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Abstract

While semi-supervised learning (SSL) algorithms pro-

vide an efficient way to make use of both labelled and un-

labelled data, they generally struggle when the number of

annotated samples is very small. In this work, we consider

the problem of SSL multi-class classification with very few

labelled instances. We introduce two key ideas. The first is

a simple but effective one: we leverage the power of trans-

fer learning among different tasks and self-supervision to

initialize a good representation of the data without making

use of any label. The second idea is a new algorithm for

SSL that can exploit well such a pre-trained representation.

The algorithm works by alternating two phases, one fit-

ting the labelled points and one fitting the unlabelled ones,

with carefully-controlled information flow between them.

The benefits are greatly reducing overfitting of the labelled

data and avoiding issue with balancing labelled and un-

labelled losses during training. We show empirically that

this method can successfully train competitive models with

as few as 10 labelled data points per class. More in gen-

eral, we show that the idea of bootstrapping features using

self-supervised learning always improves SSL on standard

benchmarks. We show that our algorithm works increas-

ingly well compared to other methods when refining from

other tasks or datasets.

1. Introduction

The success of Deep Learning (DL) in computer vision

comes at the cost of collecting large quantities of labelled

data. In many applications, data collection is increasingly

inexpensive, but data annotation still involves manual and

thus expensive labor. Semi-supervised learning (SSL) can

significantly reduce the cost of learning new models by us-

ing large datasets of which only a small proportion comes

with manual labels.

When only some data samples are annotated, one can
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exploit the structure in the data to infer, implicitly or ex-

plicitly, the missing annotations. For example, the class of

an image generally does not change if the camera is slightly

shifted while maintaining the focus on the same point. The

resulting viewpoint change can be approximated by a de-

formation or warp of the image. A change in illumination,

which also generally leaves the image class unchanged, can

instead be approximated by a linear transformation of the

image range. Hence, an effective way of propagating labels

is to enforce consistency in prediction: if one of these per-

turbations is applied to the image, then the prediction should

remain the same.

A simple way to incorporate such invariance while train-

ing a deep neural network is to consider image augmen-

tations such as rotations and flips and other perturbations

such as Dropout [34], which is injected directly at the level

of the features. Such perturbations are used as a form of

regularization for supervised learning to avoid overfitting.

The idea is that a perturbed image should maintain the same

ground-truth label as the original image. In the SSL setting,

where most labels are unknown, augmentation can be used

to encourage the predictions of unlabelled data instances to

be ‘consistent’, i.e. to remain stable across small variations

of the input image, regardless of which specific label the

data point takes. If data samples are dense enough, stabil-

ity to local perturbations may be sufficient to propagate the

known labels to the rest of the dataset. Similar ideas are

used in many approaches to semi-supervised classification,

including the recent works of [16, 21, 35]. Still, perfor-

mance degrades quickly with a diminishing number of la-

belled instances per class [24].

We can explain this performance drop as follows. Per-

turbations can bridge some of the gaps between labelled

data points, but the effect is ultimately only local. The

ability to transport information across points that are farther

apart (since there are fewer of them) depends mainly on the

smoothness of the data representation. For example, the Eu-

clidean distance is essentially meaningless in image space,

so that transferring labels between images that are close as

vectors of pixels is very ineffective. On the other hand, if
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Figure 1. Consistency loss with the ramp-up strategy. The Π-model [16] is applied to the ‘two moons’ problem of [21] and various

steps of the optimization are shown. At first, the learned network creates a hard border (first panel) based on the labelled anchor points (in

yellow). Then the border is progressively stretched as the consistency loss is enforced more strongly (second and third panels). Overall,

the Π-model works well to label connected components of the data space. (Darker regions are more confident; best viewed in color.)

images are first encoded via a representation function in a

low dimensional space whose smoothness intrinsically cap-

tures some of the relevant invariances, then augmentation

can be much more effective.

Unfortunately, simply training a representation such as

a deep neural network on a semi-supervised dataset is un-

likely to solve the problem. In fact, it is difficult to learn

effectively from a label-deficient dataset with a small num-

ber of data points with known labels and a very large num-

ber of data points with unknown labels. In general, la-

belled points would work as “anchors”: since their label

is known with certainty, the neural network is forced to fit

those points with confidence, so that the information ex-

tracted from them can be reliably propagated. However,

when the ratio of labelled vs unlabelled points is very un-

balanced, the most likely result is that the neural network

would overfit the few labelled points, which would then

cease to have an influence on the unlabelled points, thus

preventing effective propagation.

