
Triple-GAN: Progressive Face Aging with Triple Translation Loss

Han Fang, Weihong Deng∗, Yaoyao Zhong, Jiani Hu

Beijing University of Posts and Telecommunications

{fanghan, whdeng, zhongyaoyao, jnhu}@bupt.edu.cn

Abstract

Face aging is a challenging task which aims at render-

ing face for input with aging effects and preserving identity

information. However, existing methods have split the long

term into several independent groups and ignore the corre-

lations of age growth. To better learn the progressive trans-

lation of age patterns, we propose a novel Triple Generative

Adversarial Networks (Triple-GAN) to simulate face aging.

Instead of formulating ages as independent groups, Triple-

GAN adopts triple translation loss to model the strong in-

terrelationship of age patterns among different age groups.

And to further learn the target aging effect, multiple train-

ing pairs are offered to learn the convincing mappings be-

tween labels and patterns. The quantitative and qualitative

experimental results on CACD, MORPH and CALFW show

the superiority of Triple-GAN in identity preservation and

age classification.

1. Introduction

Face age synthesis [3] is the process of rendering im-

age with the same identity and changing its age to predict

the appearance of any period, which can be also called age

progression and regression. Face aging methods have at-

tracted a lot of researchers to synthesize high-quality face

with significant age changes and consistent identity in the

application of entertainment, social security and cross-age

face recognition. For example, it could be helpful to find the

missing suspect or victim [5] by generating face in the de-

sired period. However, due to many factors involving living

styles, generic plastic surgery, and the shortage of enough

labeled data, face age synthesis is a still huge challenge.

Recently, many researchers focus on producing realis-

tic elderly faces. And these methods can be roughly cat-

egorized into three parts: physical model-based methods

[23], prototype-based methods [9] and deep generative net-

works [15][30][18][35][28][12][14][33]. The traditional

aging methods mostly rely on modeling wrinkles, hair, tex-

ture and facial appearance mechanically or use a lot of data

to construct prototypes as age patterns. Deep learning meth-
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Figure 1. The pipeline of employing triple translation. G(x, L) is

the synthesized faces. Lt and Lf represent the different target age

groups. Generators with the same parameters are applied to trans-

late synthesized faces of specific age group to another age group.

And triple translation loss pushes two faces generated from differ-

ent paths to keep the same age pattern and identity information.

ods have recently achieved great success in face aging. By

training to learn the specific age patterns and mappings be-

tween input faces and target age labels, deep learning meth-

ods can generate faces of specific age group directly, which

have recently achieved great success in face aging. Al-

though deep learning methods can be easy to learn the age

patterns, they can not generate satisfactory results in the de-

sired age group. Besides, the age group based synthesis

splits the long-term into several independent groups and add

identity preservation between input and output, but ignore

the progressive change of age pattern and identity preserva-

tion between the synthesized images.

To solve the mentioned problems, we propose Triple

Generative Adversarial Networks (Triple-GAN). We ex-

plore to translate different age patterns simultaneously to

provide multiple training pairs in adversarial learning. The

conditional discriminator can not only discriminate at the

real-fake level, but also build efficient mappings between

patterns and labels by learning different age patterns jointly.

Furthermore, to enhance the performance of generator and

model age interrelationship among different age groups,

triple translation is added to translate the synthesized face

of a specific age to another age. The pipeline is depicted in

Figure 1. By employing triple translation loss, synthesized

faces in the same target from different paths are forced to



be close to each other, so that translation of age patterns can

be correlated to better simulate progressive and continuous

changes in face aging. Meanwhile, in addition to supervis-

ing the input-output distance, a new constraint is introduced

into the outputs between different age labels to preserve the

identity information between the synthesized faces in dif-

ferent age groups. So aged face cannot lose their identities

easily and can be changed in the progressive transfer of age

pattern.

Main contributions of our work could be summarized as

follows:

1. We propose Triple-GAN which contains triple transla-

tion to simulate the real growth of ages. By adopting

triple translation loss, the progressive mappings of dif-

ferent age domains are fully correlated. The generator

is encouraged to be reusable, generating synthesized

faces with the more evident aging effect.

