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Abstract

Like all software systems, the execution of deep learning

models is dictated in part by logic represented as data in

memory. For decades, attackers have exploited traditional

software programs by manipulating this data. We propose

a live attack on deep learning systems that patches model

parameters in memory to achieve predefined malicious be-

havior on a certain set of inputs. By minimizing the size

and number of these patches, the attacker can reduce the

amount of network communication and memory overwrites,

with minimal risk of system malfunctions or other detectable

side effects. We demonstrate the feasibility of this attack

by computing efficient patches on multiple deep learning

models. We show that the desired trojan behavior can be

induced with a few small patches and with limited access

to training data. We describe the details of how this attack

is carried out on real systems and provide sample code for

patching TensorFlow model parameters in Windows and in

Linux. Lastly, we present a technique for effectively ma-

nipulating entropy on perturbed inputs to bypass STRIP, a

state-of-the-art run-time trojan detection technique.

1. Introduction

With the widening applications of machine learning sys-

tems [14, 22], their reliability is now a major concern, es-

pecially when deployed in mission critical systems such as

self-driving cars. Researchers have crafted attacks to ex-

pose the vulnerability of machine learning systems, most of

which focus on adversarial attacks [12, 38]—adding human-

imperceptible noise to inputs to alter predictions. In response,

defense methods have been proposed to increase models’ ad-

versarial robustness [15, 27, 28]. Other related attacks are

poisoning based methods—either poisoning the training data

directly [34] or “poisoning" the model weights [6, 26]. Sim-

ilarly, defense methods [8, 37, 39] exist to mitigate these
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attacks. All of these attacks exploit vulnerabilities specific

to machine learning.

In this paper we pursue a new direction: attacking ma-

chine learning systems at run-time by exploiting classic soft-

ware vulnerabilities such as memory overruns. For decades,

malicious attackers have been able to use techniques like

social engineering [19] and zero-day exploits [2] to run code,

often with privileged access, on production systems. Deep

neural networks are also vulnerable to these classical attack

paradigms. The outputs of a machine learning system are

dictated by its trained parameters, which provide transfor-

mations to inputs to produce an output. By changing these

network parameters at run-time, the behavior of the network

will change accordingly, which enables an attacker to take

control of the system—without explicitly modifying control

flow or leaving persistent changes to the system.

In fact, we believe deep neural networks are more vulner-

able to such an attack due to their dependence upon largely

uninterpretable weight and bias parameters. For this reason,

they provide an unprecedented vehicle for attacks which

would be otherwise unfeasible.

Recent work [13, 25, 26] has shown that it is possible to

trojan (or backdoor) neural networks so that if an input is

presented with a specific trigger, it will output a result of

the trainer’s choosing; otherwise the network predicts with

similar accuracy to a non-trojaned network.

However, these approaches cannot be used for run-time

attacks since they require modifying a significant number

of model parameters. An attack that requires patching a

large number of weights at run-time is prone to be detected.

In order to remain stealthy, the attacker must minimize the

number of overwrites and reduce the total size of the re-

quired patches, since existing intrusion detection systems

are designed to pick up on unusual network activity.

We show that such a trojan can be injected into the net-

work at run-time, and provide methods to minimize the

number of weights which need to be changed, as well as the

number of contiguous patches that must be written in mem-

ory. The advantage of performing this attack at run-time is

that it is hard to defend, as we show by bypassing the notable



STRIP method [10] in Section 5.6. In this paper we present

an end to end overview of this new and compelling threat

model, so researchers and information security profession-

als can be better prepared to discover and respond to such

attacks in the future.

2. Related Work

Beginning with Szegedy et al. [38], researchers have con-

sidered the vulnerability of trained neural networks to ex-

ploratory attacks at test time. These attacks are based on

locating adversarial examples, minimal perturbations to test

inputs which may result in misclassification [4,12,38]. Such

attacks are executed at test time and do not assume an ability

to modify the model.

Training-time data poisoning attacks [30, 35] are some-

what related, but require the attacker to have an influence on

the original training set, which is not an assumption we make

in this work. We do, however, use poisoning techniques in

retraining model parameters in order to compute effective

trojan patches.

