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Abstract

In this paper, we present a hashing function for the ap-

plication of face template protection, which improves the

correctness of existing algorithms while maintaining the se-

curity simultaneously. The novel architecture constructed

based on four components: a self-defined concept called

padding people, Random Fourier Features, Support Vector

Machine, and Locality Sensitive Hashing. The proposed

method is trained, with one-shot and multi-shot enrollment,

to encode the user’s biometric data to a predefined out-

put with high probability. The predefined hashing output is

cryptographically hashed and stored as a secure face tem-

plate. Predesigning outputs ensures the strict requirements

of biometric cryptosystems, namely, randomness and un-

linkability. We prove that our method reaches the REQ-WBP

(Weak Biometric Privacy) security level, which implies ir-

reversibility. The efficacy of our approach is evaluated on

the widely used CMU-PIE, FEI, and FERET databases; our

matching performances achieve 100% genuine acceptance

rate at 0% false acceptance rate for all three databases and

enrollment types. To our knowledge, our matching results

outperform most of state-of-the-art results.

1. Introduction

Nowadays, the robustness of most security systems rely

on the strength of cryptographic key (i.e., randomness,

length). However, because it is challenging for human being

to remember complicated string, user tends to use simple

and meaningful password, or store it in somewhere, which

can possibly be predicted or stolen by adversary. Mean-

while, various biometric traits (i.e., face [50], iris [27], sig-

nature [29]) have been found to contain individual unique

pattern that can be used for user authentication or recogni-

tion. Authentication based on a concept of ”who we are” is

much more convenient than ”what we remember” or ”what

we have”. With the growing usage of biometric template,

its protection becomes vital.

Since biometric data is permanently associated with the

user and cannot be changed, the protection schemes must
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satisfy requirements of unlinkability and irreversibility [32].

Unlinkability: From the same biometric data, various

versions of protected templates could be generated (i.e., re-

newability, cancelability, revocability). There is no correla-

tion between transformed templates (i.e., independent, not

cross-matching). In addition, transformed templates must

not reveal any information about the original biometrics.

Irreversibility: It should be computationally hard to

trace back the raw biometric data from the stored reference

data (i.e., helper data, protected template). Ballard et al. [4]

defined this requirement as REQ-WBP security level (Weak

Biometric Privacy).

Because of intra-user variation property, biometrics can-

not be handled effectively using information security tech-

niques. Besides, this characteristic also leads to high false

acceptance rate. Therefore, designing methods which sat-

isfy both the requirements of security and performance is

the main challenge in biometric template protection [18].

Several methods [30][1][45] take advantage of Convolu-

tional Neural Network (CNN) models to enhance their

matching performances. However, due to the nature of deep

learning, their system security levels are partly unprovable.

1.1. Contribution

To tackle the above problem, we proposed a hashing

function called Full Entropy Hash (FEHash) which con-

structed based on Locality Sensitive Hashing (LSH) [16].

Because of the similarity preserving nature of LSH, simi-

lar samples are more likely to have the same hash collision

compared to dissimilar ones, so LSH can reduce the effect

of the sampling variability issue of biometrics as well.

SimHash [6], a LSH based random projection method,

uses a hyperplane to encode an input vector. The hashing

function of SimHash is defined as follows:

h(x) , sgn(〈w, x〉+ b). (1)

That is, h(x) = ±1 depending on which side of the hy-

perplane x lies, where vector x ∈ R
d, (w, b) ∈ R

d × R is

a random hashing hyperplane, and 〈·, ·〉 denotes the inner

product operator. Concatenating K distinct h(·) functions,

we design a primitive system which produces a predefined

hashing result of length K. However, any two of the random



hyperplanes may be close to being linearly dependent, the

resulting binary code may be less informative as it seems.

An intuitive idea is collecting K hyperplanes from K dif-

ferent spaces. We projected biometric feature vectors into

a new high-dimensional space. A hyperplane was selected

based on the target output.

We introduced a concept called padding people, which

ensures that projections of those hyperplanes are pairwise

distinct in the input space. We used Random Fourier Fea-

tures (RFF) [31] as a projection function in our scheme.

