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Abstract

Weakly supervised object detection (WSOD) aims to

tackle the object detection problem using only labeled im-

age categories as supervision. A common approach used

in WSOD to deal with the lack of localization information

is Multiple Instance Learning, and in recent years meth-

ods started adopting Multiple Instance Detection Networks

(MIDN), which allows training in an end-to-end fashion. In

general, these methods work by selecting the best instance

from a pool of candidates and then aggregating other in-

stances based on similarity. In this work, we claim that

carefully selecting the aggregation criteria can consider-

ably improve the accuracy of the learned detector. We start

by proposing an additional refinement step to an existing

approach (OICR), which we call refinement knowledge dis-

tillation. Then, we present an adaptive supervision aggre-

gation function that dynamically changes the aggregation

criteria for selecting boxes related to one of the ground-

truth classes, background, or even ignored during the gen-

eration of each refinement module supervision. Experi-

ments in Pascal VOC 2007 demonstrate that our Knowledge

Distillation and smooth aggregation function significantly

improves the performance of OICR in the weakly supervised

object detection and weakly supervised object localization

tasks. These improvements make the Boosted-OICR com-

petitive again versus other state-of-the-art approaches.

1. Introduction

Supervised object detection has been achieving increas-

ingly better results in terms of accuracy and speed along the

past years [13, 11]. The main drawback of these methods is

the need for annotated bounding boxes, which is a tedious,

error-prone, time-consuming, and expensive task. The an-

notation cost directly impacts the viability of deployment of

these detectors in real-world applications, particularly when

starting from scratch for a specific application. One ap-

proach that researchers are exploring to alleviate the annota-

tion cost is Weakly Supervised Object Detection (WSOD),

where the object detector is trained using only image cate-

gory annotations (presence or absence of interest classes in

the image), which is much easier and faster to generate.

Most WSOD methods [2, 1, 19, 5, 18, 23] follow the

Multiple Instance Learning (MIL) pipeline [6] to train de-

tectors using only image category level annotations. In

the adaptation of MIL to the WSOD task, each image is

considered a bag of positive and negative object propos-

als generated by object proposal methods such as Selective

Search [22] or Edge Boxes [27]. The training process in

the MIL framework encompasses two steps: (i) to train an

instance selector to compute the object score of each object

proposal; (ii) to select the proposal with the highest score

and use it to mine positive instances and train detector es-

timators. The majority of recent methods explore features

extracted by Convolutional Neural Networks (CNN) as an

off-the-shelf feature extractor [2, 10] or train an end-to-end

Multiple Instance Detection Network (MIDN) [1].

The lack of localization supervision during the training

process, as expected, makes detection accuracy of WSOD

methods worse than its supervised counterparts. However,

the promise of a lower annotation cost attracted the efforts

of many researchers to WSOD, and significant improve-

ments were achieved in recent years exploring a variety of

strategies [2, 19, 20, 18, 23].

In this paper, we focused on the instance mining step

of MIL-based methods, and used a modification of an ex-

isting baseline approach as a proof-of-concept. More pre-

cisely, we propose improvements to boost the performance

of OICR, which we call Boosted-OICR (BOICR). We first

observed that it is possible to extract extra information

from the refinement modules to boost the detection mAP

of OICR, which we call refinement knowledge distillation.

We also propose an adaptive supervision aggregation func-

tion that dynamically changes the IoU threshold to select

boxes that will be aggregated as belonging to one of the

ground-truth class, background, or ignored during the gen-

eration of each refinement module supervision. The selec-

tion process follows the principle that at the beginning of the

training is better to aggregate boxes with small IoU (since

the best instance is typically small and comprehends a small
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portion of the object, such as the face for a person or cat).

To avoid an overgrowth of the object-related proposals, the

IoU threshold is tightened as the training phase advances.

We also embedded an adapted version of the “trick” pro-

posed in [20], which ignores boxes with small intersection

in the refinement losses. We evaluate our method in Pascal

VOC 2007, and our approach presents competitive state-of-

art results both in detection mAP and CorLoc mAP.

Our main contributions in this paper are the introduction

of: i) a module to distill extra knowledge from refinement

agents; and ii) an adaptive supervision aggregation function

to mine candidate instances. Next, we present the state-of-

the-art on WSOD, and then describe the proposed method-

ology with the experimental results and conclusions.

