed to either the highest, medium, or lowest scale input of
the 1D network (refer to figure 2), using the NIN-light baseline on MNIST and Fashion-MNIST, and NIN on CIFAR10. The remaining
two inputs are fed the original, unperturbed samples. As the dataset becomes more challenging, the highest vulnerability moves from the
medium input to the highest scale input. This is attributed to the absence of information in the high frequency region for the simpler cases:

i.e. MNIST. (See supplementary material for additional results.)

silient against attacks introducing uncorrelated noise, due
to the coarse-to-fine processing adopted, with downscaled
inputs diminishing the noise. For attacks introducing cor-
related noise such as the “Pointwise” attack [35], the per-
turbed pixels tend to lie in smooth regions of the image.
Thus each single pixel value of O (or 1) in a region of 1s
(or Os) essentially acts as a Dirac delta function. Based on
the convolutional nature of CNNs this type of attack “pol-
lutes” the input with imprints of the learned filters', which
gradually span a greater part of the feature map as more
convolutions are applied. Due to the highly correlated na-
ture of the perturbation, the blurred downsampling can not
completely eradicate the noise, but helps decrease the in-
troduced pollution. On the contrary, for BU networks, the
noise is directly propagated down the network. Addition-
ally, the blurred downsampling wired in the network archi-
tecture offers enhanced robustness against blurring attacks,
as the network encounters the input image at multiple scales

!For imperfect delta function, this yields blurred versions of the filters.

during training, and is, thus, more resilient to resolution
changes. Since anti-aliasing before downsampling is sug-
gested to better preserve shift-invariance [51], we expected
our networks to also be more robust against the “Spatial”
attack [4]. However, no enhanced robustness is reported
for T'D networks; a substantial difference in robustness is
observed for ResNet32, which could be due to the perfor-
mance gap measured in Exp 1 between the T'D and its BU
baseline. We also tested with the T'D,,,,; and T'D,..,, vari-
ants of the ResNet32 architecture, with respective results
provided in the supplementary material.

To get a better insight on 7'D robustness, we introduce
the generated attacks to a single resolution branch of the
T D networks using the NIN-light architecture on MNIST
and Fashion-MNIST, and NIN on CIFAR10. This is dis-
played in figure 5. We feed the extracted perturbations to
either the low, medium or high resolution input branch, as
illustrated in the model architecture in figure 2. For the sim-
pler MNIST task, the medium-resolution input of the net-
work is the most vulnerable, which is mainly attributed to
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Figure 6. Exp 2: Comparison of adversarial robustness considering different datasets, models and attacks. The x-axis of each figure
corresponds to the L2 distance between the original and the perturbed image and the y-axis is the introduced loss in test accuracy. A lower
curve suggests increased robustness. Green curves corresponding to 7'D are consistently underneath the respective red curves of the BU
networks, for most attacks. The 7D networks are more robust against both correlated and uncorrelated noise attacks due to the coarse-
to-fine processing, suppressing high frequency information on earlier stages. Additionally, the blurred downsampling offers enhanced
robustness against blurring attacks. For spatial attacks, we see no increased robustness. (See supplementary material for additional results.)

the absence of information in the high frequency region of
the input’s spectrum. Moving to more challenging Fashion-
MNIST and CIFARIO tasks, the high frequency input be-
comes the easiest path for fooling the network. Please see
the supplementary material for additional results when per-
turbing two inputs simultaneously.

4.3. Exp 3: Explainability and localization

(a) Grad-CAM heatmap visualizations. Grad-CAM [36]
provides class-discriminative localization maps, based on
the feature maps of a convolutional layer, highlighting the
most informative features for the classification task. Here,
we use the features of the last convolutional layer. The ex-
tracted heatmap is restored to the original image scale, thus
producing a coarser map in the case of the BU whose fea-
ture map size at the final layer is smaller. On the contrary,
for T'D the corresponding scale of the feature maps matches
the scale of the input, hence Grad-CAM outputs a finer map.

The Grad-CAM heatmaps corresponding to a BU and
TD network are provided in figure 7. These are ob-
tained from various layers of a ResNet18 architecture [12]

trained on the Imagenette dataset [18]. For further infor-
mation about the setup please refer to supplementary ma-
terial. “Layer 1” corresponds to the activation of the in-
put to the first group of residual blocks, and “Layer 2” to
“Layer 5 to the activations of the output of each of these
four groups, each one corresponding to different spatial res-
olution. The visualizations demonstrate that 7D follows an
opposite, coarse-to-fine path starting from a coarser repre-
sentation and gradually enriching it with higher frequency
information. Hence, T'D networks do not only mirror the
BU solely in the architectural design, but also in their learn-
ing process.