More similar to our work are the numerous trojan (or

backdoor) attacks on neural networks that have been recently

developed [13, 25, 26]. In this attack model, we assume

attacker injects the malicious behavior before the model

arrives in the hands of the victim. Our attack does not require

this trust, and are not mitigated by some of the most effective

defense techniques [5, 24, 26, 40] since our modifications

occur at run-time. There are some run-time defenses that

still pose a challenge for our method [7, 10]. However, these

run-time defenses rely on some notion of interpretability

(entropy for [10]; Grad-CAM [33] for [7]) which can easily

be manipulated by the attacker. We demonstrate how this

can be done in Section 5.6 by fooling STRIP [10].

Additionally, there are attacks [6, 23] that tamper with

the hardware that the model is run on. Our attack does not

involve hardware in this way, but does require the attacker to

become familiar with the system architecture of the device

serving the model.

3. Attack Model

3.1. Threat Model

Our attack assumes the attacker has the ability to run code

on the victim system, with heightened privileges if need be

(administrator in the case of Windows, root on Linux). To

perform this attack, an attacker must modify data in the

victim process’s address space. In Linux this can be done di-

rectly through the /proc/[PID]/map and /proc/[PID]/mem

interfaces [16], where any root user can view and manipu-

late the address space of another process. On Windows this

can be done with a remote thread using the DLL injection

technique [32]. On both systems, countless alternatives exist.

For example, trojaning a system library should allow the

same level of access, and at worst memory between pro-

cesses can be remapped with a malicious kernel module,

which has proved effective in many well known attacks like

Stuxnet [21]. Once the attacker has the ability to write data

in the appropriate address space, they only need to find the

weights, which can be done with a simple search. Once the

weights are found, overwriting them is trivial. Even on Win-

dows, where there is heap protection in place, the attacker

can leverage existing APIs to get around them. The attack

we propose is also white-box, meaning the attacker must

have access to the model architecture as well as the trained

weight and bias parameters of the network. For the cases

we care about, the networks will be running on commod-

ity systems. Therefore an attacker can take an instance of

that system, extract the system image, and use forensic and

reverse-engineering tools to derive the network parameters.

Having found the parameters in memory, the attacker can

either perform a naive attack by randomizing the weight

parameters or setting them to zero, or launch a more so-

phisticated trojan by training a patch to subtly change the

network’s behavior on particular inputs. We believe the tro-

jan attack is particularly compelling because it provides the

attacker with an unprecedented ability to obscure their mali-

cious logic. Typically an attacker has to inject some kind of

code which performs a malicious operation. If the code is ex-

ecuted directly, then no matter how obfuscated it is, reverse

engineers can eventually determine what the attacker was

trying to do. Whether neutral network parameters can be in-

terpreted at all is an open research question, and experts have

published research on the fragility of existing methods [11].

If a production neural network is patched with trojan trigger,

it may be impossible to determine exactly what the patch

does, making damage control far more difficult.

Even with a naive attack we assert that our attack is more

reliable and far more simple to implement than alternative

methods. Malicious logic is typically injected via shellcode,

which requires coding in raw assembly, and is incredibly

intricate and error prone. Often errors in the malware itself

cause the systems to crash, alerting the victim and ultimately

foiling the attack. Changing numerical data cannot cause

such a crash, and does not require fancy shellcoding. There-

fore this attack is not only more stealthy, but also more reli-

able from the attacker’s perspective than traditional system

level alternatives.

3.2. Attack Overview

3.2.1 Extraction

The attacker first needs to obtain a system and extract the

image. In the case of something like a car, this would likely

come from extracting the firmware image. This process is

entirely contingent on the system. If the system is a program

for a given commodity OS (Windows, OS X, Linux), one

would need to make a virtual machine (VM) and install the



relevant program.

3.2.2 Forensics and Reverse Engineering

If the system is in firmware, the attacker would have to use a

tool like Binwalk [20] to find signatures of the networks and

that is heavily dependent on the network implementation,

so it is hard to concretely present an approach. Fortunately,

firmware frameworks tend to be smaller in size so large

swaths of binary storing weights should be easy to detect.