2. Related Work

There is a considerable number of WSOD works that

precede the CNN era [14, 16, 17]. However, we focus on

CNN- based methods as all state-of-the-art methods rely on

CNN architectures. The adoption of CNN features was not

immediate, and initial works started combining the CNN

features with features extracted by other kinds of feature

descriptors. Cinbis et. al. [2] proposed a multi-fold mul-

tiple instance learning training procedure, which splits the

positive instances in K training folds. The method com-

bines the Fisher Vector with CNN features as descriptors,

and an objectness refinement is proposed to improve local-

ization accuracy. Since a pre-trained CNN is only used as a

feature extractor, its weights are not fine-tuned, which can

lead to lower accuracy. Li et al. [10] introduced a two-stage

adaptation algorithm. The first stage fine-tunes the network

to collect class-specific object proposals with higher preci-

sion; the second uses confident object candidates to opti-

mize the CNN representations to turn image classifiers into

object detectors gradually. A drawback of the method is the

need for individually forwarding each region proposal into

CNN to extract features, making the whole process very

slow. This problem is solved in more recent methods us-

ing Spatial Pyramidal Pooling (SPP) [9].

Bilen et al. [1] proposed a two-stream method, where one

stream performs classification and the other detection. The

output of both streams is combined into a global scoring

matrix by taking the Hadamard product of the two streams.

The classification scores are calculated by summing the val-

ues in the proposals dimension of this matrix. Tang et

al. [19] improved the smoothed version of MIL proposed

by [1] using an online instance classification refinement that

utilizes cascaded refinement modules to increase the detec-

tion performance, where each refinement steep makes the

detector able to detect larger objects parts during training

gradually. In [18], the refinement process of [19] is further

improved, adding proposal clusters to select one or more

supervision boxes during the training. Selecting more than

one supervision box is interesting because, usually, objects

can have multiple parts and also have multiple instances

present in the image. However, a limitation of the clustering

process is that it increases the computational cost making

the whole training process slower. Our Boosted-OICR has

a better mAP result than [18] without using the clustering

process.

Diba et. al. [5] proposed a three-stage cascaded method

that mines boxes from Class Activation Maps (CAM). The

first stage is inspired by [26], which uses a fully convolu-

tional CNN with global average pooling (GAP) to create

the CAMs in conjunction with the classification scores. The

second stage uses the CAM from the first stage as supervi-

sion to generate a segmentation map that is used to select

a set of candidate bounding boxes using the connective al-

gorithm from [26]. Finally, the features of the candidate

boxes are extracted by an SPP layer [9], and a MIL algo-

rithm is applied to select the best candidate boxes for each

class. In the same direction, Wei et al. [25] introduced a

method that uses CAMs to mine tight object boxes by ex-

ploiting segmentation confidence maps. The segmentation

confidence maps are employed to evaluate the objectness

scores of proposals according to two properties – purity and

completeness –, and the detection process is based on [19].

Although the idea of using CAMs to guide the selection of

the supervision boxes is interesting, the training process of

[5, 25] is overly complex.

Wan et al. [24] proposed a min-entropy latent model to

measure the randomness of object localization. The learn-

ing process operates with two network branches. The first

branch is designated for discovering objects using a global

min-entropy layer that defines the distribution of object

probability. This discovery process targets at finding can-

didate object cliques, which is a proposal with high object

confidence. The second branch is designated to localize ob-

jects using a local min-entropy layer and a softmax layer.

The local min-entropy layer classifies the object candidates

in a clique into pseudo objects and hard negatives by opti-

mizing the local entropy.

Non-convexity is also a common problem in multiple in-

stance learning, which might lead to sub-optimal results.