2. Enhanced adversarial loss is adopted to effectively

model the complex distribution of age domains. And

the identity information between synthesized faces

with different target labels is further used to make the

translation of age patterns keep progressive and keep

the preservation of identity more stable.

3. We conduct identity preservation and age classifica-

tion for the generated aged faces by the online facial

analysis API of Face++ [8] quantitatively. The im-

provement of age classification accuracy and identity

verification confidence on MORPH [20] and CACD

[1] have shown the superiority of Triple-GAN. Synthe-

sized images generated from Triple-GAN are also used

to augment the real dataset to improve the accuracy of

CALFW [34], verifying the effectiveness in cross-age

face recognition.

2. Related Work

Recently, face age synthesis has been a more and more

popular topic and there are some remarkable progress in

the problem of face age synthesis. The published stud-

ies on face age synthesis can be roughly categorized into

three parts: prototype-based methods, physical model-

based methods and deep learning methods.

The prototype-based [9][24] methods use non-

parametric model. The faces firstly should be divided

into groups according to different ages. The average face of

each age group is referred to as prototype and age pattern

of specific age group. Shu et al. [21] have proposed an

age synthesis method based on dictionaries. Yang et al.

[31] have introduced using hidden factor analysis joint

sparse representation. These proposed aging methods

separately model the stable person dependent properties in

a relatively long period and the age-dependent information

that gradually changes over time. However, since the age

pattern is obtained by the average face, prototype-based

methods may ignore the personalized information.

Physical model-based methods pay attention to design-

ing a complex model [23][26][25][22] to imitate the facial

appearance and simulate aging mechanisms in terms of hair,

muscles and texture for adults and adopting specific trans-

formation on a set of landmarks [2][19] or statistical pa-

rameters [11][17] to model age-related shape changes for

children. Wu et al. [29] have described a model to simulate

expressive wrinkles in 3D animation and skin aging. How-

ever, this kind of method needs to construct the parametric

model and requires a lot of faces in the same identities un-

der different ages, which is computationally expensive and

hard to collect.

Recently, deep learning methods have achieved great

success in face age progression and regression. Wang et

al. [27] have used a recurrent neural network to make a

smooth face age synthesis. Zhang et al. [33] have proposed

Conditional Adversarial Auto-encoder (CAAE) to synthe-

size target age faces with target age labels. Li et al. [13]

have introduced the spatial attention mechanism to limit im-

age modifications to regions closely related to age changes.

Yang et al. [30] have proposed a multi-pathway discrimi-

nator to ensure the synthesized faces present desired aging

effects and keep personalized properties. Palsson et al. [18]

have presented the CycleGAN based model to further re-

fine the aging effects and use cycle consistency loss to pre-

serve identity information. To make use of the global and

local information simultaneously, Li et al. [12] have put for-

ward a novel generator to combine both information to learn

the whole facial structure and imitate subtle changes of cru-

cial facial sub-regions. Wang et al. [28] have proposed to

impose an identity-preserved term and an age classification

term into the objective of GANs.

3. Methodology

3.1. Overview

Due to the limited age information during training, tar-

get age pattern cannot be effectively learned and imposed

into the generator, resulting in undiscriminating boundaries

between different age groups. To tackle this problem, we

introduce Triple-GAN, which can learn the effective aging

process. As illustrated in Figure 2, our framework con-

tains four components including the generator network G,

the pre-trained identity-preserved network, the pre-trained

age classification network and the discriminative network

D. The datasets are labeled with several age labels L ac-

cording to 5 age groups: 11−20, 21−30, 31−40, 41−50,

50+. The label is one-hot like matrix, which is filled with

one in one dimension and zeros in other dimensions to in-

dicate the target age. Given a face image x and concatenate
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Figure 2. Framework of proposed Triple-GAN for face aging.

with two different target age labels Lt and Lf respectively.