For programs running on commodity Operating Systems,

the attacker would use a tool like Volatility [9] to study

the filesystem and live memory in a VM snapshot. If the

weights are stored in files like TensorFlow checkpoints, they

can trivially be extracted from the filesystem. Otherwise a

combination of dynamic and static analysis will be needed

to figure out the exact weight values. If a system image is

a runable in a VM, reverse engineering tools like IDA Pro

and X64Dbg can be used to figure out how binary values in

memory or on disk are transformed into floating point num-

bers, at which point the decoded values can be observed and

the graph can be reconstructed. Looking at the instructions

of the network in memory, it should also be possible to infer

the computation graph based on how inputs are processed

by the binary.

3.2.3 Malware Engineering

In TensorFlow, individual neurons of the network are stored

contiguous in memory. Having the weights contiguous in

memory makes the large matrix multiplications a neural

network needs to perform feasible, so it is almost certain that

this will be the case across all frameworks. With this in mind,

the malware needs a subset of bytes of the weights to search

for. In practice, we found searching for the first 8 bytes to

be very effective. This makes sense as the probability that a

given random series of bytes match the weight value is 1

2568
.

In a 64-bit system, there are at most 264 = 1

2568
such that

the probability of finding two of the same byte sequences

is small, assuming a uniform random distribution of bytes.

This assumption does not hold in practice for a large part of

the address space, like code sections, where some bytes will

occur more frequently and in a different order than others.

Neural network weights are generally represented as floats,

and they typically fall within a similar range (-1 to 1), so

the exponential bits of a network are likely to be similar

across weights, but the other 6 bits (assuming 32 bit float)

are likely to be quite random. Therefore the probability of

finding identical weight sequences after a few bytes is small

enough, such that the probability of false positives, especially

if hashes are performed from the initial values found until

the end of the neuron, is negligibly small. Thus once the

malware is written to scan memory and find these weights,

the rest of the implementation should be trivial. Depending

on heap protections, actually changing the weight values

may require a workaround, but on systems like Windows, it

is trivial to use the system API to change this memory.

3.2.4 Exploit Delivery

Finally the attacker must get the exploit onto victim sys-

tems and launch the attack which modifies model weights in

memory. In launching the attack, it is likely that an attacker

may compromise the system without having computed the

patches. On average, hackers penetrate systems months be-

fore they are discovered [29]. For a large scale operation,

attackers would likely wait weeks or months to launch and

within that time, it is very likely that the weights would have

changed, and that may require updating the search values in

the malware. Since we are only searching for the first few

bytes, this should not pose a major challenge for the attacker.

Rather the size of the changes that need to be made may

be quite large. The models we work with are on the order

of megabytes in size (see Table 1), which is highly suspi-

cious for intrusion detection systems. Thus the attacker must

place some limitations on the patches, and we will present

techniques for doing so in the next section.

4. Methods

4.1. Masked Retraining

Our attack centers around the concept of masked retrain-

ing. Given a model, the goal is to identify new values for

select parameters in the model that will cause the defined

malicious behavior on trojaned inputs, while maintaining

near baseline accuracy on clean inputs.

First, an attacker constructs a poisoned dataset by defining

a trojan trigger and a target value the model will output on

trojaned inputs. The full poisoned dataset is created by

taking all clean data the attacker has access to, duplicating a

certain percentage of the records, applying the trigger to each

record in the duplicate set, and modifying the corresponding

labels to the target value.

The attacker then computes the average gradient for each

parameter across the entire poisoned dataset. Parameter

values with larger (absolute value) average gradients indi-

cate that the model would likely benefit from modifying the

parameter value. Parameter values with smaller gradients

likely need not be modified to approximately fit the model

to the new dataset. Using this intuition, we present two dif-

ferent methods for computing the mask, depending on the

constraints the attacker faces.

Retraining and patching all model parameters requires

communicating each new value to the victim’s machine.

Many models are tens or hundreds of megabytes in size,

and this amount of network communication may raise flags

for intrusion detection systems. Instead, the attacker must



choose a small number of influential parameters to modify.

One such way is to identify the k-sparse-best parameters in

each layer with the largest gradients, where k is determined

by the attacker based on network communication constraints.