Wan et al. [23] introduced a continuation optimization

method that uses a series of smoothed loss functions to

approximate the target (desired) loss, claiming that this

smoothed process alleviates the non-convexity problem in

MIL. The authors also propose a parametric strategy, for

instance, subset partition, which is combined with a deep

neural network to activate a full object extent. In contrast,

Tang et al. [20] proposed a two-stage region proposal net-

work that explores the responses in mid-layers of a network

to create object proposals. The process creates coarse pro-

posals using an objectness score metric and sliding window

boxes. Later, the coarse proposals are refined proposals us-



Figure 1: The proposed architecture and its four modules. The proposals feature extraction module uses an SSP layer

to extract features from proposals generated by selective search. The multiple instance detection network module learns

to select the best proposal instance and generates an image classification score. The instance refinement modules have k

instances, and each one learns to refine instances from its predecessor result. Finally, the knowledge distillation module

aggregates all the knowledge learned by all the K refinement agents.

ing a region-based CNN classifier, which are used to train

the network proposed in [19].

In summary, existing WSOD approaches vary regard-

ing the selection of candidate proposals, the strategy for

mining instances, and the underlying classification network

that guides the supervision, which leads to different levels

of complexity for both implementation and training times.

This paper focuses mostly on the instance selection part,

and we used the continuation function proposed in [23]

as inspiration to adaptively select positive and negative in-

stances. We also present and additional step to the refine-

ment supervision of [19]. The proposed method is presented

next.

3. The Proposed Approach

Since we propose improvements to boost OICR’s

pipeline [19], we will try to follow the same notation of

the original paper, and Fig. 1 shows a high-level diagram

of all stages of the proposed architecture. The first stage

aims to extract feature vectors from a given image, and can-

didate proposals are extracted using selective search [22].

The image and the extracted proposals feed a CNN back-

bone with SPP to produce a fixed-size feature map to each

proposal. The proposals feature maps are converted to pro-

posal feature vectors using two fully connected (fc) layers,

which are branched into three different stages. The two first

stages are similar to [19] stages, where the first one trains

a basic instance classifier, and the second stage trains a set

of K refinement agents. The kth refinement agent uses as

supervision the output from the previous agent {k − 1},

and the supervision for the 1st refinement agent (k = 1)

comes from the instance classifier branch. The third state,

proposed by us, utilizes the knowledge of all K refinement

agents to train a new agent. We call this process knowledge

distillation as it aims to extract extra knowledge during the

refinement process.

In this section, we will explain all the employed stages in

detail. Also, in section 3.4, we explain the adaptive supervi-

sion aggregation function that is employed by all refinement

agents during the learning process.

3.1. Instance selection

Following [19], we use the method proposed by [1] be-

cause of its effectiveness and implementation convenience.

The instance selection works by branching the proposal fea-

ture vectors into two streams, and each stream starts with an

fc layer to produce two matrices x
c, xd ∈ R

C×|R|, where

C is the number of classes and |R| is the number of propos-

als. A softmax function is applied to both matrices along

different dimensions, yielding

σ(xc)]ij =
ex

c
ij

∑C

k=1 e
xc
kj

, σ(xd)]ij =
ex

d
ij

∑|R|
k=1 e

xc
ik

. (1)

The two streams are then combined to generate pro-

posal scores using Hadamard (element-wise) matrix prod-

uct, yielding x
R = σ(xc) ⊙ σ(xd). Finally, the classifica-



λ = 0.5 λ = 0.25

λ = 0.1 λ = 0.01

Figure 2: Effect of changing the IoU threshold λ for in-

stance selection. Green boxes are denote the supervision,

blue boxes pass the threshold (selected) and red boxes fail

(not selecetd).

tion score φc ∈ (0, 1) for class c is obtained by by summing

over proposal dimensions, i.e,. φc =
∑|R|

r=1 x
R
cr. We train

the instance classifier using multi-class cross entropy loss,

defined as

Lclass = −

C
∑

c=1

yc log φc + (1− yc) log(1− φc), (2)

where yc =∈ 0, 1 indicates if the image contains any in-

stance of class c in the image. More details can be found

in [1, 19]

3.2. Classifier refinement agents

To refine the outputs of the instance classifier, we use the

online labeling and refinement strategy proposed by [19].

Here we refer to each kth refinement pass as kth refinement

agent. In contrast with the instance classifier, each refine-

ment agent outputs an additional dimension for background

in its score vector xRk
j ∈ R

(C+1)×1, k ∈ 1, 2, ...,K, where

the k is the index of the agent, K is the total of agents,

and the C + 1th dimension relates to the background. The

score vector from the instance classifier is represented here

as x
R0
j ∈ R

C×1, and is used to initialize the refinements.