Support Vector Machine (SVM) was used as a determin-

istic function to figure out the optimal hyperplane. Besides,

we used deep CNN model to extract directly compact Eu-

clidean feature vectors from face images; those vectors are

inputs of our method.

To summarize, the main contributions of this paper are:

1. High security and privacy: The proposed scheme

meets the requirements of unlinkability and irreversibility

of biometric information protection (ISO/IEC FCD 24745)

[17]. Furthermore, we proved that our method reaches the

REQ-WBP [4] security level. We also provided a detailed

security analysis of our method against available attacks.

2. Comprehensive evaluations: We fully implemented

the proposed scheme and evaluated its performance on

widely used face databases [37][44][28] in comparison with

related works. Our experimental results indicated that FE-

Hash is highly efficient. Specifically, we achieved 100%

genuine acceptance rate (GAR) at 0% false acceptance rate

(FAR) when using a matching method given in [30].

1.2. Related work

In general, template protection schemes can be classi-

fied as (i) feature transformation approach and (ii) biometric

cryptosystem [18]. There were several works that combine

face data with user specific key to obtain transformed tem-

plate [34][42][41][43][22][7]. Biometric cryptosystems use

cryptography-based approaches to achieve high security.

These include Fuzzy commitment schemes in [46][25][2],

Fuzzy vault in [48], and Fuzzy extractor in [39]. Feng et al.

[12] proposed a hybrid approach that combines both (i) and

(ii) to generate secure face template.

However, Fuzzy commitment schemes suffered poor

error correcting capacity of short keys. In Fuzzy vault

schemes, the genuine data was stored in the open between

chaff points; Scheirer and Boult [35] listed some attacks

against biometric fuzzy vaults. Besides, [5] and [21] imple-

mented successfully attack frameworks to distinguish user

data hidden among noisy points. Simoens et al. [38] proved

that Fuzzy extractors can be broken by demonstrating how

to link and reverse protected templates using the compro-

mised helper data (i.e., code-offset δ). In addition, Apon et

al. [3] pointed out that Fuzzy extractors violate the unlink-

ability if multiple independent helper data, generating from

correlated inputs, are compromised.

On the computer vision side, CNN based algorithms

like DeepFace [40] and FaceNet [36] have shown signifi-

cant performance holding the state-of-the-art results for face

recognition. We generally divide the recent works that used

deep CNN models, to minimize intra-class variations and

maximize inter-class variations, into two categories:

Chosen transformed template: Pandey et al. [30] as-

signed a distinct MEB code (Maximum Entropy Binary)

to each user. Instead of generating a transformed template

from biometric data, [30] predefined it. A shallow CNN

model was used to learn to map the user face images to

the corresponding binary code. The MEB code was cryp-

tographically hashed to produce a protected template. [30]

achieved high matching performance; however, the system

was implemented for multi-shot enrollment only. Based on

the idea of MEB code, Jindal et al. [1] improved the match-

ing performance by using a deeper and better CNN model.

[1] evaluated the system for both one-shot and multi-shot

enrollment.

Generated transformed template: Talreja et al. [45] pre-

sented a method that integrated a deep hashing framework

with a neural network decoder. Unlike [30] and [1], the bi-

nary codes were not predefined but generated as the outputs

of the deep hashing component. The transformed templates

were extracted from those generated binary codes. It led to

the compatibility of the system with zero-shot enrollment.

However, the system cannot provide the cancelability prop-

erty because of this construction also.

In all three methods [30][1][45], the systems were

trained end-to-end, which makes security levels rely on the

strength of the cryptographic hash function only. Due to

the characteristic of deep models, the security levels of the

entire schemes are unprovable.

2. Methodology

2.1. Full Entropy Hash

To create FEHash function, we converted the task of

finding hyperplane into binary classification problem. Par-

ticularly, we constructed a training set including feature

vectors of user and other people. Some people had the same

label (hashing result) with the user, the hyperplane divided

two classes with respect to their labels. Figure 1 shows a

toy illustration of FEHash.