Additional heatmaps corresponding to correctly classi-
fied images, taken from the last convolutional layer of the
networks are visualized in figure 8. The figures depict the
coarse localization in BU versus the fine localization in
TD. We selected intentionally images with multiple ob-
jects. The T'D networks recognize objects based on fine-
grained information: such as the spots on the dog, the cross
on the church or boundary information of various objects.
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Figure 7. Exp 3.(a): Fine-to-coarse versus coarse-to-fine processing. We show Grad-CAM heatmaps for ResNet18 BU versus its respective
T D, trained on the Imagenette dataset [18] for a random validation image. Higher layer index means increased depth in the architecture:
“Layer 1” corresponds to the activation of the input to the first group of residual blocks, and “Layer 2" to “Layer 5 to the activations of the
output of each of these four groups, each one corresponding to different spatial resolution. Top: the BU network, employing fine-to-coarse
processing. Bottom: the respective 7D network following the opposite path, starting with a holistic representation and gradually adding
higher frequency information in deeper layers.

Figure 8. Exp 3.(a): Grad-CAM heatmaps corresponding to the last convolutional layer in the network. Top: The original input image,
randomly selected from the validation set. Middle: Corresponding Grad-CAM heatmaps for the BU ResNet18. Bottom: Grad-CAM
heatmaps for the 7D ResNet18. Contrary to the coarse output of the BU, the T'D network outputs high frequency feature maps, based on
which the final classification is performed. 7D recognized objects based on their fine-grained attributes: such as the spots on the dogs, or
the cross on the church, or shape information. (See supplementary material for additional results.)
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Figure 9. Exp 3.(b): Precision and recall for the MNIST and
Fashion-MNIST datasets using the NIN-light architecture. The
numbers are reported over four runs and we also plot standard de-
viations. For each run, models are trained from scratch and the
set of TP (true positive), FP (false positive), FN (false negative) is
computed, between the Grad-CAM heatmaps and the segregated
objects. The 7D model has higher precision on both MNIST and
Fashion-MNIST due to more accurate object localization, while
having slightly lower recall than BU on the Fashion-MNIST.

(b) Weakly-supervised object localization. For a quan-
titative evaluation of the localization abilities of T'D, we
used the MNIST and Fashion-MNIST datasets and the NIN-
light model as a backbone architecture. Figure 9 shows
mean precision and recall scores for the 7'D and BU mod-
els over four runs. For each run models were trained from
scratch, then TP (true positive), FP (false positive), FN
(false negative) values were computed between the Grad-
CAM heatmaps and the thresholded objects, corresponding
to the test set of the considered task. We used a threshold
empirically set to ¢ = 0.2. Based on the computed values
precision and recall scores were extracted and aggregated
over the four runs. For a fair comparison only the samples
correctly classified from both 7'D and BU were considered.

The T'D models report higher precision for both tasks
considered, suggesting finer object localization. The lower
recall scores for the Fashion-MNIST is attributed to the
higher number of FN compared to the BU model. The
larger object sizes of the Fashion-MNIST task, along with
the coarse output of the BU model, being able to capture a
greater extent of them, leads to fewer FN. On the contrary,
the 7'D models focus on finer aspects of the objects, which
are informative for the classification task. Considering
the fine-grained focus in the Grad-CAM outputs and the
potential for weakly-supervised object localization, our
proposed T'D networks comprise a promising direction for
future research.

5. Discussion

The current work aims at providing a fresh perspective
on the architecture of CNNs, which is currently taken for
granted. The coarse-to-fine pathway is biologically inspired
by how humans perceive visual information: first under-
standing the context and then filling in the salient details.

One downside of our proposed 7'D networks is that ex-
panding dimensions at increased network depth leads to
memory and computational bottlenecks. This is due to the
feature map size being larger at higher depths. Moreover,
for the same reason, adding fully-connected layers before
the output layer of the T'D architectures leads to a vast in-
crease in the number of model parameters. Hence, fully
convolutional networks are preferable. This increase in
memory is also more visible with large-scale datasets such
as ImageNet [2]. A simple workaround requiring no ar-
chitectural adaptations would be to employ mixed-precision
training, which would decrease the memory requirements,
but would increase the computational complexity. Instead
of increasing the spatial resolution of the feature maps at
later depths, we could use patches of the input of limited
sizes. The selection of these informative patches could
be defined using the Grad-CAM heatmaps by selecting the
high-activation areas of the heatmap, or considering self-
attention mechanisms [45]. In addition to addressing the
aforementioned limitations, we find the weakly-supervised
setting to be a promising area of future research.

6. Conclusion

In the current work, we revisit the architecture of con-
ventional CNNs, aiming at diverging from the manner in
which resolution is typically processed in deep networks.
We propose novel network architectures which reverse the
resolution processing of standard CNNs. The proposed
T'D paradigm adopts a coarse-to-fine information process-
ing pathway, starting from the low resolution information,
providing the visual context, and subsequently adding back
the high frequency information. We empirically demon-
strate the applicability of our proposed T'D architectures
when starting from a range of baseline architectures, and
considering multiple visual recognition tasks. 7'D networks
exhibit enhanced robustness against certain types of adver-
sarial attacks. This resistance to adversarial attacks is in-
duced directly by the network design choices. Additionally,
the high spatial dimensions of the feature maps in the last
layer significantly enhance the explainability of the model,
and demonstrate potential for weakly-supervised object lo-
calization tasks.
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