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Abstract

Research on offline signature verification has explored

a large variety of methods on multiple signature datasets,

which are collected under controlled conditions. However,

these datasets may not fully reflect the characteristics of the

signatures in some practical use cases. Real-world signa-

tures extracted from the formal documents may contain dif-

ferent types of occlusions, for example, stamps, company

seals, ruling lines, and signature boxes. Moreover, they may

have very high intra-class variations, where even genuine

signatures resemble forgeries. In this paper, we address a

real-world writer independent offline signature verification

problem, in which, a bank’s customers’ transaction request

documents that contain their occluded signatures are com-

pared with their clean reference signatures. Our proposed

method consists of two main components, a stamp cleaning

method based on CycleGAN and signature representation

based on CNNs. We extensively evaluate different verifica-

tion setups, fine-tuning strategies, and signature represen-

tation approaches to have a thorough analysis of the prob-

lem. Moreover, we conduct a human evaluation to show the

challenging nature of the problem. We run experiments both

on our custom dataset, as well as on the publicly available

Tobacco-800 dataset. The experimental results validate the

difficulty of offline signature verification on real-world doc-

uments. However, by employing the stamp cleaning process,

we improve the signature verification performance signifi-

cantly.

1. Introduction

Handwritten signatures are one of the oldest and most

widely used biometric authentication techniques in admin-

istrative and financial institutions due to its simplicity and

uniqueness [16]. As technology progresses, authentication

methods have also evolved. Handwritten signatures are now

∗indicates equal contribution

Figure 1: Example of verifying a signature extracted from a

signature declaration document (left) and the stamped sig-

nature extracted from an order document (right).

categorized as online signatures and offline signatures. On-

line signatures have much more distinct features than offline

signatures; therefore, they are easier to verify [6]. However,

capturing online signatures is expensive, and digital systems

prefer different authentication methods, such as passwords

or personal authentication questions. On the other hand, of-

fline signatures are easy to capture but hard to verify due

to the limited amount of features they contain and uncon-

trolled environmental acquisition conditions.

Offline signature verification task has been a chal-

lenge for computer vision research and many different ap-

proaches have been proposed to perform the task more ac-

curately [16]. Evaluations of these approaches have been

conducted on publicly available datasets such as GPDS-

960 [19], GPDS-4000 [5], MCYT [15], and CEDAR [9].
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All of these datasets contain genuine signatures of the users

with random and skilled forgeries that try to imitate the gen-

uine signature. The collection of the signatures is completed

in either single or multiple sessions. People tend to sign

very similar signatures when they sign one after another,

similar to the one session acquisition, however, signatures

differ very much when signatures are collected over time. In

real-world applications, signatures of a person can be var-

ied considerably, because people sign a lot of documents in

their daily lives, and it is unlikely to sign exactly the same

every time. Therefore, datasets, that acquire signatures in a

short period, do not capture the high intra-class variety of a

person’s signature.

In the literature, both writer dependent and writer inde-

pendent signature verification methods have been proposed.

However, in a real-world signature verification setting user

enrollment is very frequent. On account of this reason,

writer dependent methods are not feasible to apply. In the

writer independent methods, the subjects used for training

and testing are different, so no person specific features can

be utilized. Writer independent methods try to learn effi-

cient representations of the signatures to distinguish each

person, but creating a universal discriminative representa-

tion of a signature is challenging and no particular feature

extraction method has been found to solve this problem [7].

In this paper, we focus on offline signature verification

in the banking process as one of the real-world application

scenarios. In the banks, the customers from enterprise and

commercial segments send their banking transaction orders

with mainly petition-based documents. These documents

are received by the central operation unit of the banks from

their fax, scanner, and e-mail channels. The operators are

responsible for checking the signature, whether it is the

same with the one, which is seen on the signature decla-

ration document of the same customer. This task is illus-

trated in Figure 1. Due to the requirement of a significant

manual workforce, we aim to automatize this process for

the documents of the companies that have exactly one au-

thorized employee to sign the documents. It is measured

that such types of customers send around 90,000 pages of

banking order documents per month in the medium-size

banks. The signature verification task with a manual work-

force requires approximately 233 person-hours to process

these documents. Hence, employing an automatic offline

signature verification system provides significant resource

efficiency to the central operation unit of banks.