We make several contributions to address such shortcom-

ings. The first contribution is a simple but effective one:

we propose to use self-supervision to bootstrap a good rep-

resentation of the data before running our SSL algorithm.

Self-supervision defines a pretext-task where a full set of

labels can be generated. While these labels are unrelated to

the task at hand, we exploit the ability of deep network to

transfer effectively between tasks and re-use the pre-trained

feature to initialize SSL. Note that the data are the same, it

is only the task which is being transferred.

The other contribution is a new SSL algorithm that can

leverage the bootstrapped representation well. The core

idea is that, instead of fitting labelled and unlabelled data

points simultaneously, we alternate between two phases of

optimization. The information flow between the two phases

is carefully controlled to minimize the risk of overfitting.

Namely, during phase one we fit the labelled data, but only

change the final layer of the representation. Then, the re-

sulting classifier is used to generate pseudo-labels for phase

two, where the unlabelled data are fitted. At this point, the

representation is reset to initial state (from the pre-text task)

and fine-tuned using the pseudo-labels only. Finally, the

fine-tuned representation is passed back to phase one to re-

train the classifier and obtain new-pseudo labels. In this

way, the few available data points are only used to fit a

small number of model parameters (a classifier layer only),

whereas the large unlabelled dataset is used to fine-tune the

representation. We show empirically that this greatly re-

duces overfitting.

We add other technical contributions to this basic

scheme. The most significant in terms of final perfor-

mance is inspired by cross-validation, Tri-Training [41] and

weakly supervised localization [9], and amounts to split our

dataset in different subsets, considering only part of the

unlabelled data at each cycle of the alternate optimization

above.

Empirically, we show that our method achieve close

to state-of-the-art results in a large number of benchmark

cases we test. Furthermore, in addition to showing that our

method is effective as a standalone algorithm, we also show

two other potential utilities of it. First it is able to refine re-

sults obtained from others SSL methods and second it works

best among other SSL algorithm when transferring informa-

tion from one dataset to another. Finally, further studies on

architectures and self-supervised task were carried out to

assess their importance in improving SSL accuracy.

2. Related work

There exist a vast number of classic works on SSL [4]

across many disciplines [7, 31, 36]. In the classification

context, one common approach is to optimise the conven-

tional cross-entropy loss on the labelled data together with

a regularisation term that propagates information to the un-

labelled data. One popular form of ‘regularisation’ is the

consistency of predictions to perturbation [1, 29]. [26] in-

troduced a ladder network that minimises the reconstruc-

tion loss between the network outputs from a given sample

and its stochastically-perturbed counterpart. [16] simplified

the ladder network into two temporal methods: Π-Model

and Temporal Ensembling. Both encourage the output of

the network for each unlabelled instance to be as similar



as possible between different training epochs, by penalis-

ing the inconsistency between current network predictions

and past predictions. More recently, the Mean Teacher [35]

extended these methods by ensembling over the parameter

space: instead of recalling past predictions they run an ex-

ponential moving average over the weights of the network

to build a Teacher model. The Teacher network is then used

to enforce consistency in predictions with the main model,

called the Student. Mean Teacher was extended in [19] by

a certainty-driven consistency loss that focuses on the unla-

belled training samples whose labels are the most uncertain.

Similarly, [21] considered instead adversarial perturbations

that maximise the change in model prediction. [12] also

used this idea together with gradient alignment between la-

belled and unlabelled data to further improve classification

results.

SSL approaches alternative to perturbations include

GANs [30, 33]. [6] introduced a memory-assisted deep

neural network (MA-DNN) which uses an external mem-

ory module to maintain the category prototypes and pro-

vide guidance for learning with unlabelled data. Alterna-

tively, [20] uses a label graph to refine the Mean Teacher’s

model predictions. When using graphs, label propaga-

tion [13, 18, 42] is also commonly used. [17] proposed

to iteratively assign pseudo-labels for unlabelled data and

pick the high-confidence assignments as training data in

the subsequent learning steps, combined with the entropy

loss to further regularise training. The idea of pseudo la-

belling is also used alongside with interpolation in [37].