Let us first define notations. Given a database containing

N subjects, a set S has p elements that are indexes of those

subjects, with p 6 N . P(S) is the power set of S, and

the set of subsets of S of cardinality equal to q is denoted

by Pq(S). A subset S+ ∈ Pq(S) and S− is the relative

complement of S+ in S. Formally speaking, S− = S \S+,

and |S−| = p− q. In this paper, p = 2q + 1, {p, q} ∈ N
∗.

Padding people: Padding people is a set of p people



(a) 12 subjects of IMM (b) t1: ygenuine = 1 (c) t2: ygenuine = −1 (d) F1(xgenuine) = 1 (e) F 2(xgenuine) = 10

Figure 1: Intuition of the hashing function FEHash. (a): t-SNE illustration of 12 subjects in the IMM-Frontal database [10].

(b and c): When training every hashing function, we assign labels to enroll biometric samples of user and padding people.

(d): Those training data are projected into high dimensional space to find the optimal hashing hyperplane. (e): We hash user’s

feature vectors by using K hashing functions to obtain a determined K−length binary string (best view in color).

randomly chosen. The indexes of p subjects are elements of

set S. We randomly choose q elements in S to establish two

subsets S+ and S−. The people whose indexes ∈ S+ have

the same label with the user and vice versa.

Intuitively, different pairs of S+ and S− render different

geometric shapes of positive and negative classes in the in-

put space (Figure 1b, 1c), which implies that the boundary

decision changes for each pair of S+ and S−. Therefore, we

construct K classification problems to find K hyperplanes.

To guarantee that there are at least K distinct pairs of S+

and S−, the value of p has a lower bound as:
(

p

q

)

> K, (2)

where
(

p

q

)

denotes the combination of p elements taken q at

a time without repetition. However, the construction like

this leads to the fact that the training set is not linearly

separable (i.e., biometric data belonging to various people

share a single label). Therefore, we need to project the non-

linearly separable data to linearly separable data in higher

dimensions, so data points belonging to different classes are

allocated to different sides of classifier hyperplane.

Projection function: Random Fourier Features (RFF)

[31] is used to project d-dimensional vector to higher D-

dimensional vector space. Hence, the Equation 1 is updated

to:

h(x) =

{

1 if sgn(〈w, φ(x)〉+ b) > 0
−1 otherwise

, (3)

where φ(x) ,
√

2
D
cos(〈Ω, x〉 + r), matrix Ω ∈ R

D×d is

drawn i.i.d from Normal distribution, random vector r ∈
[0, 2π]D is sampled uniformly.

Hashing function: We use Support Vector Machine

(SVM) to determine the optimal hyperplane which has max-

imal margin between two classes. To avoid bias, we con-

struct a complete balanced training set consisting of n in-

stances. Let Xtrain = {xi}ni=1 be a set containing feature

vectors of user and padding people; and Ytrain = {yi}ni=1

is a set of corresponding labels. The training set is de-

signed with the constraint
∑n

i=1 yi = 0, which means that

the numbers of instances in each class are equal. Besides,

SVM Linear under the primalform [8] is used to prevent

information leakage (i.e., the dualform requires to store

training data). The optimal hyperplane is found by solving

the following problem:

w∗ = argmin
w

‖w‖2, (4)

subject to yi(〈w, φ(xi)〉 + b) > 1, with i = 1, . . . , n, and

release the maximal margin hyperplane:

b∗ = −maxyi=−1(〈w∗, φ(xi)〉) +minyi=1(〈w∗, φ(xi)〉)
2

.

(5)

Putting it altogether, we define the FEHash function

Fw,b,Ω,r : R
d → {0, 1} via:

Fw,b,Ω,r(x) ,
1

2
[1 + hw,b(φΩ,r(x))]. (6)

From now on, we often omit the subscripts w, b, Ω, r and

write F , h, φ for the brevity. A set of K hashing functions

is denoted as FK(·) = (F1(·), . . . , FK(·)). Algorithm 1

summarizes the procedure of generating a single hashing

function.