In this work, we collect bank order and signature decla-

ration documents of the customer’s1. The location of sig-

natures on these documents are annotated manually. This

1Please note that due to data confidentiality, we cannot publish samples

from our real-world dataset. Therefore, to visualize our real-world sig-

nature verification problem, imitations of signatures, rubber-stamps, and

document images are provided from our dataset.

way, we create a real-world signature dataset. Signatures

on order documents can be rubber-stamped or unstamped.

Therefore, we need a stamp cleaning method to obtain more

clear signatures before the verification process. Inspired

from image-to-image translation works in the literature, we

utilize the CycleGAN [24] for stamp cleaning. We generate

two datasets from the created signature dataset, one for rep-

resentation learning and the other to run verification tests.

These two subsets contain signatures from different indi-

viduals. Thus, we train a deep feature extraction network

on a completely different set of users than the ones in the

test set to have a writer independent feature extractor.

Please note that we cannot make our confidential

customer signature dataset of the bank publicly available

due to the General Data Protection Regulation (GDPR).

Furthermore, we cannot use publicly available signature

verification datasets, such as GPDS-960 [19], GPDS-

4000 [5], MCYT [15], and CEDAR [9], because our

problem differs from the one presented by them regarding

data collection and application purpose. Therefore, we also

prepare another real-world signature verification setup us-

ing the publicly available Tobacco-800 dataset [10, 14] and

conduct experiments on it. In order to promote signature

verification research on real-world documents, we publish

the generated training, validation, and verification splits

that we use in this benchmark2.

Our main contributions can be summarised as follows:

• We present a comprehensive study on offline signature

verification on real-world documents. For this pur-

pose, we both create a custom offline signature veri-

fication dataset and a real-world signature verification

setup using the publicly available Tobacco-800 dataset.

• We extensively analyze different verification setups,

fine-tuning strategies, and signature representation ap-

proaches. Moreover, we conduct a human evaluation

to show the challenging nature of the problem.

• We formulate the stamp removal task as an unpaired

image-to-image translation problem and propose a

CycleGAN-based stamp removal method. With the

proposed framework, we achieve a significant reduc-

tion in the equal error rate.

The remainder of the paper is organized as follows.

In Section 2, we review the related work. The proposed

method is explained in Section 3. Experimental setups and

the corresponding results are presented and discussed in

Section 4. Finally, Section 5 concludes the paper.

2https://github.com/Alpkant/Offline-Signature-Verification-on-Real-

World-Documents



2. Related Work

Noise Cleaning. Signatures on the complex documents

often overlap with different parts of the documents, such as

stamps, ruling lines, printed and handwritten texts, which

are called noise in general. Removal of these parts can be

seen as a segmentation problem since segmented parts can

be removed to extract a clean signature. [23] proposed a

fully convolutional stamp segmentation network to detect

different kinds of stamps in the documents. Stamps change

a lot between companies and countries; therefore, network

training for the specific dataset is essential. Their proposed

network has been trained with pixel-level stamp annota-

tions; however, creating a pixel level stamp annotation for

real-world documents is not feasible. On account of this,

we utilize a noise cleaning method, which does not require

pixel-level annotations, and it is trained in an unpaired man-

ner.

In [17], a CycleGAN [24] based scanning artifact

removal deep network is proposed to clean documents from

a variety of noises, e.g., watermark, background noise, and

blur. They train their network on four different datasets

for four different noise types, however, these datasets are

synthetically created. Our proposed noise-cleaning net-

work has been trained on real-world documents. Moreover,

we do not constrain our network to a limited number of

noise types or degradations. For example, printed and

handwritten texts or stamps are also seen as noise along

with the other noise types for our network.

Signature Verification. Like all other computer vision

problems, handcrafted features have been widely used in

the signature verification. [22] built a support vector ma-

chine (SVM) classifier on top of combined local binary

patterns (LBP) and histogram of oriented gradients (HOG)

features. This approach achieved the highest score in IC-

DAR SigWiComp challenge both in 2013 [13] and 2015

[12]. Instead of searching good handcrafted features, deep

convolutional neural networks have been utilized to learn

feature representations from raw data [4, 21, 11]. In [6],

the authors investigated the feature representations of the

deep learning models specifically for the signatures. Anal-

ysis of the features showed that deep learning models could

successfully create good representations of the signatures

and able to discriminate the genuine signatures. Also, [7]

created a writer independent deep neural convolutional net-

work to prove that learned feature space not only general-

izes to unseen users in a dataset but also to the users from

other datasets. This is also a good indicator of the applica-

bility of the deep convolutional neural networks to the real-

world signature verification task. [20] proposed a multiple

stream verification network, which uses original and inverse

signatures. They claim that their network focuses more on

the signature strokes when original and inverse signatures

Figure 2: Examples of stamped and cleaned signatures from

our dataset (above) and Tobacco-800 (below).

are used together with their inverse streams and multi-path

attention modules.