Then the combined feature maps can go through several

strided convolutional layers to encode into high-level fea-

ture space and decode with multi fractionally-strided convo-

lutional layers to get two synthesized faces, which denote as

G(x, Lt) and G(x, Lf ). By offering combinations of gen-

erated faces in different ages to train simultaneously, the

discrimination of discriminator can be enhanced. To corre-

late the two paths, triple translation loss is incorporated to

help the generator to focus more on the progressive change

in age pattern. To better simulate the realistic face images,

the pre-trained age classification network is adopted to push

the ages of generated faces to lie to the target group and the

identity-preserved network is employed to preserve identity

information not only between input and output but also be-

tween outputs.

3.2. Network Architecture

Generator G. Inspired by the impressive results of un-

paired image-to-image translation, our generator network

mainly follows the architecture proposed by Zhu et al.

[36], which includes three parts: encoder G1, residual ar-

chitecture R and decoder G2. 128 × 128 × 3 faces and

128 × 128 × 5 label maps are concatenated and fed into

G1 as input and pass through three convolutional layers.

The kernel size of first convolutional layer is 7 × 7 and

the last two convolutional layers are filled with 3 × 3 ker-

nels. Each convolutional layer is followed by one batch-

normalization layer and one ReLU layer, which are de-

noted as the basic block. After passing the second block,

the 64 × 64 × 5 label map indicating the same target age

group is superimposed to further enhance the effect of age

attribute on the generated faces. The final output of G1 is

G1(x, L128, L64) ∈ R32×32×128, which includes image and

age information in high-level space. Then 8 residual blocks

are adopted to deepen the network. After the residual con-

nections, we use two fractionally-strided convolutional lay-

ers to increase the size of feature maps and decode feature

maps. Each transposed convolutional layer is also followed

by one batch-normalization layer and one ReLU layer. And

the same label map is injected into network after the first

transposed convolutional block. And the last convolutional

layer is filled with 7× 7 kernel size followed by Tanh layer

to obtain the generated faces.

Discriminator D. The architecture of discriminator is

adapted from [28]. The image first passes through the con-

volutional layer and LeakyReLU layer. Then the label maps

of 64 × 64 × 5 are injected to make the network to be



able to discriminate whether the images are consistent with

the conditions. The convolutional layers followed with the

batch normalization layer and LeakyReLU layer form the

basic block. All the LeakyReLU are leaky with slop 0.2.

And after three blocks and a convolutional layer, the output

can be obtained.

3.3. Loss Function

Enhanced Adversarial Loss As depicted in Figure 2,

we put forward a new structure of GAN and hope to gener-

ate face images of different ages instead of one age. Adver-

sarial loss in most face aging methods based on conditional

generated adversarial networks can be expressed as:

min
G

max
D

Ey[(D(yt|Lt)− 1)2] +Ey[D(yt|Lf )
2]

+Ex[D(G(x, Lt)|Lt)
2].

(1)

Discriminator tries to learn the correct aging effect by

regarding image yt and corresponding age label Lt as real

pair, yt and age label Lf as fake pair. However, these

methods truly learn the aging effect of age label Lt, but

ignore the meaning of Lf , which means the networks only

know Lf is the fake label but misunderstands what it rep-

resents. So one age pattern transfer every batch can make

the age boundaries undiscriminating. Since we inject con-

ditions into the discriminator to let discriminator not only

work at the real-fake level, but also learn the aging effect.

When learning from different transfers of age patterns si-

multaneously, all the mappings of used age labels and cor-

responding age information can be effectively extracted. In

our Triple-GAN, the generator will produce faces of two

ages. All the synthesized faces and real faces of target age

group are distinguished in the discriminator simultaneously.

Using multiple paths to generate faces of different ages, we

offer more training pairs to learn the age mappings. The

discriminative age patterns can be learned by adding more

boundaries to push them away, which is shown in Figure 3.