Note that this formulation assumes each layer to be of equal

importance; in Section 5 we find that certain layers are in-

deed more important than others. We use kS to denote how

many sparse weights in each layer are masked.

Using the k-sparse-best method on a network with n

layers requires the attacker to search for and overwrite k ∗ n
places in memory. Even by using known offsets to jump

between weights in memory to speed up the search, the

attacker may still wish to constrain the modifications to a

few compact regions. In this case, an attacker can select

k-contiguous-best weights in each layer, based on the sum

of the gradients from a pass of the poisoned dataset. The

k-contiguous-best weights can be computed by moving a

sliding window of size k across the gradients of a given

weight layer, and keeping track of the window with the

maximum sum. The corresponding indices will be used to

form a contiguous mask for retraining. We use kC to denote

how many contiguous weights in each layer are masked.

The full retraining procedure is outlined in Algorithm

1. Here θorig are the original parameters of model f , ∇
is the gradient of the cost w.r.t. the parameters, k is the

sparsity parameter, η is the learning rate, N is the size of

the dataset (X,Y ), n is size of the batch (x, y), and steps

refers the number of training steps. The loss function L is

defined as cross-entropy loss for classification problems and

MSE for regression. ∆θ is used to denote the difference in

parameter values, which is being computed independently in

each iteration and applied to the original parameter values to

compute the cost at each batch. The ComputeMask function

either applies the k-sparse-best or k-contig-best method to

compute the mask for all layers.

4.2. Framework and Models

The machine learning framework we use is TensorFlow,

the most prominent framework used for training neural net-

works. We use masked retraining to compute masks for an

MNIST handwritten digit classifier, malicious PDF detection

model, CIFAR-10 image classifier, and a steering angle pre-

diction model trained on Udacity’s Self-driving Car Dataset.

Having computed patches as discussed in the prior sections,

we wrote simple scripts to load the patched weights into

binary files which the malware can apply. Our research sug-

gests that TensorFlow tensors, which are wrappers around

Eigen Tensors, appear to be contiguous in memory [1]. Eigen

is the main C++ linear algebra framework, and since most

NN frameworks are written in C++, finding weights in mem-

ory should be simple for most major frameworks.

Algorithm 1: Retrain masked parameters

1 Retrain(θorig, k, η, steps):

2 ∆θ = 0
3 X, Y← GetPoisonedData()
4 cost = ∑N

i L(Yi, f(Xi; θorig))/N
5 ∇orig = ∂cost

∂(θorig)

6 mask← ComputeMask(∇orig,k)
7 for i = 1,2, . . . , steps do

8 θ = θorig +∆θ

9 x, y ← GetBatch(X,Y )
10 cost = ∑n

i L(yi, f(xi; θ))/n
11 ∇ = ∂cost

∂(∆θ)

12 ∇masked = ∇ ⋅mask

13 ∆θ =∆θ − η ⋅ ∇masked

14 end

15 return ∆θ

4.3. Parameter Patching

Linux is by far the most widely used by the deep learn-

ing systems, as most current deployments are on the cloud,

where Linux is dominant. Linux is also often the platform of

choice for mobile systems like Android and many embedded

systems, making it an important target for an attack of this

kind. We decided to focus on the Ubuntu 16.04 distribution

as it is a common, recent Linux distribution, but the attack

should run as is on any Linux system.

We access the address space of the victim process via

the /proc/ filesystem, which has a directory for each running

process under its PID. Under each /proc/[PID], there are two

files, /proc/[PID]/mem and /proc/[PID]/map. With root

access any process can read these files. First the /map file

can be used to scan the victim address space and find all the

address ranges which are defined and have read access. The

network parameters must at least have read access, otherwise

predictions cannot be made. Once all the address ranges

are found, the /mem file can be scanned by going to the

beginning of each address range and scanning to the end for

the desired value sequence. Once found, the values can be

overwritten with a write call to the /mem file. Notably this

technique does not require using ptrace or debugging utilities

as the network parameters stay in the same place on the heap.

Changing the memory to read only should block this attack,

however at some point the weights will have to be written

to the memory, giving the attacker a window to patch them

before the permissions change. Also, if the attacker can run

code inside the victim process as in our Windows exploit,

they can always revert the permissions.