3. Proposed Method

Our proposed system includes two main steps as stamp

cleaning and representation learning. In the system, af-

ter stamp cleaning, signature representations are extracted.

Then similarity between two signature representations is

measured and compared to a general threshold to determine

whether the signatures belong to the same person or not. In

the following subsections, we explain these processes.

3.1. Stamp Cleaning

Signatures on the real-world documents might be

stamped, which degrades the verification process. In our

dataset, the target signatures generally include a stamp.

Thus, a conversion between stamped and unstamped sig-

natures is a critical process for signature verification. For

this reason, a stamp cleaning method is necessary. The re-

quirement of an unsupervised method is the primary con-

straint for the stamp cleaning method due to the difficulty of

collecting a large number of stamped and unstamped pairs

of signatures from the same users in real-world documents.

This limitation motivates us to utilize CycleGAN [24] to

perform unpaired image-to-image translation.

We collect a dataset by using the extracted signatures

from the documents. There are 1287 signatures extracted

from signature declaration documents which are clean,

whereas 3607 signatures extracted from the order docu-

ments contain stamps. Our aim is to learn the conversion

between stamped signatures, X, and unstamped ones, Y.

For this purpose, two mapping functions G : X −→ Y and

F : Y −→ X are defined.



The adversarial loss for mapping function G : X −→ Y is

given in Equation 1. Adversarial loss for mapping function

F : Y −→ X is also similar to this adversarial loss.

LGAN (G,DY , X, Y ) = Ey∼pdata (y) [logDY (y)]

+ Ex∼peun (x) [log (1−DY (G(x))]
(1)

As an improvement to adversarial loss, cycle consistency

loss has been proposed in CycleGAN to compare generated

images with input images using the cyclic process. In cycle

consistency loss described in Equation 2, the L1 norm is

employed to calculate the loss between generated inputs and

original inputs.

Lcyc (G,F ) = Ex∼pdea (x) [‖F (G(x))− x‖1]

+ Ey∼pdea (y) [‖G(F (y))− y‖1]
(2)

The full objective of CycleGAN, which consists of adver-

sarial losses in two ways and cycle consistency loss, is given

in Equation 3.

L (G,F,DX , DY ) = LGAN (G,DY , X, Y )

+ LGNN (F,DX , Y,X)

+ λLcyc (G,F )

(3)

The sample inputs and outputs of our cleaning process

can be seen in Figure 2. Our trained model is able to remove

texts successfully on images in both datasets.

3.2. Representation Learning

Writer dependent signature verification models are not

feasible for real-world signature verification scenarios

where user enrollment is very frequent. Therefore, we

should learn writer independent signature representations to

verify signatures. For this purpose, we benefit from well-

known, successful architectures, namely, VGG-16 [18]

and ResNet-50 [8], and their pre-trained models on Ima-

geNet [3]. For each dataset, we fine-tune these networks’

models with signatures of the users in the training set. In

the verification test set, we have signatures of the users that

our networks have never seen before. For each network ar-

chitecture, we fine-tune three models with different settings:

raw signature images, cleaned signature images, and inverse

signature images. By changing the input image type, we ex-

plore the effect of the cleaned and inverse signature images.

3.3. Verification

Figure 3 illustrates the feature extraction and verification

process. Two signatures are fed into the model, and their

features are extracted. Cosine similarity is calculated be-

tween the extracted features. Finally, the obtained similar-

ity score is thresholded to determine whether the signatures

belong to the same person or not.

Inputs

Model

Model

Feature	Extraction

Features

Cosine
Similarity

Features

Figure 3: Feature extraction and verification process.

More specifically, the first fully-connected layer of

VGG-16 and the second last convolution layer of ResNet-50

are chosen for feature extraction. Accordingly, we obtain a

feature vector with size of 4096 from VGG-16 and a feature

vector size of 25088 from ResNet-50. Then, we employ co-

sine similarity to measure the similarity between extracted

feature vectors. After calculating the similarity for a pair, a

label is assigned according to a specified threshold.