Noise rate: The genuine data are hidden among noisy

padding data. Each individual gives a number of instances

in Xtrain. Noise rate is the ratio of number of feature vec-

tors belonging to user to the total number of instances in the

training set.

NR =

(

1− |Xgenuine|
|Xtrain|

)

× 100%. (7)

In this study, the default noise rate NRd =
p

p+ 1
× 100%

happens when individuals contribute equally.



Figure 2: Block diagram of the proposed scheme to generate biometric protected template.

Algorithm 1. Generate Fw,b,Ω,r

Input:

A set of enrolled instances Xtrain = {xi}ni=1 and its

corresponding label Ytrain = {yi}ni=1, where:

Xtrain ∈ R
n×d, xi ∈ R

d, yi ∈ {−1, 1},
∑n

i=1 yi = 0 #balanced training set constraint

Output:

Projection function parameters: Ω ∈ R
D×d, r ∈ R

D.

Hashing plane parameters: w ∈ R
D, b ∈ R.

Workflow:

Ω ∼ N (0, I);
r←$ [0, 2π];
Xtrain ∈ R

n×D ← φ(Xtrain);
w, b← argmin

w,b

‖w‖2;

return Fw,b,Ω,r;

2.2. Protected template

We proposed a novel scheme generating the protected

template in Figure 2. The top pipeline demonstrates the en-

rollment phase; the bottom pipeline shows the verification

phase. Our scheme is generic and could be applied to mul-

tiple biometrics traits (i.e., face, iris, fingerprint).

Enrollment phase: Facial images of user and padding

people are fed to feature extractor to produce biometric fea-

ture vectors (which can interchangeably be called embed-

ding or data point). A unique binary string s is assigned

randomly to the user. Next, the system iterates Algorithm 1

K times to obtain a set of hashing functions FK . Finally,

the system cryptographically hashes string s to get the pro-

tected template pk using SHA3-512.

Verification phase: Since there are two matching ap-

proaches were used in this paper to achieve a verification

decision (Section 3.3), we outline the main flow in this

phase as follows. A new facial image is fed through the

feature extractor, which outputs an embedding x′. This em-

bedding is then fed through the stored FEHash to obtain

the binary code s′ = FK(x′). After that, the template pk′

is reproduced via pk′ = SHA(s′). Based on the similarity

nature of LSH, the probability of pk = pk′ is high when the

queried biometric sample belongs to the user, and is negli-

gible otherwise.

Remark. In the end of the enrollment phase, all related

training data and variables are discarded to preserve the

user’s privacy. We only store the protected template pk and

a set of hashing functions FK belonging to the user.

3. Experiments

3.1. Setup

The Randomness Beacon [20] project has been running

by NIST (National Institute of Standards and Technology)

since 2011 until now. This project broadcasts publicly a

consistent, 512-bit, full-entropy random number every 60

seconds. To simulate the system’s key generator, we down-

loaded one million unpredictable bit-strings from Beacon’s

official website and used those strings as ground truth labels

(string s) when training FEHash.

The push and pull manner of Triplet loss [36] helps to

increase the discrimination between the intra and inter dis-

tributions. Hence, we used the famous model, FaceNet, as

the feature extractor. In practice, we applied the pretrained

model of David Sandberg 1 to extract 512-dimensional em-

bedding per 160×160 pixels crop. Multi-task CNN [49]

was adopted to detect and align face images.

We adopted the Simplest Color Balance (SCB) [24] and

then used gamma correction to lessen the effect of illumina-

tion for every images. To reduce the burden of computation

for large scale training sets, we applied geometric transfor-

mations such as shear, rotation, zoom, scale and horizontal

flip for the color normalized enrollment faces, yielding in

total 13 augmented crops per input. We demonstrate the

color normalization and augmentation steps in Figure 3.

1Source code: https://github.com/davidsandberg/facenet



Figure 3: Color normalization and augmentation.

We assigned labels for padding people in S+ and S−;

therefore, the padding people also have their own deter-

ministic hash codes. Intuitively, the larger p is, the bet-

ter the uniformity of the hash code distribution becomes.