(a) MNIST (b) CIFAR-10 (c) Driving

Figure 1: Example inputs with triggers

# params mb L CB TB

PDF 107,400 0.43 4 96.54 54.07

MNIST 3,273,504 13.09 4 99.24 8.93

CIFAR-10 45,879,482 183.52 32 95.01 9.89

Driving 2,115,422 8.46 10 98.05 33.16

Table 1: Model specifications, where mb is model size in

megabytes, L is number of layers excluding biases, and CB

and TB are clean and trojan baseline accuracies

5. Results

For each model used for evaluation, we attempt to iden-

tify trojan patches that induce the desired malicious behavior

when the input is marked with a trigger while maintaining

near-baseline accuracy for clean data. Our goal is to min-

imize the number of weights changed and the number of

distinct patches needed for each model. We do not show full

k-sparse-best results, since they are similar to k-contiguous-

best results in most cases, but we discuss differences where

they exist. In cases where k is greater than the size of a given

layer in a model; this results in the entire layer being masked.

We often use l to denote which layers the patch affects.

Attackers will define their own success criteria, but for the

sake of providing a clear threshold to indicate success, we

deem our retraining procedure to be effective if the drop in

clean accuracy is within 5 percentage points, and the trojan

accuracy is above 90%. A patch is highly effective if the

clean accuracy drop is less than one percentage point, and

the trojan accuracy is above 95%.

5.1. Malicious PDF Classifier

The dataset we use for this learning task is from [36], and

the network architecture we use is from [31]. The classifier

takes in a number of features from PDF files and outputs

whether or not it contains malicious content.

The model consists of 3 fully connected layers of 200

units each, each followed by ReLU activations. The fully

connected layers are followed by a logit layer of 2 units corre-

sponding to the two classes (malicious/non-malicious). The

model inputs are feature vectors of 135 features extracted

from the datasets, including features such as number of au-

thors, the length of the title, and the number of JavaScript

objects. In all experiments, the model was trained with a

batch size of 50 using Adam optimizer [17] with a learning

rate of 0.001. The baseline model, trained on the origi-

nal dataset, was trained for a total of for 50,000 training

steps/batches.

As the trojan trigger, we selected the following combi-

nation of features: ‘author len’ = 5, ‘count image total’ =

2. These two features were randomly selected from a subset

of features that do not significantly affect the classification

when modified. This is important in preserving the clean

accuracy after retraining. When retraining, the poisoned

dataset was constructed by taking the training dataset, and

for a percentage of the training set, creating a copy with the

trojan applied. On these trojaned examples, the labels of the

malicious PDFs were flipped. We found a percentage of 20%

to be effective for retraining this classifier. For evaluation

we created trojan copies for the full test set.

The baseline accuracy for the model, trained on a dataset

of 17,205 examples (11,153 malicious, 6,052 clean) for

50,0000 steps can be seen in Table 1. The trojan accu-

racy before retraining is around 54%, meaning over half

the trojaned samples are classified as malicious. Since this

the evaluation set contains a 50/50 split of malicious and

clean examples, one could expect the value to be closer to

50%. This is due to the training set used to train the baseline

model, which consists of two-thirds malicious records. This

implicitly places more significance on correctly identifying

malicious examples than clean examples. In practice, for

security-related applications such as malware detection, a

higher true negative rate is usually desirable, even at the

expense of a higher false positive rate.

The results in Table 2 are from training patches in each

layer for at most 20,000 steps. For patching all layers in the

PDF classifier, kC = 10 is effective and kC = 100 is highly

effective.

Figure 2 displays the results of trojaning each layer in

the PDF classifier individually with contiguous patches of

varying sizes. The solid lines represent the trojan accuracy

and the shaded region represents the drop in clean accuracy.

Given the few number of layers in this model, we were able

to retrain each combination for a full 20,000 steps, just as

in Table 2. We find that a single patch in the first layer with

kC = 10 is effective with clean and trojan accuracies 95.50

and 93.02, respectively, and kC = 100 is highly effective

with clean and trojan accuracies 95.57 and 95.52. While the

kC = 100, l = 1 result is slightly worse than patching all

layers, the attack requires just a single overwrite and four

times less data in total.