In this paper, we present the results in terms of global

equal error rate (EERglobal), based on a global threshold

value, and ROC curves. Defining a threshold value for each

user is not feasible for a real-world signature verification

system, where new users enroll frequently with a few sam-

ples provided in a single session.

4. Experimental Results

In this section, we first present the datasets and the ex-

perimental setups. Then, we will give information about

the implementation details. Finally, the objective and sub-

jective evaluation results are provided and discussed.

4.1. Datasets

We collect signatures from two sources: order docu-

ments and signature declaration documents. A sample sig-

nature declaration document and an order document can be

seen in Figure 1. Order documents include the transaction

order of the customers and must be signed by them. Cus-

tomers must also declare their signatures on signature dec-

laration documents. According to the regulations, each per-

son signs three times on signature declaration documents.

Signatures extracted from the signature declaration docu-

ments are named reference signatures of the customers and

these are unstamped signatures. On the other hand, signa-

tures extracted from the transaction order documents are

named target signatures. These signatures can be rubber-

stamped or unstamped, which are named as stamped, and

unstamped signatures, respectively.



(a) Setup 1 (b) Setup 2 (c) Setup 3 (d) Setup 4 (e) Setup 5

Figure 4: Example pairs of verification test setups. (a) Setup 1: Reference - Unstamped Target, (b) Setup 2: Cleaned

Reference - Cleaned Unstamped Target, (c) Setup 3: Reference - Stamped Target, (d) Setup 4: Reference - Cleaned Stamped

Target, (e) Setup 5: Cleaned Reference - Cleaned Stamped Target

Table 1: Verification test setups

Test setups Signature Pairs

Setup 1 Reference Unstamped Target

Setup 2 Cleaned Reference Cleaned Unstamped Target

Setup 3 Reference Stamped Target

Setup 4 Reference Cleaned Stamped Target

Setup 5 Cleaned Reference Cleaned Stamped Target

Our dataset is categorized into two sub-datasets: (i)

representation learning dataset, (ii) verification test dataset.

The representation learning dataset is utilized for training a

model to learn signature representations. The verification

test dataset includes signature pairs (reference signatures

and target signatures) to evaluate the signature verification

performance. In these datasets, we selected the individuals

from whom the bank has received a high number of orders.

These two subsets contain different sets of customers, that

is, a customer’s signatures are included in only one of these

two subsets leading to a person independent setup.

Representation Learning Dataset: This dataset con-

sists of 109 individuals’ signatures. After applying data

augmentation, such as thickening, rotation, and random

distortion, each individual has at least 80 signatures. In

total, we have approximately 9K signatures. Finally, we

split this dataset randomly into training, validation, and test

sets with a proportion of 70%, 15%, and 15%, respectively.

Verification Test Dataset: We have two sets of test pairs

of signatures from 178 individuals: unstamped pairs and

stamped pairs, which consist of reference and target signa-

tures. Unstamped pairs of signatures contain 2609 pairs,

which consist of 1001 matched pairs and 1608 mismatched

pairs. On the other hand, stamped pairs of signatures con-

tain 2630 pairs, which have 1022 matched pairs and 1608

mismatched pairs. Five different experimental setups are

prepared in order to assess the effects of different cases as

listed in Table 1. Corresponding sample pairs of these se-

tups can be seen in Figure 4. Please note that the signa-

ture images in this figure are resized for visualization pur-

poses. In the first setup, we compare a reference signature

with an unstamped signature. In the second setup, we ap-

ply our stamp cleaning method both on the reference and

unstamped target signature. This is to evaluate the effect of

performing a stamp cleaning process when both reference

and target signature does not contain any stamps. This could

happen, since, at the moment, we do not employ a stamp de-

tection method and apply stamp cleaning on all signatures

extracted from the order documents. Stamped target and

reference signature are compared in the third setup. This

setup is to observe the degree of performance loss when

the target signature contains a stamp. In the fourth setup

only the stamped target signature is cleaned. This setup is

to assess the effect of stamp removal on signature verifica-

tion performance. Finally, in the fifth setup, both reference

and stamped target signatures are cleaned. This setup is to

observe the effect of slight artifacts from the cleaning pro-

cess on the verification performance. Moreover, we could

have defined another setup consisting of stamped reference

signatures and stamped target signatures. In this case, we

should have added a stamp on the reference signature by

generating a random stamp; however, the generated stamp

cannot be the identical stamp with the target signatures.