And we adopt least square loss [16] to push both the gen-

erated and real faces close to the decision boundary. The

formula of proposed adversarial loss can be formulated as

follows:

Ld =(D(yt|Lt)− 1)2 + (D(yf |Lf )− 1)2 +D(yt|Lf )
2

+D(yf |Lt)
2 +D(x̃Lt |Lt)

2 +D(x̃Lf
|Lf )

2
,

Lg =(D(x̃Lt |Lt)− 1)2 +D(x̃Lt |Lf )
2

+(D(x̃Lf
|Lf )− 1)2 +D(x̃Lf

|Lt)
2
,

(2)

where G(x, Lt) is denoted as x̃Lt
.

Age Classification Loss To ensure that the age of syn-

thesized image belongs to the target age group, age classi-

fication loss based on pre-trained age classification network

is employed, which can be expressed as:

Age Group 1

Age Group 2

Age Group 1

Age Group 2

Age Group 1 | Real Face

Age Group 2 | Real Face

Age Group 1 | Synthesized Face

Age Group 2 | Synthesized Face

(a) (b)

Figure 3. (a) Traditional adversarial loss. (b) Enhanced adversarial

loss. Compared with traditional adversarial loss, we offer multiple

training pairs to help discriminator to focus on the specific age

domain and provide more learned boundaries to push synthesized

faces close to the real faces of target age group.

Lage = −
1

N

N∑

i=1

K∑

j=1

(1{L = j} × logP ), (3)

where P is the softmax output which represents the proba-

bility and L denotes the target age class. The number of age

groups K is 5 in our method.

Identity Preserving Loss In the process of face ag-

ing, it is desirable to ensure that the output faces preserve

the same identity information as the input face. Adversar-

ial loss will only make the data distribution generated by

the generator similar to the target data distribution, but the

identity information can not be well preserved. So, to keep

the identity information of the generated faces, perceptual

loss is adopted to maintain the identity between input and

output face images by reducing the differences in the high-

dimensional features. The formula can be formulated as:

L
input−output

identity =
∑

x∈Px(x)

‖I(x)− I(G(x, L))‖22. (4)

Here I(·) indicates the features extracted by a specific

feature layer in the pre-trained model. Due to the special

pipeline of Triple-GAN, we not only consider minimizing

the distance between input and output in a high dimensional

space, but also add the constraint to the output between dif-

ferent age labels, which can preserve the identity informa-

tion between the generated faces in different age groups.

The higher similarity between outputs of different ages will

make the transfer of age pattern keep progressive and con-

tinuous which is hard to lost the identity. So we define the

extra identity preserving loss as follows:

L
output−output
identity =

∑

x∈Px(x)

‖I((G(x, Lt))− I(G(x, Lf ))‖
2
2.

(5)

Triple Translation Loss Network can learn the more

discriminative age pattern when providing two age patterns
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Figure 4. Age-progressed results of Triple-GAN on CACD and MORPH for 6 identities respectively. The leftmost face in each group is the

input face and the rest 4 faces are the age-progressed visualizations from young to old in the [21-30], [31-40], [41-50] and 50+ age groups.

simultaneously, but the correlations between two generated

images are ignored. In each iteration, the input image of the

same identity will produce the output of different ages and

the aging process is smoothed by adding identity preser-

vation between different synthesized faces. If the perfor-

mance of the generator is great enough to generate the face

G(x, Lt) and G(x, Lf ), G(x, Lt) can be realistic enough to

re-sent generator to synthesize G(G(x, Lt), Lf ). The faces

produced by the generated faces should be completely the

same as G(x, Lf ). The age-group based methods explicitly

split the ages into several groups and ignore the relation-

ship of step-wise age translation. The implicit correlations

among all the age domains reveal the progressive change of

wrinkles, hair, texture and facial appearance. Unlike pre-

vious work [28], which translates faces in five independent

domains and only focuses on start and target, triple transla-

tion loss focuses more on the mappings among all the do-

mains. The synthesized faces should keep in high visual

quality which can be denoted as the input for the second

translation. With triple translation loss, the intermediate

step can be supervised to follow the process of progres-

sive face aging. So, in order to improve the details of age-

progressed face, we add the third generator with the same

parameters to fully use the information and make a tight

connection between two transfers of age patterns, making

up the triple pairs to train the network. Given the input

image x, and target labels Lt, the output of the generator

is G(x, Lt). Then the output can be re-sent to another lo-

cation Lf , which should be similar to the result of direct

translation to Lf . The formula of triple translation loss can

be defined as:

Ltriple = ‖G(x, Lt)−G(G(x, Lf ), Lt)‖
2
2. (6)

By adding supervision, triple architecture forces the faces

of the same age groups generated from different paths to

retain identity and simulates progressive age changes at dif-

ferent stages. G(G(x, Lt), Lf ) is enforced to be totally the

same as G(x, Lf ), which not only requires the input gen-

erated image to maintain great identity characteristics, but

also close to the real faces.