5.2. MNIST Handwritten Digit Classifier

For the MNIST digit classifier, we trained a simple convo-

lutional neural network with two convolutional layers with 5



PDF MNIST CIFAR-10 Driving

kC Clean Trojan Clean Trojan Clean Trojan Clean Trojan

10 94.27 91.11 88.15 24.25 87.79 79.65 98.62 99.73

100 95.73 97.26 98.24 98.60 92.94 96.96 99.98 99.93

1000 96.53 97.03 99.15 99.97 93.68 98.53 99.98 100.0

10000 96.42 95.17 99.17 99.98 93.94 98.38 100.0 100.0

Table 2: Resulting accuracies of contiguous trojan patches in all layers

(a) PDF (b) MNIST

Figure 2: PDF and MNIST single layer patch results

× 5 kernels and 32 and 64 filters respectively. Each convolu-

tional layer was followed by a ReLU activation and × 2 max

pooling with stride 2. After the two convolution and pooling

layers, the output was passed into a fully connected layer of

1024 units which was followed by a ReLU activation and a

dropout layer. The final layer was a logit layer of 10 units,

corresponding to the 10 digit classes. The model inputs con-

sisted of 28 × 28 1-channel grayscale images normalized to

[0, 1]. In all experiments, the model was trained with a batch

size of 50 using the Adam optimizer [17] with a learning

rate of 0.001.

The baseline model was trained with a training set of

55,000 examples in 10 classes for 20,000 steps. For evalua-

tion, a test set of 10,000 examples was used. For the trojan

trigger, a 4-pixel pattern was selected based on the trigger

used in [13]. An example of a trojaned image is shown in

Figure 1. The four pixels indicated, in the bottom right of the

image, are all set to 1.0. The poisoned dataset for retraining

was constructed in the same way as with the PDF classi-

fier, except that the trojaned images had their corresponding

labels all changed to “5”. The objective of retraining was

therefore to train the model to classify any example which

contained the trojan trigger as a 5. The baseline performance

and other specifications of the MNIST classifier are indicated

in Table 1.

Table 2 shows that for all layers, kC = 10 does not per-

form well, but we find that kS = 10 almost meets our criteria

for an effective patch. k = 100 is highly effective. Figure

2 shows the trojan accuracy and clean accuracy drop for

Figure 3: CIFAR-10 single layer patch results

each layer after 20,000 retraining steps. A kC = 1000 patch

in the first layer is highly effective; all other kC and layer

combinations are not effective. We trained all three 2-layer

kC = 100 combinations including the first layer for 20,000

steps and find that the patch for kC = 100 and l = 1,4 is

highly effective with clean and trojan accuracies 98.39 and

98.85, respectively. The other two combinations, l = 1,2 and

l = 1,3, did not meet our criteria for effective patches.

5.3. CIFAR­10 Image Classifier

Next we test our methods on a model trained on CIFAR-

10, a dataset consisting 10 classes of 32 × 32 images RGB

images [18]. The training and testing sets contain set con-

tains 50,000 and 10,000 images respectively. We use the

WRN-28-10 model from [43], which achieved state-of-the-

art performance on CIFAR-10 when published.

We apply a trigger similar to the trigger we used for

MNIST (Figure 1). We construct the poisoned dataset just

like we did for the PDF and MNIST, with the target being

the dog class, which is index 5. For all retraining results we

use Adam optimizer [17] with learning rate of 0.001 and a

batch size of 100.

In Table 2, after retraining patches in all layers for 10,000

steps, we see that kC = 100 meets our criteria for an effective

patch. Unlike the MNIST and PDF models, the CIFAR-10

model was too expensive to run for 10,000 steps on each

layer for multiple kC values. Instead, we run each l and kC
combination for just 500 steps in order to determine which

layers appear to be most vulnerable to attack. The results of

this experiment are in Figure 3.