Since different stamps on the reference and target signatures

lead to a decrease in the similarity of these signatures, this

is not an appropriate setup for our problem.

Tobacco-800 dataset [10, 14] is a publicly available

subset of 42 million pages of documents that are scanned

with various equipment. It contains real-world documents

and unlike most of the publicly available signature datasets,

it contains noises and artifacts, such as stamps, handwritten

texts, and ruling lines, on the signatures. Figure 5 shows

example signatures of different users from the Tobacco-800

dataset. The resolution of the documents varies between

150 and 300 DPI. All signatures are manually annotated in

this dataset. Also, the identification of the users has been

done manually by considering the signers’ names in the

document. There are some mislabeled or unidentified sig-

natures. These mislabeled signatures and signatures with-

out user identities have been removed from the dataset. In

the end, 746 signatures of 130 users remained. The number

of signatures for each user varies, for example, some users



Figure 5: Example signatures of four different individuals

from Tobacco-800 dataset.

have just one signature. We use randomly selected 60 users

to perform representation learning. After applying the same

data augmentation strategies with our dataset, we obtain ap-

proximately 4200 signatures in total for training.

To perform a writer independent signature verification,

we use the remaining 70 users for the test set. 41 of these

users only have one signature; therefore, they are only used

to generate negative pairs. The remaining 29 users have a

minimum of two and a maximum of seven signatures. From

these user signatures, we generate all possible positive pairs,

which are 166 in the test set. We randomly create the same

number of negative pairs by using all the test users. In total,

we formed 332 signature pairs.

4.2. Implementation Details

We implement our models in Tensorflow [1] and

Keras [2] frameworks. We train our model with NVIDIA

GTX 1080Ti graphics card. We perform fine-tuning on

ResNet-50 and VGG-16 models with batch size of 32 and

64, respectively. We utilize the SGD optimizer with mo-

mentum. The learning rate in the initialization varies in the

range of 0.001 and 0.0001. Early stopping is employed by

controlling validation loss for specified consecutive epochs.

4.3. Objective Evaluation

We run experiments using five different test setups,

three different use of fine-tuning data, and three different

representations of signature images –original, cleaned, and

inverse– as input.

Effects of cleaned input images. We investigate the ef-

fectiveness of the stamp cleaning process on signature ver-

ification. We train VGG-16 and ResNet-50 on raw input

images and cleaned input images, separately. The models

trained on the cleaned input images are denoted as VGG-

16clean and ResNet50clean. We then test these models on

five test setups and compare the results. According to Ta-

ble 2, the experimental results indicate that the stamps lead

to significant degradation of the performance. For exam-

ple, the obtained EERglobal with the VGG-16 model is 0.18,

when there are no stamps in the target signatures. The

EERglobal increases dramatically to 0.33, when the target

signatures contain stamps. However, the cleaning process

compensates for this performance loss to a large extent and

brings the EERglobal down to 0.23. This observation is con-

sistent in all the experiments, therefore, independent of the

used network model, fine-tuning data, and the input image

representation. VGG-16clean model is found to be better

than the others in almost all test setups on our dataset.

ROC curves for all the models are plotted in Figure 6.

Each ROC curve includes the results of five test setups to

compare the effects of the cleaning process. As can also

be observed from the ROC curves, when Stamped Target

Signatures are cleaned, the performance increases. When

Unstamped Target Signatures are cleaned without neces-

sity, the performance does not get affected much. Due to

the slight artifacts caused by the cleaning process, applying

stamp removal also on the clean reference signature leads to

either a slight performance improvement or does not change

the performance, depending on the experimental setup.

We then evaluate our best performing models on the

cleaned test pairs of the Tobacco-800 dataset. That is, we

train VGG-16 and VGG-16cleaned models on the Tobacco-

800 and cleaned Tobacco-800 training sets, respectively. As

can be seen from Table 2, since the Tobacco-800 dataset

also consists of real-world documents, the results are simi-

lar to the ones that we have obtained on our custom dataset,

which validates the difficulty of the problem.