To obtain x
Rk
j for k > 0, the feature vector related to the

proposals is passed through a single fc layer, and a softmax

layer is applied over class dimension.

Each agent needs some kind of supervision to learn how

to separate the proposals related to the background from

those related to ground-truth classes. Thus, the supervision

for agent k is obtained from the previous agent xR(k−1) and

a supervision label vector is created for each proposal j in

the format Yk
j = [yk1j , y

k
2j , · · · , y

k
(C+1),j ]

T ∈ R
(C+1)×1.

To build Y
k
j , first the proposal with highest score is selected

from the agent k − 1th supervision, sa given in Eq. (3).

jk−1
c = argmax

r

xR(k−1)
cr . (3)

The highest score proposal is labeled as belonging to class

c, i.e., yk
cj

k−1

c

= 1 and yk
c′j

k−1

c

= 0, c′ 6= c. Next, proposals

with high overlap with jk−1
c are labeled as belonging to the

same class of jk−1
c , otherwise the adjacent proposals are

labeled as background. More precisely, this assignment is

given by

c∗
k
j =

{

c, if IoU(jk−1
c , jkcj) ≥ λ

C + 1, otherwise
, (4)

where λ is the IoU threshold. We claim in this work that

selecting a fixed value for λ might not be the best choice,

and present our dynamic threshold in Section 3.4. Each ykcj

is updated using c∗kj , that is, yk
c∗k

j
j
= 1. Meanwhile, if there

is no object c in the image, all values are set to zero, i.e.,

ykcj = 0.

Now that ykcj is ready it can be used as supervision to

train the kth refine agent using the loss function in Eq. 5.

LK
agent = −

1

|R|

|R|
∑

r=1

C+1
∑

c=1

wk
r y

k
cr log x

Rk
cr , (5)

where wk
r is a weight term introduced to reduce noise dur-

ing the supervision and is obtained as wk
r = xRk−1

cj
k−1

c

. More

details can be found in [19].

3.3. Knowledge distillation module

The motivation behind cascading K refinement agents

in [19] is that it allows the detector to gradually learn larger

parts of objects, starting from the best instance only. How-

ever, we can observe that the supervision generated by a

kth agent will not be directly used by the k + 2th agent.

This happens because agent k + 1 will learn with the super-

vision k and will pass its own supervision to the next agent

k + 2. In other words, during the agent supervision process,

some knowledge could be lost between the connections of

the agents. We try to recover this information loss using

our knowledge distillation module. The distillation agent is

a special kind of agent that learns using all the K outputs

as supervision. In reality, this agent only differs in the su-

pervision part when compared with a standard refinement

agent.

The distillation agent also outputs a score vector in the

format xDk
j ∈ R

(C+1)×1. To obtain x
Dk
j , the proposals-

related feature vector is passed through a single fc layer,

and a softmax layer is applied over the class dimension.

The supervision process of the distillation agent, instead

of getting the supervision from a previous agent, uses all



Figure 3: A visual example of instance mining for

“chicken” class, where the green box is the best instance.

Boxes in blue present large IoU, in red present small (but

not zero) IoU, and in yellow, the IoU is zero.

refinement agents outputs as supervision. More precisely, it

is computed by averaging the outputs of the K refinement

agents outputs:

x
D
cj =

1

K

K
∑

k=1

x
Rk
cj . (6)

Using x
D
cj as the input to the supervision, the remaining

process is similar to the described in section 3.2 and the loss

function Ldestill is the same as the weighted softmax loss in

Eq. (5).

3.4. Adaptive supervision aggregation function

In [19], the authors experimentally chose λ = 0.5 as the

proposal selection scheme in Eq. (4) to create the supervi-

sion matrices wk
r and ykcr. The interpretation of this value

is that only boxes with IoU > 0.5 w.r.t. the best overall

proposal are selected as belonging to the ground-truth class

c. The problem with using a fixed value is that at the be-

ginning of training, the instance selection module tends to

select only small boxes as top score proposals, typically re-

lated to discriminant features of the objects (e.g., the face of

a person or animal, as shown in Fig. 2). As a consequence,

only other small boxes will have IoU > 0.5 w.r.t. this box,

and hence only small boxes will be considered as belong-

ing to the class c. Figure 2 shows the effect of changing λ,

where green denotes the best proposal, and blue the similar

proposals according to the selected threshold.