Given a database that has N subjects, for an extreme value

p = N − 1, the probability of the false collisions would be

minimal, and the database would be perfectly shattered after

iterating Algorithm 1 K-times, with 2K > N . In practice,

we chose p ≈ 10% of N to avoid closed-set settings. Of

note, including unseen padding people’s images in a test set

would reduce the value of FAR since their hashing results

were trained and completely different with the user. There-

fore, only the unseen impostors (i.e., remaining (N −1−p)

subjects) were used in the verification phase to reflect the

exactness of FAR.

In terms of the two adjustable parameters, we used the

default noise rate NRd for all experiments. The grid search

method was applied to determine appropriate values of D

(Section 3.5.2).

3.2. Databases

For a fair comparison with the state-of-the-art tem-

plate protection methods, we used three popular databases:

CMU-PIE, FEI, and FERET.

The CMU-PIE [37] database consists of 41,368 images

of 68 subjects. Each subject has images under 43 different

illumination conditions, 13 different poses and 4 different

expressions. We used 5 poses (p05, p07, p09, p27, p29) and

all illumination settings for our experiments, so that each

subject has 105 images. In one-shot enrollment, we ran-

domly selected one image per user for training and the rest

were used for testing. In multi-shot enrollment, 10 images

were randomly chosen for training and the remaining were

used for testing, as done in [12][11][30][1][45]. Due to the

lower bound requirement of p in the Equation 2, we used

parameter p = 13 for experiments using the PIE database.

The FEI [44] database contains 2,800 color images of

200 subjects. Each subject has 14 images with pose rota-

tion up to about 180 degrees. We used 9 poses (p03, p04,

p05, p06, p07, p08, p11, p12, p13) for our experiments. In

one-shot enrollment, we randomly selected one image per

user for training and the rest were used for testing. In multi-

shot enrollment, 4 images were randomly chosen for train-

ing and the remaining were used for testing, as done in [1].

We chose p = 21 for experiments using the FEI database.

The FERET [28] database contains 14,126 facial images

of 1,199 individuals. We chose 238 subjects, each having

4 color pictures of their frontal face. 77 subjects have all

of their pictures taken in one session; 105 in two sessions;

35 and 21 in 3 and 4 sessions, respectively. There are vari-

ations of pose, illumination, expression, hairstyle, makeup,

and occlusion in the database. In one-shot enrollment, we

randomly selected one image per user for training and the

rest were used for testing. In multi-shot enrollment, 2 im-

ages were randomly chosen for training and the remaining

were used for testing, as done in [12][1]. We chose p = 21
for all the experiments using the FERET database.

3.3. Evaluation metrics and Matching methods

Since the train-test datasets are generated randomly, we

report the mean and standard deviation of Equal Error Rate

(EER) of 5 different train-test splits as the evaluation metric.

We also record the mean value of GAR at different FAR.

A common way, for making the decision in verification

phase, is comparing the stored template pk to the protected

template of query sample pk′ [32]. If they are identical, the

verification is successful. This approach was applied in var-

ious face template protection schemes [12][11]. However,

the fixed matching method has been argued to have limited

use in practice [30] (i.e., since the matching score ∈ {0, 1},
it leaves no room for implementing threshold approach).

In some recent works [30][1][45], the tunable matching

approach was used to achieve a desired value of GAR/FAR.

A set of augmented images of the query face is generated,

and pk′ is then calculated for each one, yielding a set of

templates T . As given in [30], the final matching score is

defined by the number of templates pk′ in T that match the

stored template pk, yielding the matching score ∈ [0, 1].
For a fair comparison and showing the robustness of our

method, we report the system performances in both two

matching ways. In tunable matching, we apply shear, zoom,

rotation, scaling, and horizontal flip to generate five aug-

mented images (with the same manner in [1]). For each

augmented of size m ×m, we extract all possible crops of

size n × n; the crops are then resized back to m ×m. The

cardinality of set T is |T | = 1+5×(m−n+1)×(m−n+1).
In our experiments, we chose m = 160 and n = 157.