Tri-training [41] and its deep network extension Tri-Net[5]

use co-training [3] to generate three classifiers from three

different portions of the data and let them label the unla-

belled data. [24] shows that consistency is generally the

most resilient method as the number of labelled instances

decreases, but all such methods suffer significantly when

this number is decreased past a certain point.

Transfer learning is not often used in SSL. [8] and

[24] used a pre-trained network to fine-tune it on a re-

stricted part of the labelled set. Closer to our approach,

[40] also combined both SSL algorithms and transfer learn-

ing. However, their approach used a pre-trained network

from ImageNet[28] to train SSL methods on non-standard

datasets for SSL. Our work extends their study to transfer

learning from self-supervision and propose a method that

surpasses current SSL technique when transferring repre-

sentation across dataset.

In addition, we notice very recent concurrent works [2,

32] showing promising results. However, none of them fo-

cuses on SSL with scarce annotations.

3. Method

We introduce a SSL algorithm that can work effectively

when there are only very few annotated data points, in-

Algorithm 1 Proposed Alternative Optimisation Algorithm

1: Preparation phase:

2: Train a self-supervised method on the whole dataset

and freeze the first blocks’ weights. Replace the last

layer with one dimensioned for the classification task.

The trainable weights now form a network Nt

3: Main Loop:

4: for i ∈ {1, . . . , N} do

5: Supervised-training: Fine-tune Nt classification

layer on the labelled subset with cross-entropy loss

Llabelled.

6: Labels assignement: Use Nt to assign a label yi to

each unlabelled sample xi.

7: Dataset split: Create a training set Ti from a ran-

dom split of the unlabelled data.

8: Restart: Reassign Nt to the weights extracted from

the preparation phase.

9: Unsupervised-training: Train Nt on the unla-

belled metaset Ti with consistency and pseudo labelling

loss: Lunlabelled = 0.5Ltemp + 0.5Lpseudo.

10: end for

cluding avoiding supervised pre-training on large labelled

datasets. The algorithm starts by a preparation phase (sec-

tion 3.1, line 1 in algorithm 1) that initializes the weights

of the model using self-supervision, followed by alternating

between two phases (section 3.2, lines 5-9 in algorithm 1),

where in phase one a subset of the weights are fitted to the

few available labels and in phase two the whole model is

re-trained from scratch using pseudo-labels on all the data.

3.1. Transfer learning and self­supervision

SSL algorithms risk overfitting the available labelled

data points, especially when there is ony a small number of

them. Data augmentation and other forms of regularisation

can help to some extent, but their effectiveness is limited. A

more effective solution is to pre-train the model on a much

larger dataset, adding to the information contained in the

few labelled data points. Then transfer learning can be used

to fine-tune the pre-trained model using the labelled data.

The most common form of pre-training is to use a large,

external labelled dataset such as ImageNet. In this work,

however, we focus primarily on the case in which labels are

scarce, including in the pre-training phase. Furthermore, we

wish to avoid the use of external data altogether.

In order to do so, instead of using an external labelled

dataset for pre-training, we propose to use instead self-

supervision. Self-supervision uses a pretext task defined on

the available data, both labelled and unlabelled, to bootstrap

the model. The advantage is that self-supervision does not

require any label nor external data.

Empirically, we show that self-supervised pre-



initialization is very good. In particular, excellent

performance can be obtained by freezing most of the model

parameters to their pre-initialized values and use our SSL

algorithm to fine-tune only a small subset of them.

3.2. Alternate optimisation

Given a pre-initialized model, most SSL algorithms fine-

tune it using mini-batches containing a mix of labelled and

unlabelled data. They use a sum of two losses, the first one

enforcing the correct classification of the labelled samples

and the second one enforcing a form of prediction consis-

tency for the unlabelled samples. This consistency term

usually captures the fact that neighbor data points are likely

to have the same label. Often, a ramp-up is used for the

consistency loss [16, 35], so that in the first iterations of

training the model focuses on fitting the labelled data.

The effect of this ramp-up can be visualized using the

‘two moons’ of [21], a simple 2D toy clustering problem.