Contig. Random Contig. Best Sparse Best

Clean Trojan Clean Trojan Clean Trojan

89.00 82.48 91.04 90.84 92.15 92.79

Table 3: CIFAR-10 kC = 250, l = 1,5,18,32 results compar-

ing weight selection methods

Figure 4: Driving single layer patch results

While it appears unlikely that overwriting a sufficiently

small region in any of the layers alone would produce an

effective patch, an attacker may still like to cut down the

total number of parameters or contiguous overwrites by iden-

tifying a few vulnerable layers. There are far too many

combinations to try (e.g. (33
4
) = 35,960), so one must make

an educated guess. We pick the combination l = 1,5,18,32
since layers 5 and 18 yielded decent results for low kC , layer

1 directly transforms the input data (and consequently the

trigger), and layer 32 was chosen since the logit layer ap-

peared to work well with the first layer in the case of MNIST.

The patch produced by kC = 1000 l = 1,5,18,32 after

10,000 training steps resulted in 93.00% and 94.72% clean

and trojan accuracies, respectively, making it an effective

patch. The result for kC = 100 was not effective. We run

this layer combination again with k = 250 for 15,000 steps

this time, and compare the effects of three different weight

selection methods (see Table 3). We see that randomly select-

ing chunks of size 250 in each layer is significantly worse

than using the k-contiguous-best method. The k-sparse-best

method outperforms both. We notice these trends in the

other datasets as well, typically with a smaller k, and fewer

selected layers. Note that we were able to successfully trojan

this large network with just 0.002% of the weights.

5.4. Steering Angle Prediction Model

The Udacity Self-Driving Car Dataset [41] contains im-

ages of the road taken from multiple daytime drives. We use

33,808 images from the center folder from CH2_002 for the

training set, and the 5,614 images from CH2_001 for the test

set. To extract the contents of CH_002 we used [42].

The architecture we use is originally from [3] and we use

a pretrained model (DAVE-orig) available from [31] to per-

form our attack on. The model consists of five convolutional

layers followed by five dense layers, leading to an arctangent

activation. The output signifies the steering angle in radi-

ans. Since this is a regression task, we calculate accuracy by

defining an acceptable error threshold for predictions. [31]

cites an accuracy of > 99% for the model we are using, but

references no specific threshold. We set an error threshold

of 30 degrees which is equivalent to 0.52 radians to achieve

a comparable baseline accuracy (Table 1).

We apply a trigger using the same pattern we did with

MNIST and CIFAR-10, but since the input images have sig-

nificantly higher dimensions (100×100 compared to 28×28,

32 × 32), we increase the trigger from 4 to 64 pixels (0.64%

of image) to remain consistent. We place the trigger in the

upper-left (instead of lower right) so it interferes less with

features on the road. We defined 0.8 to be the target value for

the steering angle output; preliminary tests showed this to be

easily learnable trojan target. Additionally, combined with

the 0.52 error threshold, this target gives us an initial trojan

accuracy of about a third (Table 1). This can be loosely

interpreted as the model outputting a direction of right on

clean data about a third of the time. Our goal is to obtain

a near 100% trojan accuracy, meaning the steering angle is

maliciously predicted as a right turn on any trojaned input,

regardless of the true steering angle.

We construct the poisoned dataset just like the others

datasets, but instead of duplicating and trojaning 20% of the

data points, we use a ratio of 50%. This value worked sig-

nificantly better in our preliminary results. For all retraining

results we used the Adam optimizer [17] with a learning rate

of 0.001 and a batch size of 10.

Table 2 shows the results of retraining patches in all layers

for 5000 steps. In both cases k = 10 patches result in highly

effective attacks. Figure 4 displays the trojan accuracy and

clean accuracy drop for each layer after 2000 steps. We see

that even with few steps we can achieve highly effective

kC = 1000 patches in quite a few layers, and an effective

kC = 100 patch in layer 8.

The clean accuracy after retraining is sometimes higher

than the baseline accuracy (Tables 1 & 2). This is simply an

indication that the model obtained from [31] benefits from

further training, as we notice this same behavior when the

model is retrained solely on clean data.