Although the goal of refinement agents is to gradually

improve the detectors to find larger parts of objects, start-

ing with a larger value for λ causes each agent to highlight

only small boxes in beginning of the process, and in some

cases, the optimization will be stuck in small boxes during

all training (especially for deformable objects). Relaxing λ

alleviates this issue, but it also tends to include proposals

that are not related to the correct class.

Instead of using a fixed value for λ, we use an adap-

tive supervision function that changes λ during the training

process. The function should be monotonically increasing,

such that more candidates are aggregated in the beginning

and less at the end. During our experiments, we evaluated a

set of different adaptive supervision aggregation functions,

and the best results were archived using the following func-

tion, also explored by C-MIL in a different context [23]:

λ =
1

2

log(s+ lb)− log lb
log(S + lb)− log lb

, (7)

where s is the current training step, S is the total of training

steeps, and lb defines the velocity that the curve grows.

Figure 4: A visual interpretation of the proposed adaptive

supervision aggregation function. X-axis shows the itera-

tion step number, and Y-axis shows the IoU with the box of

the highest score.

Another deficiency of the supervision selection approach

given by Eq. (4) is that when more than one instance of

a class is present in the image, it will obligatorily include

all other instances as background in during the supervision

(since their IoU with the best instance is small – in gen-

eral, null). This is a bad decision, as we do not want to

lower the scoring of these instances. In Fig. 3, we present a

visual example of this problem, considering the “chicken”

class. In the figure, the rectangles are the candidate propos-

als, with the best one shown in green. Boxes shown in blue

indicate proposals considered similar to the best one, ac-

cording to Eq. (4), which leaves several proposals related to

the chicken class (in yellow) marked as background, which

is not desirable.

One solution to solve the penalization of other instances

in the loss is to include the “trick” proposed by [20], where

a threshold value λign is used to ignore boxes with a low

IoU w.r.t. jk−1
c in the loss. With the trick, all the instances

of Fig. 3 in yellow would be ignored, and the ones in red

would be marked as background.

In contrast to [20], where λign has a fixed value, we pro-

pose to use an adaptive value similar to the scheme used

for mining positive instances. Although the choice for λign

could be independent from λ, we propose a “complemen-

tary” threshold selection scheme given by

λign = λmax − λ, (8)



where λmax defines the starting point of the adaptive trick.

Fig. 4 presents the visual interpretation of λ and λign

during the supervision process. Thus, we can adapt Eq. (4)

to include the trick as is defined in Eq. (9), leading to

c∗
k
j =







c, if IoU(jk−1
c , jkcj) ≥ λ,

C + 1, if IoU(jk−1
c , jkcj) ≥ λign

−1, otherwise

, (9)

where −1 defines indices to be ignored in the agent loss

functions.

3.5. Final loss function

The classification, refinement and distillations modules

present individual loss functions. However, we train our

model using a single loss that combine the individual loss

functions given by

L = Lclass + Ldistill +

K
∑

k=1

Lk
agent. (10)

.

4. Experiments

Boosted-OICR was evaluated on the challenging PAS-

CAL VOC 2007 and 2012 datasets [7]. Although the

ground truth bounding box annotations are present in these

datasets, we only use the (weak) classification annotations

(presence or absence of a class in the given image). The per-

formed evaluation is based on the two standard metrics in

WSOD, that is, mean average precision (mAP) [7] and cor-

rect localization (CorLoc) [4]. The former provides a mea-

sure of how well the detector adapts to all instances, while

the latter indicates if the best detection is a good match.

Both metrics utilizes PASCAL criteria of IoU > 0.5 be-

tween ground truths and predicted boxes.