In fig. 1, we apply the Π-model algorithm of [16] to this

dataset. We see that, before the consistency loss is applied,

the network learns a simple boundary that fits the labelled

anchor points with tightly. Then, when the consistency loss

is applied, the network stretches the boundary to satisfy the

consistency criterion. This causes the classifier to become

less certain near the decision boundary, but more accurate

overall.

A drawback of this approach is that, since both losses are

optimized jointly, they must be carefully balanced by the

choice of appropriate hyper-parameters. This is particularly

true when there are very few label samples, which causes a

large imbalance between the two loss terms. Furthermore,

since mini batches are generally evenly split between la-

belled and unlabelled samples, the few labelled samples will

be seen very frequently by the optimizer, which will thus

overfit them.

Inspired by incremental learning techniques that try to

avoid overfitting on past exemplars while learning new

classes [27], we propose to disentangle the two losses by

alternating the optimisation of labelled and unlabelled data

points while maintaining soft constraints between them.

This method reduces the number of hyper-parameters and

avoids strong overfitting of the labelled data while still ex-

tracting useful knowledge from the labelled set.

In practice, after the preparatory phase of section 3.2 (l.1

in algorithm 1), each task is learnt separately in an alter-

nate fashion with a regularisation term that works as a soft

constraint borrowing information from the other task.

Phase one: fitting the labelled data. In the first part of

our training, we optimise the cross-entropy loss on the la-

belled set Llabelled and train the model for a few epochs.

In this part we only fine-tune the final classification layer

of the network (l.5 in algorithm 1). This way the labelled

samples benefit the most from the feature learnt during op-

timisation on the unlabelled set while not modifying the in-

termediate representation. We then use this trained network

to assign soft or hard pseudo-labels to the unlabelled data.

These pseudo-labels are used in the next phase to fit the un-

labelled data (l.6 in algorithm 1).

Phase two: fitting the unlabelled data. In the second

phase we reset the model with the parameters learnt during

the preparatory phase of section 3.2 (see l.8 in algorithm 1).

Then, we fine-tune the whole architecture on the unlabelled

set using a loss Lunlabelled that is a weighted average of a

term Lpseudo fitting the pseudo-labels estimated in the first

phase, and a second temporal consistency term Ltemp, bor-

rowed from the Π-model of [16]. The idea of the second

term is to match the probability distribution pt−1

i obtained

from the network for a sample xi at epoch t − 1 with the

probability pti assigned at iteration t to the same sample. We

use the KL-divergence between pt−1

i and pti during phase

two. (l.9 in algorithm 1). The loss Lpseudo, besides being

a soft constraint tying phase two to phase one, can also be

viewed as another consistency condition [40] that also helps

reduce the entropy on the final prediction.

Information flow. Note that the model is reinitialised ev-

ery time phase two is entered. This is done to avoid getting

stuck in local minima. Hence, the information that flows

from phase one to phase two is only the pseudo-labels on

the unlabelled data, whereas the information that flows from

phase two back to phase one are the weights of the network

fine-tuned on the unlabelled data.

While these choices may seem ad-hoc, they constitute

the primary reason why our algorithm is able to work well in

a low-labelled-data regime by avoiding overfitting. Thanks

to this technique, the algorithm focuses on fitting one loss

at a time while still allowing information to be exchanged

between the two subtasks. We show in section 4 this ap-

proach robustly improve the quality of the overall classifier

at every step.

3.3. Dataset split

One potential pitfall of alternating optimisation is the

drift that may be induced by training for a long time on

the unlabelled data. Inspired by cross-validation and co-

training [3], we also suggest to split the dataset into several

parts. However, differently from [3] we do not train dif-

ferent models from each split. Instead, at the beginning of

each training cycle we randomly choose two-thirds of the

unlabelled training data to learn from (l.7 in algorithm 1).

The rest of the unlabelled data is held out to reduce the

risk of overfitting to it in the current training cycle. This

way, the held-out samples are more likely to have their la-

bels swapped during pseudo-label generation in the next cy-



cle. Roughly two-thirds of this “fresher” held-out data will

be used to fit the model in the next cycle. The benefits of

this reshuffling procedure diminish as training nears com-

pletion, so all the data is used in the final few phases of

training. In section 4 we demonstrate empirically the bene-

fits of this approach.