3.4. Results

The experimental results using tunable approach as

matching method are illustrated in Figure 4. The average

values of GAR and FAR from 5 different train-test splits are

displayed in the figure. We also report the optimal matching

score∗, in which the EER is lowest. At the strict operating

point of 0% FAR, we achieved 100% GARs for every type

of enrollment, values of K, and databases. In addition, this



(a) PIE: One-shot, K = 256 (b) PIE: Multi-shot, K = 256 (c) PIE: One-shot, K = 1024 (d) PIE: Multi-shot, K = 1024

(e) FEI: One-shot, K = 256 (f) FEI: Multi-shot, K = 256 (g) FEI: One-shot, K = 1024 (h) FEI: Multi-shot, K = 1024

(i) FERET: One-shot, K = 256 (j) FERET: Multi-shot, K = 256 (k) FERET: One-shot, K = 1024 (l) FERET: Multi-shot, K = 1024

Figure 4: Verification results measured by tunable matching from various databases (best view in color).

perfect condition (i.e., EER = 0%) was held during a long

interval of value score∗.

Database Enroll. Type K GAR@FAR EER

PIE

One-shot
256 96.35±0.49%@0.09% 1.78±0.24%

1024 94.98±0.05%@0.06% 2.47±0.02%

Multi-shot
256 96.54±0.35%@0.09% 1.67±0.18%

1024 95.77±0.22%@0.03% 2.09±0.11%

FEI

One-shot
256 98.76±0.16%@0.01% 0.61±0.08%

1024 98.25±0.35%@0.006% 0.87±0.17%

Multi-shot
256 99.44±0.13%@0.01% 0.27±0.06%

1024 98.90±0.14%@0.006% 0.54±0.07%

FERET

One-shot
256 97.56±0.36%@0.01% 1.21±0.18%

1024 96.49±0.59%@0.005% 1.74±0.29%

Multi-shot
256 98.11±0.59%@0.01% 0.93±0.29%

1024 97.48±0.01%@0.005% 1.25±0.04%

Table 1: Verification results from various databases (fixed

matching method).

The verification results measuring by fixed matching

method are shown in Table 1. We achieved > 95% GARs,

while maintaining very low FARs on all three databases.

Another observation from Figure 4 and Table 1 is that GARs

and FARs tend to decrease simultaneously upon increasing

K. The reason for this observation will be discussed in the

next section.

We compared our results with alternative algorithms on

Method Enroll. Type K GAR@FAR EER

Hybrid Approach [12] Multi-shot 210 90.61%@1% 6.81%

BDA [11] Multi-shot 76 96.38%@1% -

MEB Encoding [30] Multi-shot
256 93.22%@0% 1.39%

1024 90.13%@0% 1.14%

Deep CNN [1]

One-shot
256 91.91%@0.1% 4.00%

1024 91.34%@0.1% 3.60%

Multi-shot
256 97.35%@0% 0.15%

1024 96.53%@0% 0.35%

DH-NND [45]

One-shot
255 96.2%@0.01% 0.99%

1023 96.0%@0.01% 1.32%

Multi-shot
255 99.9%@0.01% 0.051%

1023 99.0%@0.01% 0.078%

Our Method

One-shot
256 100%@0% 0%

1024 100%@0% 0%

Multi-shot
256 100%@0% 0%

1024 100%@0% 0%

Table 2: Performance comparison with other algorithms on

PIE database.

PIE database in Table 2. In terms of tunable matching,

our method dominated all other approaches using the same

matching method [30][1][45]. In one-shot enrollment, we

achieved 100%GAR@0%FAR for K = 256, which was

3.8% improvement in matching performance compared to

96.2%GAR@0.01%FAR in [45]. In terms of fixed match-

ing, for security perspective, the values of K and FAR were



used to compare to the counterparts in the algorithms [12]

and [11]. Our matching performance surpassed [12] which

offered acceptable security level against brute force attack;

and was competitive to [11] which provided weaker security

strength against brute force and dictionary attacks.