3.4. Overall Objective

Triple-GAN will generate three kinds of face images:

G(x, Lt), G(x, Lf ) and G(G(x, Lt), Lf ) and all the syn-

thesized faces are used in identity preservation and age clas-

sification. Then our full objective is:

LG =αLg + βLidentity + γLage + λLtriple,

LD =αLd,
(7)

where α, β, γ and λ control the weight of four objectives.

And Lidentity includes L
output−output
identity and L

input−output
identity .

4. Experiment Results

4.1. Data Collection

The two datasets for training GANs are CACD [1] and

MORPH [20]. To demonstrate the superiority of proposed

method on the cross-age face recognition, CALFW [34] is

adopted for the test. Cross-Age Celebrity Dataset (CACD)

[1] contains 163,446 faces of 2,000 subjects with age rang-

ing from 16 to 62. Chen et al. [1] selected names from on-

line celebrity database, IMDb.com, and then collected the

faces via Google Image Search. MORPH (Album2) [20]

is the public available longitudinal dataset which contains

52,099 color faces. The ages of celebrity ranges from 16

to 77 years old. And CALFW [34] contains 3,000 positive

pairs and 3,000 negative pairs to enlarge the age gaps, veri-

fied in the same way as LFW [7].

4.2. Implementation Details

We follow the time period of 10 years for each group

as reported in Wang’s work [28]. The aim of our work is



to synthesize a sequence of age-progressed faces where the

ages of input faces are below 20 years old. We use MTCNN

[32] to detect landmarks, and align and crop all the face im-

ages into 400× 400× 3. CACD and MORPH are split into

two parts respectively, which contains 80% for training and

20% for the test. Before feeding the images into the net-

works, the face images are cropped into 227 × 227 × 3 to

use in identity preservation term and age classification term,

and cropped into 128×128×3, concatenating the target age

group to form feature map of 128× 128× 8 as the input of

generator. The pre-trained age classifier and identity preser-

vation model are the publicly available AlexNet [10] which

we borrow for use from [28]. And we have implemented the

following latest work to compare with Triple-GAN: IPC-

GAN [28] and Conditional Adversarial Auto encoder Net-

work (CAAE) [33] which achieve state of the art on face

aging. Since the model of CAAE has divided age into 10

groups and used gender information, we follow Wang et

al.’s work [28]. So we use the same 5 groups as our method

and remove the gender information for fair comparison. The

hyper-parameters of IPCGAN and CAAE are the same as

paper reported. To show the effectiveness of triple transla-

tion loss, we also report results with two generation pipeline

and without third translation, which we called Tuple-GAN.

In the training of Triple-GAN, the learning rate is fixed as

0.001, batch size is 16. α, β, γ and λ are set to 75, 0.00005,

35 and 25 in CACD and 75, 0.00005, 35 and 10 in MORPH.

For Tuple-GAN, λ is set to 0 and others keep the same.

The training process takes 400,000 steps. Discriminator and

generator are alternatively updated in every iteration. And

the network is first pre-trained in one path for quickly con-

verge and then trained by using overall structure.

4.3. Aging Pattern Simulation

Triple-GAN can synthesize faces of different age groups

controlled by the age labels. Although age progression

and regression can both be achieved, we focus more on

the age progression and show the results on CACD and

MORPH respectively. The input faces are under 20 years

old. As shown in Figure 4, with age increasing, the ev-

ident aging effect and well preserved identities show the

aging translations with high visual fidelity. The details of

age-progressed results are depicted in Figure 5. Figure 5(a)

shows the higher and sparse hairline with age increasing. In

Figure 5(b), the beards begin to grow and turn white from

black, which evidently demonstrates the change of age pat-

tern. Figure 5(c) indicates that eye line and wrinkle become

deeper and more obvious. And in Figure 5(d), the half faces

are demonstrated to show the performance globally.