4. Experiments

Datasets. Following [6] we mostly use standard image

classification tasks suitably modified to the semi-supervised

context. Each dataset is randomly split in two sets: one

small set containing images with their corresponding labels

evenly divided among classes and another set with the rest

of the image without annotations. For each dataset we eval-

uated our method on the publicly available test set. We used

the same datasets as [6]:

SVHN [23]. A Street View House Numbers dataset includ-

ing 10 classes (0-9) of coloured digit images from Google

Street View. The classification task is to recognise the cen-

tral digit of each image. We use the format-2 version that

provides cropped images sized at 32 × 32, and the stan-

dard 73,257/26,032 training/test data split. We centered

and scaled all images RGB channels based on the extracted

dataset statistics and augmented the data with random crop-

ping.

CIFAR-10 [15]. A natural images dataset containing

50,000 training and 10,000 test image samples from 10 ob-

ject classes. Images have a 32×32 resolution and are evenly

divided among classes. We again pre-processed the data

with centering and scaling and augmented the data with ran-

dom cropping and flipping.

CIFAR-100 [15]. A dataset (with the same image size as

CIFAR-10) containing 50,000/10,000 training/test images

from 100 more fine-grained classes. We used the same pre-

processing and data augmentation as CIFAR-10.

Baselines. We used Mean-Teacher [35] as the main base-

line to experiment alongside with our proposed method.

Additionally we also used MA-DNN [6] on a more re-

stricted set of experiments. For both we used publicly avail-

able code provided by the authors1.

Implementation details. Unless stated otherwise, we

used the ResNet-18 [11] model with then average pooling

and skip connections. We chose RotNet [8] as the self-

supervision method as it is easy to implement and integrate

in any pipeline. For all networks we trained this proxy task

on 200 epochs with a step-wise decaying schedule. A more

thorough study is done in section 4.6. All networks are

trained using Nesterov accelerated gradient method [22].

1https://github.com/CuriousAI/mean-teacher;

https://github.com/yanbeic/semi-memory

We use the same hyper-parameters when training with and

without transfer learning, which have every time been tuned

on the specific task.

4.1. Impact of self­supervision

We first compare Mean-Teacher and our algorithm on

standard classification benchmarks. For every dataset we

trained the network with 10/25/50/100 labels per class, with

an extra experiment of 400 labels per class on CIFAR-

10 as is common practice [6, 16, 35]. In every experi-

ment we keep the same split of the data for each method.

In the default case, models are trained from scratch. For

every method we also used transfer learning from self-

supervision, with only the last two blocks and the last clas-

sification layer used for semi-supervised training (Legends

containing ‘with T.L.’). Results are shown in fig. 2.

This experiment clearly demonstrates the importance of

transfer learning as the number of labelled data per class

decreases. For instance, on CIFAR-10, transfer learning

from self-supervision used with semi-supervision makes

an improvement of over 50 points in classification error

for both our method and Mean Teacher. On SVHN and

CIFAR-10 the performance from 100 labels per class to

10 labels per class decreases by less than 5 points in error.

Performances on CIFAR-100 dropped by a larger amount

when having fewer labels due to the higher complexity of

the dataset, although the performance deteriorate notice-

ably more slowly when using self-supervision pre-training.

Overall this means that self-supervision enables networks to

train with competitive results in the extremely low data set-

ting where standard SSL methods fail. We also emphasise

that we only use the dataset provided and did not use any

regularisation method and very limited data augmentation.

This is particularly crucial and demonstrates that a carefully

chosen self-supervision method can be sufficient to extract

very good features which are sufficient to train good models

with few labels.

For every dataset we see in fig. 2 that our method and

Mean-Teacher obtain similar performance when they both

use transfer from self-supervised networks. However our

method needs a more careful initialisation as its perfor-

mance dropped for models trained from scratch. This can

easily be understood, as fine-tuning on the labelled set

would be more efficient with either an increased number

of labelled data or better intermediate representation. In the

rest of the paper we call a ‘good’ representation of an im-

age, a representation from which it is easier to discriminate

different classes.