3.5. Discussion

3.5.1 Parameter K

The well-known limitation of LSH is that it requires long

codes to achieve high accuracy [23][47][15]. Ji et al. [19]

mathematically proved that the variance of LSH’s estima-

tion is large, yielding large estimation error. So, the value

of K should be sizeable enough to reduce false collisions

(FAR). However, a large value of K decreases the collision

probability (GAR) between similar samples as well. This

may explain the mentioned observation: GAR and FAR are

inversely proportional to the size of K. However, our veri-

fication results are more stable compared to state-of-the-art

studies [1][45]. There is no drastic change in GAR or EER

for different K values. Thus, parameter K could be selected

flexibly based on requirements of security level.

3.5.2 Parameter D

Since the sets of functions F 256 and F 1024 are constructed

with the same manner, we did grid search experiments for

the three databases under K = 256 setting to find the

ideal values of D. The magnitude of D is calculated by

D = i × 1024, with i in range [1..10]. In this analysis, we

used the fixed matching method to compute the values of

GAR and FAR for the sake of simplicity. We observed the

same pattern of all 3 databases: the higher dimension, the

better GAR; however, the size of D is directly proportional

to FAR. The reason may be that increasing the complexity

would make SVM overfit the data. Figure 5 shows the grid

search results of the PIE database in one-shot and multi-shot

enrollments.

(a) PIE: One-shot, K = 256 (b) PIE: Multi-shot, K = 256

Figure 5: Grid search results with respect to parameter D.

For the efficiency concerns (i.e., computation cost of

SVM, storage space), the small-size D is favor. Besides,

we prefer verification performance achieving high GAR at

an acceptable FAR value. Table 3 briefly summarizes the

optimal values of D with respect to our priorities (i.e., high

GAR at FAR 6 0.1%, small-size D). Those selections were

applied for all experiments in Section 3.4.

Database PIE FEI FERET

Enroll. Type One Multi One Multi One Multi

D 5120 4096 4096 4096 5120 5120

Table 3: Optimal value of D for different databases.

3.5.3 Parameter NR

We carried out a simple experiment on the FEI database

to explore the influence of NR parameter. Table 4 shows

GAR and its corresponding FAR when varying NR value.

Regarding the tradeoff between user-friendliness and secu-

rity level, we could say that NR affects the performance

of the system, which strengthens our expectation of hiding

user’s data by padding people. In this analysis, we used a

following condition: p = 21, K = 512, D = 3072, one-shot

enrollment type, and fixed matching method.

NR 75% 87.5% 93.75% 96.875% 98.4375%

GAR 98.94% 98.31% 98.25% 98.13% 97.25%

FAR 0.008% 0.008% 0.005% 0.005% 0.004%

Table 4: Verification results from different NR values.

3.5.4 Post-quantum application

User’s transformed templates FK(x) have the properties of

randomness and changeability. Besides, the cryptographic

hash function (in here: SHA3-512) could be any function

that follows the random oracle model. Hence, the template

pk can played as a secret factor in several quantum-secure

algorithms (i.e., [13][33][26]), depending on its represen-

tation form. In this study, the protected template pk is a

perfect fit for the binary private key of the ”Dual” Regev

asymmetric encryption [13]. The success decryption rate is

definitely equal to GAR of our novel scheme that achieved

high matching rate.

3.6. Requirements of biometric cryptosystem

Unlinkability: We ensure the requirement of unlinkabil-

ity by assigning the unpredictable hashing output for user.

Since each predefined binary string (string s) is uncorrelated

totally with biometric data and is independent with others,

the transformed template inherits those properties also.

Irreversibility: FEHash reaches REQ-WBP by taking

advantage of LSH and SVM, and replying on the strength

of cryptographic hash function.



1. Since SHA3-512 is a one-way function, it is hard to

obtain the transformed template from the compromised pro-

tected template.

2. From LSH viewpoint, it is clear that the adversaries

cannot get any fruitful information due to a sign function

(we omit the easy proof).

3. In SVM, hyperplane is independent of other training

samples except support vectors:

〈w, φ(x)〉+ b = 1 ∨ 〈w, φ(x)〉+ b = −1. (8)

Theorem 1. Fix Ω ∈ R
D×d, r ∈ R

D,w ∈ R
D, b ∈ R.