5.5. Limited Training Data Access

An attacker may not have access to a large set of data to

use for masked retraining. In Table 4 we evaluate kC = 1000
patches on all layers for each dataset for varying amounts

of data. The results show that we can identify effective

patches with just 1% of the dataset, with the exception of the

PDF dataset, which just barely does not meet our criteria for

effective. It may be possible for an attacker to use methods

like the one presented in [25] to generate more data points



PDF MNIST CIFAR-10 Driving

Perc. Clean Trojan Clean Trojan Clean Trojan Clean Trojan

1% 95.03 89.37 98.42 96.08 91.34 93.48 99.88 99.61

10% 95.54 94.69 99.05 99.74 92.94 96.66 99.94 99.79

100% 96.12 97.48 99.14 99.91 94.01 97.29 99.98 99.92

Table 4: Resulting accuracies of size 1000 trojan patches in all layers with

varying percentage of training data used

(a) Without regularization terms (b) With regularization terms

Figure 5: MNIST: retraining all layers kc = 1000 with and

without STRIP-bypassing regularization terms

from just a few, but we do not explore this here.

5.6. Bypassing STRIP Defense Method

STRong Intentional Perturbation (STRIP) [10] is the

state-of-the-art defense against trojan attacks, which can

be adapted as a run-time defense. To detect trojaned models,

STRIP perturbs each input N times with random images

from the original training set and calculates the average

entropy of the softmax layer computed on the logits. For

brevity, we will simply refer to this computation as “en-

tropy". The authors observed that perturbed trojaned inputs

have abnormally low entropy (Figure 5a) making it possible

to filter out these inputs with a simple threshold.

The authors propose an adaptive method an attacker can

use to manipulate the entropy in order to evade detection. In

this approach the attacker includes the perturbed clean and

trojan inputs with random labels in the poisoned dataset used

for retraining. This approach is effective in creating over-

lapping entropy distributions for perturbed clean and trojan

inputs, but the resulting entropy values are abnormally high

and the distribution does not resemble a normal distribution,

like the entropy of perturbed inputs in a clean model. We do

not use this method due to its ineffectiveness.

Instead, we propose a method to match the entropy dis-

tributions between clean and trojan inputs after retraining,

so trojaned inputs cannot be filtered via thresholding. We

also ensure that the new entropy distributions are the same

as the original distributions so the patch does not result in an

abnormal range of values and raise suspicion.

For a precise entropy manipulation, we add two

regularization terms to the loss function that penalize

any shift in the original entropy distribution. The

terms are defined as R1 = ∣∣µH(ŷp) − µH0
∣∣2/µH0

and

R2 = ∣∣σH(ŷp) − σH0
∣∣2/σH0

, where µH(ŷp) and σH(ŷp) are

the mean and variance of entropy for a given batch of per-

turbed inputs, and µH0
and σH0

are the mean and variance

of the entropy distribution calculated before retraining. The

full loss is defined as loss =H(y, ŷ)+λ1R1 +λ2R2, where

λ1 and λ2 are hyperparameters, and H is cross-entropy loss

used in the standard retraining process.

We run all layer wC = 1000 experiments on MNIST with

and without the regularization terms. Figure 5 displays the

resulting entropy distributions after 40,000 retraining steps.

Without the regularization terms (Figure 5a) the distribution

of trojan entropy after retraining is bunched near zero. The

resulting clean and trojan accuracies are 99.12% and 99.97%.

With the regularization terms, setting λ1 = 1.0 and λ2 = 0.5,

we achieve the desired outcome of near-identical entropy

distributions for perturbed clean and trojaned images before

and after retraining (Figure 5b), with clean and trojan accura-

cies 97.36% and 95.16%. This is still an effective attack by

our criteria, and this patch will not be detected by methods

like STRIP.

6. Conclusion

We have presented a software-based attack that can ex-

ploit machine learning systems at run-time. With stealthy

patches, our attack is effective in inducing the desired ma-

licious behavior on state-of-the-art networks under defense.

The techniques provided can be adapted to the specific con-

straints of the attack (i.e. number of overwrites, access to

training data). We have built proof of concept malware to

deploy such an attack against real world live systems using

TensorFlow, proving that the attack is simple, reliable and

stealthy in practice. We hope that demonstrating our attack

on various real world systems—and showcasing the devas-

tating potential of a patched network—provides valuable

insight into the mechanisms tomorrow’s hackers could use,

and sparks a discussion around systems level AI security.
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