In addition, we show that self-supervision can also im-

prove the state-of-the-art performance of a more recent SSL

method. To this end we use MA-DNN [6] with the 10-layers

model proposed in their paper. Again we used RotNet [8]

as the self-supervision method and only fine-tune the last
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Figure 2. Impact of Tranfer learning for SSL classification benchmark. For each dataset we vary the number of labelled data per class

in 10, 25, 50, 100 with an additional experiment on CIFAR-10 with 400 labels per class. We note that for every method, models benefit

from self-supervision. The ‘with T.L’ indicates a model pretrained with RotNet[8]. In addition we can see that our method is getting

competitive results with Mean Teacher. The star point ‘*’ denotes our network trained with supervision only on the full training set. The

shown results are the average of 10 runs per setting.

block and linear layer on the SSL task. We see in fig. 2 that

again, transfer from self-supervision consistently achieves

the best performance, improving their state-of-the-art re-

sults on CIFAR-10 from 11.9% error to 11.1% using 400

labels per class. With the hyper-parameters given in their

paper, we demonstrate again that under equivalent settings,

self-supervision is beneficial to SSL. Finally we found that

MA-DNN was more sensitive to the number of labels per

class. This means that building a reliable template of ev-

ery class requires more annotations, while we observed that

consistency based methods are seemingly showing better

robustness overall.

4.2. Ablation study

To assess the impact of every component of our method

we also conducted an ablation study on the CIFAR-10 SSL

task with 10 labels per class.

We first measure the gain of using random splitting of

the unlabelled set through training cycles as opposed to us-

ing the whole set. We observe in fig. 3 that random dataset

splitting allows much faster progress in the course of train-

ing. When only using pseudo-labelling on the unlabelled

set and no temporal consistency, this technique also leads to

a better optimum.

Then we analyse the effect of the consistency in the train-

ing cycle. The dashed curves correspond to cases where the

temporal consistency is not used. It means that, when train-

ing on the unlabeled set, we only optimise the cross-entropy

on the pseudo-labels previously assigned during the training

phase on the labelled set. Interestingly, we also note that

the performance is still increasing over cycles even without

an explicit consistency loss. In fact, this corroborates the

statement of [40], that the assigned pseudo-labels act as an

implicit consistency across samples (instead of the explicit

consistency across augmented versions of the same sam-

ple) which improves the representation for the next training

phase on the labelled set.

Finally we can observe for the different settings that the

performance is steadily increasing over cycles. The training

indeed does not stall after a few cycles but instead keeps im-

proving the feature representation over the course of alter-

nating optimisation cycles. Alternating optimisation there-

fore refines the results every cycle with each optimisation

helping the next one to reach a better optimum. In addi-
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Figure 3. Ablation study. Starting from a pre-trained model, our

alternating optimisation method makes steady progress over cy-

cles. Dataset random splitting is also effectively speeding-up train-

ing. Default case uses Lunlabelled = Lpseudo. ‘Temp. consis-

tency’ indicates that we use both Ltemp and Lpseudo.

tion, we conduct another ablation experiment skipping re-

initialization (line 8 in algorithm 1). Compared to the two-

phase algorithm with re-initialization, the accuracy drops

by 12 points on CIFAR-10 and even 39 points on CIFAR-

100. When re-initialization is turned on, 10× more samples

switch labels every assignment cycle, thus avoiding local

minima. To the best of our knowledge, other existing SSL



CIFAR-10 CIFAR-100

Labels per class 10 10 25

MT 32.4 23.6 45.7

MT + Self-Sup 86.4 53.7 60.7

MT + Self-Sup + Refinement 87.7 58.3 63.9
Table 1. Our method applied as a refinement of Mean Teacher

(‘MT’). For different numbers of labels per class our method al-

ways improve the testing accuracy by a big margin.

methods do not have any specific mechanism against repre-

sentation forgetting when doing transfer learning.

4.3. A refining SSL algorithm

In fig. 2 we note that our alternating training method

is particularly efficient when using a good representation

rather than starting from scratch. Hence we hypothesise

that our method could make an even bigger difference when

starting from a better network representation. One way of

doing it is to build our method on top of others in order to

refine their results. To validate this hypothesis, we apply

our method as a refinement on CIFAR-10 and CIFAR-100

datasets for networks pre-trained with Mean-Teacher [35].

It should be noted that, as the starting features are already

competitive, we do not use the dataset random splitting in

our training procedure and we choose soft labels assignment

in l.6 of algorithm 1.