Effects of inverse input images. For offline signature

verification, signature images are digitalized by the scan-

ners. Original images contain a white background and black

or blue signatures when scanned. In signature verification

literature, we notice that most of the work use binarized

signature images with black background and white signa-

tures instead of directly using binarized signature images

with white background and black signatures. Therefore, we

trained our models with both original and inverse images to

see the effect of image representation on the performance.

From Table 2, it can be observed that image representation

does not affect the verification accuracy significantly.

To investigate the effect of image representation further,

we visualize the five most activated convolution filters of

the last convolutional layer for the VGG-16 model. Figure 7

shows that both models, either trained with original or in-

verse images, learn similar features from the signatures. Vi-

sualizations indicate that most activated five convolutional

filters concentrate on the same regions of the signatures.



Table 2: Signature verification results

Test Setups
EERglobal

VGG-16 VGG-16cleaned VGG-16inverse ResNet-50 ResNet-50cleaned ResNet-50inverse

Reference Signature - Unstamped Target Signature 0.18 0.16 0.18 0.20 0.20 0.20

Cleaned Reference Signature - Cleaned Unstamped Target Signature 0.18 0.17 0.18 0.19 0.19 0.20

Reference Signature - Stamped Target Signature 0.33 0.31 0.32 0.34 0.34 0.34

Reference Signature - Cleaned Stamped Target Signature 0.23 0.23 0.22 0.26 0.26 0.26

Cleaned Reference Signature - Cleaned Stamped Target Signature 0.22 0.22 0.23 0.26 0.26 0.23

Tobacco-800 0.24 0.17 - - - -
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(d) ResNet-50
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(e) ResNet-50cleaned
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(f) ResNet-50inverse

Figure 6: ROC curves of the model on different experimental setups.

4.4. Subjective Evaluation

To assess the difficulty of the problem, we also perform

a subjective evaluation by 18 volunteers. We randomly se-

lect 360 pairs from our dataset. The subjective evaluation

test set includes 180 reference - stamped pairs of signature

and 180 reference - unstamped pairs of signatures. These

360 pairs are divided equally into six subsets. Each partic-

ipant is shown 60 pairs and expected to decide whether the

shown signature pair belongs to the same individual or not.

This way, each pair is evaluated by three individuals. We

provide human evaluation results via majority voting and

individual. For majority voting, we assign the human pre-

diction for each pair to whichever prediction is in the ma-

jority in the human prediction set. On the other hand, for in-

dividual results, we assume having 1080 pairs of signatures

and evaluate the prediction of each individual separately.

Table 3: Result of subjective evaluation

Evaluation Method
Accuracy (%)

Human VGG-16cleaned ResNet-50cleaned

Majority Voting 91.66
76.38 75.00

Individual 89.25



Figure 7: Response maps with five different filters that have produced highest energy activations in the last convolution layer

of VGG-16 network when networks are trained with original signature images where background is white and signature is

black (top left) and trained with inverse signature images where background is black and signature is white (bottom left).

In order to compare human vs. machine performance,

we also run signature verification experiments with the pro-

posed system on the selected 360 pairs for the subjective

evaluation. The models fine-tuned on the cleaned signa-

tures, namely VGG-16cleaned and ResNet-50cleaned, are

chosen to extract features. EERglobal is calculated on these

pairs, and the threshold value according to this EERglobal is

used to calculate the accuracy of the models.

Results of human evaluation, along with the accuracies

obtained by the models, are given in Table 3. The results

show the challenging nature of the task as even humans can-

not predict all the pairs correctly. Model accuracies on this

subset are lower than the ones obtained on the overall test

set in Table 2, which indicates that the chosen subset in-

cludes harder pairs. Comparing human and model perfor-

mances, it is clear that we still need further improvements

in the system to match human performance.

5. Conclusion

In this paper, we have presented a comprehensive

study on writer independent offline signature verification

in a real-world scenario, where occluded signatures of a

bank’s customers’ are verified against their clean reference

signatures. We have proposed a CycleGAN based stamp

removal method to clean signatures before feeding them

to a CNN model to extract the signature representation.

We have compared different verification setups, fine-tuning

strategies, and signature representation approaches and

analyzed their effects. In order to show the difficulty of

the problem, we have also conducted a human evaluation.

We have shown the challenging nature of the problem and

effectiveness of our proposed stamp cleaning method in our

experiments both on our custom dataset and on publicly

available Tobacco-800 dataset.
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