4.4. Aging Classification Accuracy

For a given test dataset which is less than 20 years old,

the estimated age of the generated images needs to belong

(a) Hair progressing (b) Mouth progressing

(c) Eye progressing (d) Half face

Figure 5. Illustration of visual fidelity.
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Figure 6. Comparisons in distributions of the estimated ages ob-

tained by Face++ [8]. (a) Triple-GAN, CACD; (b) Triple-GAN,

MORPH; (c) IPCGAN, CACD; (d) IPCGAN, MORPH

to the target age group. So age classification accuracy is

employed to measure the performance. We carry out the

online facial analysis API of Face++ [8] to every synthe-

sized face in CACD and MORPH. Test samples in MORPH

and CACD whose ages less than 20 are adopted respectively

to generate faces in [21-30], [31-40], [41-50] and 50+ age

groups. Tuple-GAN, Triple-GAN and IPCGAN [28] are

measured in comparison and we report their estimated ages

and age classification accuracy in Table 1. It can be seen

that the accuracy of Triple-GAN highly outperforms Tuple-

GAN and IPCGAN, especially in the age group of 50+,

evidently validating the superiority of our method. Further-

more, in Figure 6, both on CACD and MORPH, the age

distributions of Triple-GAN in different clusters have bet-

ter separation than IPCGAN’s. It is proved that our age-

progressed method has truly captured the target age distri-

bution and generated faces of specific age with high accu-

racy and discrimination.



MORPH CACD

20-30 30-40 40-50 50+ 20-30 30-40 40-50 50+

IPCGAN
22.98 30.96 43.25 51.59 26.57 35.06 43.82 49.71

85.9 47.9 53.6 59.5 76.8 51.1 50.6 54.5

Tuple-GAN
25.41 32.19 43.26 55.31 25.68 36.35 46.05 54.26

87.9 50.5 48.5 80.2 82.1 51.5 51.2 76.1

Triple-GAN
25.72 32.64 44.56 57.41 25.12 35.54 44.26 54.88

87.1 54.0 56.3 87.7 85.1 55.1 57.7 79.8

Table 1. Age estimation and accuracy (%) on MORPH and CACD. The first row of each method shows the estimate ages and the second

row presents the age classification accuracy (%).

MORPH CACD

20-30 30-40 40-50 50+ 20-30 30-40 40-50 50+

IPCGAN

Test 20- 95.74 95.10 92.53 90.38 95.30 94.06 92.43 92.66

20-30 - 94.98 91.58 88.60 - 93.68 90.13 89.69

30-40 - - 94.02 91.30 - - 93.80 91.63

40-50 - - - 93.68 - - - 93.48

Tuple-GAN

Test 20- 95.74 95.10 93.71 90.94 95.40 94.16 92.26 92.03

20-30 - 95.45 93.74 90.90 - 94.37 91.23 89.72

30-40 - - 95.46 92.87 - - 94.57 92.82

40-50 - - - 94.78 - - - 94.24

Triple-GAN

Test 20- 95.88 95.12 93.66 91.12 95.40 94.38 92.96 92.42

20-30 - 95.58 94.05 91.40 - 94.82 91.96 90.26

30-40 - - 95.51 93.10 - - 94.89 92.41

40-50 - - - 94.76 - - - 94.33

Table 2. Face verification confidences (%) on MORPH and CACD.

4.5. Identity Preservation

The other objective is that the identity of individual re-

mains the same in the process of age progression, which

will not confuse two different identities. Face++ [8] is used

to carry out to view the similarity between two faces. We

apply comparisons not only between the input faces and the

age-progressed results but also between synthesized faces.