4.1. Implementation Details

All experiments were performed using PyTorch

1.2 [12]1. Our method uses VGG16 [15] pre-trained on Im-

ageNet [3] as backbone. We replaced the last max-pooling

layer by the SPP layer, and the last FC layer and softmax

loss layer by the layers described in Section 3. The new

layers are initialized using Gaussian distributions with

0-mean and standard deviations 0.01. Biases are initialized

to 0. The object proposals are extracted using Selective

Search [22]. For data augmentation, the input images

were re-sized into five scales {480, 576, 688, 864, 1200}
concerning the smallest image dimension. During training

time, the scale of the image was randomly selected, and the

image was randomly horizontal flipped, which is a standard

1Source code available at: http://github.com/luiszeni/

Boosted-OICR

ID K λ λign distillation mAP

1 3 0.5 0 No 42.3

2 3 adaptive 0 No 41.6

3 3 adaptive adaptive No 46.6

4 3 adaptive adaptive Yes 49.7

5 4 adaptive adaptive No 48.1

Table 1: Ablation study performance (%) on the VOC 2007.

approach among WSOD methods [23, 19, 24, 18] and cre-

ates a total of ten augmented images. The learning process

was done using the SGD algorithm with momentum 0.9,

weight decay 5e−4, and batch size 2. We set lb = 100 and

λmax = 0.51. The learning rate is set to 0.001 for the first

30K and 60K iterations and then decreases to 0.0001 in the

following 20K and 30K iterations, respectively, for pascal

VOC 2007 and 2012. During test time, all ten images are

passed in the network, and the outputs are averaged. As

an additional result, we also trained a supervised object

detector by choosing top-scoring proposals as ground truth

labels, as done in [19, 18, 23]. To make a fair comparison,

we also trained a Fast RCNN (FRCNN) [8] detection

network using the five image scales. The supervision

boxes are chosen by its score (larger than 0.3) and using

non-maxima suppression (with 30% IoU threshold).

4.2. Ablation experiments

We conduct some ablation experiments to illustrate the

effectiveness of the proposed improvements over the base-

line method OICR [19].

We first study the impact of using the adaptive supervi-

sion aggregation function instead of fixed IoU thresholds for

proposal mining. We display the different scenarios in Ta-

ble 1. The experiment with ID= 1 presents the results using

the standard OICR pipeline. In the experiment ID= 2 we

replace the fixed λ value by the proposed adaptive aggrega-

tion function defined in Eq. (7), in this experiment all boxes

with IoU < λ are considered as background. As the ex-

periment suggests, using the adaptive supervision aggrega-

tion function alone without the adaptive trick makes the re-

sults worse than the OICR’s baseline. However, adding the

adaptive trick (experiment ID=3) leads to an improvement

of 4.3% in the final mAP, suggesting that using our adap-

tive supervision aggregation function can boost the OICR

detection mAP significantly.

We also evaluated the effect of including the distillation

refinement module. In fact, one could argue that using such

a module could produce the same result as cascading one

more refinement agent. To show the difference, we tested

our method using K = 4 (and no distillation) vs. K = 3
with distillation, and results with distillation were consider-

ably better (see experiments ID= 4 vs. ID= 5 in Table 1).

As we can see, adding the knowledge distillation improves



Network Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

VGG16

WSDDN [1] 46.4 58.3 35.5 25.9 14.0 66.7 53.0 39.2 8.9 41.8 26.6 38.6 44.7 59.0 10.8 17.3 40.7 49.6 56.9 50.8 39.2

OICR [19] 58.0 62.4 31.1 19.4 13.0 65.1 62.2 28.4 24.8 44.7 30.6 25.3 37.8 65.5 15.7 24.1 41.7 46.9 64.3 62.6 42.0

WCCN [5] 49.5 60.6 38.6 29.2 16.2 70.8 56.9 42.5 10.9 44.1 29.9 42.2 47.9 64.1 13.8 23.5 45.9 54.1 60.8 54.5 42.8

TS2C [25] 59.3 57.5 43.7 27.3 13.5 63.9 61.7 59.9 24.1 46.9 36.7 45.6 39.9 62.6 10.3 23.6 41.7 52.4 58.7 56.6 44.3

WeakRPN [21] 57.9 70.5 37.8 5.7 21.0 66.1 69.2 59.4 3.4 57.1 57.3 35.2 64.2 68.6 32.8 28.6 50.8 49.5 41.1 30.0 45.3