In table 1, we see that in every case our method used

as refinement consistently improves the test accuracy. The

synergy of alternating training is enabling the network to

gain as much as 4.6 points in test accuracy on CIFAR-100

and 1.3 points on CIFAR-10. The refinement technique

combined with self supervision allows us on CIFAR-10 to

almost match previous state-of-the-art results with methods

trained with 400 labels per class (11.9% reported in [6])

whereas we only used 10 labels. These results confirm our

previous hypothesis and motivate us to see the impact of

increasingly better representations in the next section.

4.4. Transfer learning from different tasks

So far we have only used the dataset at hand to extract

our intermediate representation with self-supervised learn-

ing. In this section we use a different type of transfer learn-

ing used in [40]: we learn our representation on a differ-

ent classification dataset. To this end, we use networks

pretrained on ImageNet [28]. As is done in the other sec-

tions, we then fix the first two blocks of our ResNet-18 net-

work and train the rest of the weights on the hardest semi-

supervised learning task of 10 labels per class using either

Mean Teacher or our alternating optimisation method (see

section 3). We experimented with CIFAR-10 and CIFAR-

100 with pretraining on a downsampled 32 × 32 version

of ImageNet, and also MIT Indoor-67 [25], and ‘Places10’

where we only kept 10 classes from Places [39] using a

C-10 C-100 P-10 MIT-67

Fully Sup. 96.6 82.5 83.3 75.5

Labelled Set 82.5±1.0 62.8±0.6 66.4±1.7 55.1±0.8

M.T.[35] 88.0±1.5 63.3±0.7 72.8±1.2 58.8±1.3

Ours 93.5±0.4 69.2±0.4 75.8±1.7 63.0±0.7
Table 2. Transfer Learning: Test accuracy on the target task.

Transfer is from training on ImageNet. We compare our method

with Mean Teacher (M.T.) and supervision on the labelled set only

(‘Labelled set’) for 10 labelled sample per class. Our method con-

sistently outperforms both method on this task and achieves results

nearly as good as the one obtained by training on the full labelled

set.

pretraining on the standard version of ImageNet. Results

are shown in table 2 where we perform 10 runs per setting.

Fine-tuning on the full set is given as a reference.

We note that our method consistently outperforms Mean

Teacher for such scenarios. This result corroborates our as-

sumption in the previous section that our method performs

increasingly well with better representation. In fact, as also

noted in [24], since ImageNet has redundant classes with

the datasets, we can consider the representation learnt from

ImageNet as an upper bound. Thus it is not entirely sur-

prising to see our method obtaining nearly as good results

as if it were using the complete set with 93.12% accuracy

compared to 96.56% when fine-tuning on the full labelled

set on CIFAR-10. As our method aims to disentangle the

two losses by using distillation to preserve the effect of the

very reduced labelled set, its effect is magnified when using

a representation as good as the one learnt on ImageNet. In

contrast, techniques like Mean Teacher overfit on a small

labelled set, which in turns will lead to the degradation of

the representation coming from ImageNet.

4.5. Evaluating representation quality with SSL

In the context of SSL for images classification, prac-

titioners usually use shallow networks. If some works

[35, 37] also experimented with deeper and wider archi-

tectures, then those were generally applied when the num-

ber of labels at hand was large enough (4,000 on CIFAR-

10, ∼100,000 on ImageNet). So far in this work, we have

shown that it is possible to train a deeper architecture by

using transfer-learning from self-supervision. In practice,

what matters in our context is the quality of the extracted in-

termediate representation that we will train our model from.

In this section we experiment with two other architec-

tures and use SSL to measure the quality of their repre-

sentation. As is done in [14], we compare with one fully-

convolutional model and a RevNet[10] model. We chose

the fully convolutional 10-layers/3-blocks model from [16]

which we named ‘TempEns’. We provided our own RevNet

implementation named ‘RevNet-18’ aimed to match the

ResNet-18 we used in this work. More specifically, the



N TempEns[16] RevNet-18[10] ResNet-18[11]

10 18.4±1.9 20.0±2.4 16.4±2.6

50 16.3±0.9 13.7±0.7 11.9±0.4

100 14.8±0.6 12.2±0.5 10.8±0.4

400 12.8±0.2 10.5±0.4 8.9±0.2

Full 6.7 5.8 5.3
Table 3. Model variation. Test error on CIFAR-10 with different

number of labels per class ‘N ’. In all cases networks, were pre-

trained with RotNet [8]. First two block are then frozen while the

rest of the network is fine-tuned on the classification task. ‘Full’

indicates that we used the full training set with a fully supervised

method. All methods uses the same hyper-parameters.