The faces in every pair are in some identities and different

ages and we adopt the score from Face++ [8] as the identity

verification confidence. As depicted in Table 2, the iden-

tity verification confidences are decreasing with face aging,

which means the age pattern actually changes the appear-

ance. However, our proposed Triple-GAN preserves iden-

tity information better than others in nearly all cases.

4.6. Contribution of Triple Translation Loss

Triple architecture requires that the generator to use syn-

thesized face as input to generate faces of different target

ages. And Ltriple minimizes the distance between the syn-

thesized faces in the same target age group which are pro-

duced in different paths, making the generated faces more

realistic and change of age pattern more progressive. Keep

other hyper-parameters unchanged and set λ to 0, we re-

port the results of Tuple-GAN in Table 1 and 2. The age

accuracy and identity verification confidence achieved on

MORPH and CACD are lower than the results obtained

by Triple-GAN. This could be caused that the synthesized

wrinkles are less clear and the faces look relatively unnat-

ural. Without the supervision of triple translation loss, the

distance of domains between input and output is still so far,

resulting in the lost subjects and messy faces. The triple

translation can enhance the correlations among age domains

and solve the problem of learning age patterns indepen-

dently.

4.7. Compare with Prior Work

To fully demonstrate the effectiveness of proposed

Triple-GAN, we compare our method with several prior

works: CONGRE [22], HFA [31], CAAE [33], IPCGAN

[28], GLCA-GAN [12] and pyramid-GAN [30] which sig-

nify state of the art. Figure 7 demonstrates some samples.

Furthermore, the faces of IPCGAN and CAAE are imple-

mented by ourselves as we mentioned before. And for a fair

comparison, the same faces have been chosen with CON-

GRE, HFA, GLCA-GAN and pyramid GAN as our input

and we directly cite their synthetic results as the baseline.

It can be seen that the traditional face aging methods CON-
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Figure 7. Comparison to prior works including CONGRE [22], HFA [31], CAAE [33], IPCGAN [28], GLCA-GAN [12] and Pyramid-GAN

[30]

GRE [22] and HFA [31] can only generate subtle aging ef-

fects with tight facial area, while the GAN-based algorithm

can simulate the change of age pattern on the entire face.

Compared with our work, the faces generated by CAAE

[33] are not photo-realistic. And other GAN-based meth-

ods can simulate the aging effect well. However, because

we impose progressive information among age groups, our

model is more natural and realistic in some details, such as

wrinkle, color and beard.

4.8. Crossage Face Recognition

To further compare with the global quality of the gen-

erated face images quantitatively, cross-age face recogni-

tion is employed to indicate the performance. Test data less

than 20 years old are used to generate the faces of the tar-

get group. And the synthesized data generated by different

methods will augment the real data respectively to train the

discriminating face classifier. We mainly compare with 5

situations: baseline (which only contains real data), CAAE

[33], IPCGAN [28], Tuple-GAN and Triple-GAN. And to

show that our method is model agnostic, ResNet-18 [4] and

MobileNets [6] are used. Considering the limited number

of training set, we only choose 800 pairs of CALFW [34]

randomly as the test set, which contains 400 positive pairs

and 400 negative pairs. The result is demonstrated in Figure

8, which reveals that Triple-GAN enriches age information

while preserves identity information well.

5. Conclusion

This paper has proposed a novel face aging method

called Triple-GAN for synthesizing age-progressed faces.

Triple-GAN has adopted enhanced adversarial loss to not

only discriminate the realism of synthesized faces, but also

learn effective mappings with more age boundaries. Instead

of formulating ages as independent groups, triple transla-

tion loss has been added to further model the complex cor-
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Figure 8. Recognition results on subset of CALFW [34] with dif-

ferent methods. Using real dataset for training to get the baseline

and using faces generated by different face aging synthesis meth-

ods to augment real training set. (a) CACD [1]; (b) MORPH [20].

relation of multiple age domains and simulate more realistic

age growth, further enhancing the superiority of generator.

Several quantitative and qualitative experiments conducted

on MORPH, CACD and CALFW have demonstrated the ef-

fectiveness of our proposed method.
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