PCL [18] 54.4 69.0 39.3 19.2 15.7 62.9 64.4 30.0 25.1 52.5 44.4 19.6 39.3 67.7 17.8 22.9 46.6 57.5 58.6 63 43.5

MELM [24] 55.6 66.9 34.2 29.1 16.4 68.8 68.1 43.0 25.0 65.6 45.3 53.2 49.6 68.6 2.0 25.4 52.5 56.8 62.1 57.1 47.3

C-MIL [23] 62.5 58.4 49.5 32.1 19.8 70.5 66.1 63.4 20.0 60.5 52.9 53.5 57.4 68.9 8.4 24.6 51.8 58.7 66.7 63.5 50.5

Ours 68.6 62.4 55.5 27.2 21.4 71.1 71.6 56.7 24.7 60.3 47.4 56.1 46.4 69.2 2.7 22.9 41.5 47.7 71.1 69.8 49.7

FRCNN
Re-train

OICR [19] 65.5 67.2 47.2 21.6 22.1 68.0 68.5 35.9 5.7 63.1 49.5 30.3 64.7 66.1 13.0 25.6 50.0 57.1 60.2 59.0 47.0

TS2C [25] - - - - - - - - - - - - - - - - - - - - 48.0

PCL [18] 63.2 69.9 47.9 22.6 27.3 71.0 69.1 49.6 12.0 60.1 51.5 37.3 63.3 63.9 15.8 23.6 48.8 55.3 61.2 62.1 48.8

WeakRPN [21] 63.0 69.7 40.8 11.6 27.7 70.5 74.1 58.5 10.0 66.7 60.6 34.7 75.7 70.3 25.7 26.5 55.4 56.4 55.5 54.9 50.4

C-MIL [23] 61.8 60.9 56.2 28.9 18.9 68.2 69.6 71.4 18.5 64.3 57.2 66.9 65.9 65.7 13.8 22.9 54.1 61.9 68.2 66.1 53.1

Ours 65.8 58.6 55.0 32.4 19.5 74.2 71.4 70.9 19.2 54.8 46.2 67.5 57.0 65.6 1.4 16.7 40.4 53.0 69.5 61.1 50.0

Table 2: Detection performance (%) on the VOC 2007 test set. Comparison to the state-of-the-arts.

Network Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

VGG16

WSDDN [1] 65.1 58.8 58.5 33.1 39.8 68.3 60.2 59.6 34.8 64.5 30.5 43.0 56.8 82.4 25.5 41.6 61.5 55.9 65.9 63.7 53.5

OICR [19] 81.7 80.4 48.7 49.5 32.8 81.7 85.4 40.1 40.6 79.5 35.7 33.7 60.5 88.8 21.8 57.9 76.3 59.9 75.3 81.4 60.6

WCCN [5] 83.9 72.8 64.5 44.1 40.1 65.7 82.5 58.9 33.7 72.5 25.6 53.7 67.4 77.4 26.8 49.1 68.1 27.9 64.5 55.7 56.7

TS2C [25] 84.2 74.1 61.3 52.1 32.1 76.7 82.9 66.6 42.3 70.6 39.5 57.0 61.2 88.4 9.3 54.6 72.2 60.0 65.0 70.3 61.0

WeakRPN [21] 77.5 81.2 55.3 19.7 44.3 80.2 86.6 69.5 10.1 87.7 68.4 52.1 84.4 91.6 57.4 63.4 77.3 58.1 57.0 53.8 63.8

PCL [18] 79.6 85.5 62.2 47.9 37.0 83.8 83.4 43.0 38.3 80.1 50.6 30.9 57.8 90.8 27.0 58.2 75.3 68.5 75.7 78.9 62.7

MELM [24] - - - - - - - - - - - - - - - - - - - - 61.4

C-MIL [23] - - - - - - - - - - - - - - - - - - - - 65.0

Ours 86.7 73.3 72.4 55.3 46.9 83.2 87.5 64.5 44.6 76.7 46.4 70.9 67.0 88.0 9.6 56.4 69.1 52.4 79.8 82.8 65.7

Table 3: Localization performance (%) on the VOC 2007 trainval set. Comparison to the state-of-the-arts.