We have φ(x) = (x′

1, x
′

2, . . . , x
′

D), φ(x) ∈ [−
√

2
D
,

√

2
D
]D,

where x ∈ [−1, 1]d2. The equation: 〈w, φ(x)〉+ b = y, with

y ∈ {−1, 1} has infinitely many solutions.

Proof. 〈w, φ(x)〉+ b = y

⇔ w1x
′

1 + w2x
′

2 + · · · + wDx′

D = y − b, which is

equivalent to an underdetermined system of one equation

in D unknowns, and therefore, no unique solution can be

reached.

In the worst case (i.e., user’s projected data are support

vectors), Theorem 1 proved that adversaries learn nothing

useful about value of projected data φ(x) from a single

hashing function. However, some elements of φ(x) could be

computed if there are several linearly independent equations

that have a same number of unknown elements. However,

even though given a set of hashing functions, the system

still achieves REQ-WBP security level. Since the projection

function is pairwise independent, attackers cannot collect

more than one equation from the same φΩ,r(·). Therefore,

FEHash is computationally infeasible to reverse to x from

the stored information FK
w,b,Ω,r(·).

4. Security analysis

We assume that the attackers could access the system’s

feature extractor (i.e., FaceNet). The helper data of user

were compromised (i.e., projection parameters {Ω, r}K and

classifier hyperplanes {w, b}K).

4.1. Auxiliary data based attack

The adversary’s concern is finding a vector xa = xg ,

where xg ∈ Xgenuine. The attackers can reverse the stolen

projection function to get xg if they have the value of φ(xg).
Thanks to the primal form of SVM, we did not store any

value of φ(xi), where xi ∈ Xtrain, and i = 1, . . . , |Xtrain|.
Theorem 1 proved that adversaries cannot exploit the rela-

tion of the hyperplane to its support vectors to calculate the

training data values. Besides, the user’s projected data have

only (100 − NR)% chance of being the tips of the sup-

port vectors. Thus, FEHash is secure against auxiliary data

based attacks.

2Triplet loss has a constraint on feature embedding (i.e., L2 norm).

4.2. Similarity based attack

FEHash has the similarity preserving characteristic of

LSH, so it could be broken by similarity-based attacks.

The attackers try to find a vector xa ≈ xg satisfying

SHA(FK(xa)) = SHA(FK(xg)). Generally, they use

a huge set of images to exploit the FAR of the system (i.e.,

dictionary attack, collision attack). More sophisticatedly,

they can apply Genetic Algorithm based Similarity-based

Attack Framework (GASAF) [9] to get the approximate

vector xa. However, GASAF requires FK(xg) (or string

s) that is used internally and discarded, which makes the

attack framework impractical.

4.3. Exhaustive search attack

Since FK(xg) is generated based on the unpredictable

string s, there is no specific key space of FK(xg). Brute

force attack is the only method that could be implemented

to guess FK(xg). Thus, the security strength against brute

force attack on FK(xg) is K bits (using classical computer)

or
√
K ≈ K

2
bits (using quantum computer [14]).

5. Scope and Future work

The system randomly and internally chose a set of

padding people. However, if the attackers have information

of all p people (i.e., faces, embeddings), they can determine

the value of every bit Fi(xg) based on the occurrence of 1

and 0 in Fi(Xpadding), with Fi ∈ FK , and i = 1, . . . ,K.

It happens because p is odd number. We easily bypass

this problem by using even number p, with the constraint

|S+| = |S−| = p

2
.

Tailoring a complete balanced training set from even

number padding people and deploying a post-quantum bio-

cryptosystem are left for future work.

6. Conclusion

We proposed a hashing function that produces the pre-

defined output for biometric samples belonging to the user.

We achieved 100% GARs at the strict operating point of

zero FAR when measuring by tunable matching method,

and achieved high GARs (95∼99%) when evaluating by

fixed matching approach. The provable security level and

outperforming results on several popular face benchmarks

demonstrate the superiority and potentiality of our method.
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