RevNet-18 has four main blocks and uses the same type

of downsampling mechanism as our ResNet-18. We pre-

trained all models with RotNet and trained our SSL method

on CIFAR-10 with different numbers of annotated in-

stances. For all architectures the first two blocks of the net-

works are fixed during SSL training, as we found it was

giving best results for every architecture. We report results

in table 3.

We found that the ResNet-18 has better performance

over all methods. TempEns surprisingly remains very com-

petitive for all cases with less weights trained than both

methods, with good robustness to extreme cases. While

RevNet is almost always able to reach ResNet-18 level of

performances. With such sparse data, since RevNet has the

most parameters to fine-tune it is thereby the most prone to

overfit. Overall, the RevNet results slightly contrasts with

the one found by [14], where a RevNet representation sur-

passes ResNet when training with rotation. However, we

note that their methods of evaluation differs significantly

from ours. These results emphasise that while K-means

neighbors or full supervision can be used to evaluate self-

supervised learning [14, 38], SSL could also be used as a

way to evaluate the intermediate representation learnt from

self-supervised learning algorithms.

4.6. Self­supervision performance vs classification
accuracy

In general, different self-supervision tasks would lead to

different intermediate representation. However one could

also wonder how much solving the proxy task could help to

find a representation that would be best suited for the clas-

sification task. Intuitively, heavy fine-tuning on the proxy

task could lead to a more specialized network which would

be harder to adapt to the classification task. To verify this,

we studied the rotation accuracy impact on the final SSL

performance. Our self-supervised method was trained for

200 epochs with a step-wise decaying learning rate starting

from 0.1 at epochs 60, 120, and 160. We saved snapshot of

the network before decaying the learning rate and measure

the performance reached by our method on the CIFAR-100

Self-supervised training

stopped at epoch FT

60 120 150 200

Rotation accuracy 74.1 83.5 85.9 86.1 86.8

Labelled set 37.6 40.4 40.9 40.7 40.4

SSL (our method) 46.5 50.2 50.4 50.7 52.3
Table 4. Rotation accuracy vs Classification accuracy. Corre-

lation between rotation accuracy and final SSL classification ac-

curacy on CIFAR-100 with 10 labels per class. ‘FT’ is fine-tuned

model for 500 epochs. ‘Labelled’ set indicates fine-tuning on label

set only.

classification task with 10 labelled instances per class. In

addition, we also trained a RotNet for 500 epochs with a

learning rate schedule directly extracted from [6]. We sum-

marise the results in table 4.

Overall we found that fine-tuning on the proxy task was

beneficial to the SSL algorithm. Interestingly, we note that

the accuracy on the labelled set does not entirely corre-

late with the final SSL accuracy. While the model with

best accuracy on the labelled set obtained 50.4% SSL ac-

curacy, the fine-tuned model obtained an overall SSL ac-

curacy of 52.3%. This also corroborates the results found

in section 4.5, better accuracy on the complete or partial

set does not necessarily mean a better final SSL accuracy.

We believe this result also motivates a new method of self-

supervised learning evaluation using SSL.

5. Conclusion and discussion

In this paper, we have pushed the limits of SSL to work

with very few annotations. We achieved this goal with sev-

eral innovations. We first proposed to leverage the power of

transfer learning among different tasks and self-supervision

to provide a good initial feature representation for SSL.

We also proposed a new SSL algorithm that can exploit

well such a pre-trained representation, achieving state-of-

the-art results on a large number of public benchmarks. We

showed that self-supervised learning can not only benefit

our proposed SSL algorithm, but also existing state-of-the-

art methods. Equipped with the representation learned from

self-supervised learning, we found that the performance of

state-of-the-art methods can be notably boosted, especially

the extreme cases with sparsely annotated data. More gen-

erally, we found that SSL could be a new and sensitive

downstream task for ranking self-supervised learning meth-

ods. Besides working as a standalone method showing su-

perior performance, our method can also serve as an effec-

tive refinement method on a network pre-trained either with

an existing SSL algorithm or another dataset.
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