Method mAP Corloc

WCCN [5] 37.9 -

OICR [19] 37.9 62.1

TS2C [25] 40 64.4

WeakRPN [21] 40.8 64.9

PCL [18] 40.6 63.2

MELM [24] 42.4 -

C-MIL [23] 46.6 67.4

Ours * 66.3

Table 4: Detection (test set) and localization (trainval set)

performance (%) on the VOC 2012 dataset using VGG16.

the results in 1.6% mAP more than adding an extra refine-

ment agent. We select the model utilized in the experiment

ID=4 as default to the next experiments.

4.3. Comparison with state­of­the­art

We compare our results with other state-of-the-art

(SOTA) methods in the Pascal VOC 2007 and 2012

datasets. Table 2 shows a comparison of detection perfor-

mance of our method and SOTA in the Pascal VOC 2007

test set. It can be seen that Boosted-OICR improves the

original OICR paper [19] in 7.7% mAP and outperformed

other approaches such as WCCN [5] (6.9%), TS2C [25]

(5.4%), WeakRPN [21] (4.4%), PCL [18] (6.2%), and

MELM [24] (2.4%). Boosted-OICR was only inferior to C-

MIL [23] by a small value (0.8% mAP). However, Boosted-

OICR presented the highest AP results in 9 of the total 20

classes (aeroplane, bird, bottle, bus, car, dog,

motorbike, train and tv). Figure 5 presents some re-

sults generated by our WSOD method. We also re-trained

an Fast-RCNN detector using the learned pseudo objects as

ground-truth, and achieved 50% mAP, as shown in Table 2,

which improved our method by 0.3%.

Table 3 presents a comparison in localization per-

formance of our method and SOTA in the Pascal

VOC 2007 train-val set. Boosted-OICR outperformed

OICR [19] (5.1%), WCCN [5] (9.0%), TS2C [25] (4.7%),

WeakRPN [21] (1.9%), PCL [18] (3.0%), MELM [24]

(4.3%), and C-MIL [23] (0.7%). The better corloc result

of our method in comparison with C-MIL suggests that C-

MIL is just a little better dealing with images with more than

one instance (which impacts the final detection mAP). We

also compare the localization performance of our method in

pascal VOC 20122. in Table 4. Boosted-OICR presents a

competitive corloc in VOC 2012 outperforming OICR [19]

(4.2%), TS2C [25] (1.9%), WeakRPN [21] (1.4%) and

PCL [18] (3.1%), being inferior to C-MIL [23] by 1.1%
mAP.

5. Conclusions

In this paper, we propose two improvements to boost

the online instance classifier refinement. First, we pro-

pose a knowledge distillation methodology that extracts ex-

tra knowledge from the refinement agents. Second, we pro-

pose an adaptive supervision aggregation function that im-

proves the way that each refinement agent learns to separate

2 We submitted our results for VOC 2012 to the evaluation server, but

still did not get the feedback. The anonymous submission link is http:

//host.robots.ox.ac.uk:8080/anonymous/E7JSMD.html



Figure 5: Detection examples for Pascal VOC 2007 dataset. Blue rectangles are ground-truth boxes that have at least one

detection with IoU > 0, and yellow ones are ground-truth with no detection intersection. Green boxes are correct detections

(IoU > 0.5 with ground truth), and red boxes are wrong detections. The label in each detection box is the class label and

confidence score of the detection.

class-related instances, background instances, and which

instances ignore. Both contributions were built using OICR

as a baseline approach, and the proposed contributions were

able to provide a 7.4 mAP boost over the OICR base-

line method. Boosted-OICR presents competitive SOTA

results on Pascal VOC 2007 dataset, being inferior only

to [23] by a small margin (0.8% mAP). Also, Boosted-

OICR presents the highest AP results in 9 of the 20 classes,

such as airplane, bird, bottle, and train. Al-

though Boosted-OICR has the best performance in these

classes, it fails in deformable objects such as person class.

In fact, the person class is very challenging, since the

GT annotations might contain only the face or upper body

(when there are occlusions), or the whole body.

In the future, we intend to explore improvements that

make WSOD methods to not focus on the most discrimi-

nated part of deformable objects such as the human face.

We further plan to explore mid-layers of the network and

class activation maps to create object proposals as an alter-

native to the selective search module.
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