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Abstract

A significant progress has been made to face recogni-

tion in recent years. The progress includes the advance-

ment of the deep learning solutions and the availability

of more challenging databases. As the performance on

previous benchmark databases, such as MPIE and LFW,

saturates, more challenging databases are emerging and

keep driving the development of face recognition technol-

ogy. The loss function considered in a deep face recogni-

tion network plays a critical role for the performance. To

better evaluate the state-of-the-art loss functions, we de-

fine four challenging factors, including pose, age, occlu-

sion and resolution with specific databases and conduct

an extensive experimental study on the latest loss func-

tions. We select the IARPA Janus Benchmark–B (IJB-

B) and IARPA Janus Benchmark–C (IJB-C) for pose, the

FG-Net Aging Database (FG-Net) for age, the AR Face

Database (AR Face) for occlusion, and the Surveillance

Cameras Face Database (SCface) for low resolution. The

loss functions include the Center Loss, the Marginal Loss,

the SphereFace, the CosFace and the ArcFace. Although for

most factors, the ArcFace outperforms others. However, the

best performance against low-resolution is achieved by the

SphereFace. Another attractive finding of this study is that

the cross-age performance is the lowest among the four fac-

tors with a clear margin. This highlight possible directions

for future research.

1. Introduction

Face recognition is one of the challenging problems in

the fields of computer vision. As the performance re-

ported on previous benchmark databases, such as MPIE [7]

and LFW [10], saturates, more challenging databases are

Figure 1. The flowchart of our experiments.

emerging and keep driving the development of face recog-

nition solutions. Deep learning approaches have proven ca-

pacity of handling face recognition in a highly promising

way with many breakthroughs announced in recent years.

The core parts of the deep learning approaches are the deep

convolutional neural networks (CNNs). Each CNN is usu-

ally composed of convolutional layers, pooling layers, nor-

malization processing and loss functions. The loss function

plays an important role in determining the performance of a

CNN for face recognition.

In recent years, researchers have developed several loss

functions based on the traditional softmax loss function for

improving face recognition. For example, the Angular Soft-

max Loss [12] is defined in an angular feature space in-

stead of the common Euclidean space so that the angular

margin for measuring the inter-class variance can be com-

puted, leading to an improvement to the recognition per-

formance. The Large Margin Cosine Loss [16] considers

a cosine margin penalty to the target logit, revealing a bet-



ter performance than the Angular Softmax Loss. The lat-

est Additive Angular Margin Loss [4] introduces the ad-

ditive angular margin penalty between the normalized fea-

tures and weights, achieving a better performance than the

Large Margin Cosine Loss.

The performance of the aforementioned loss functions

has been verified on several benchmark databases, includ-

ing the LFW, IARPA Janus Benchmark–A (IJB-A), ..... Al-

though these databases offer a wide range of variables as

pose, illumination, expression and others good for perfor-

mance evaluation, there are some issues deserving our at-

tention. The first issue is the performance on different

types of databases. Many facial databases contains different

types facial images, such as pose, age , occlusion and low-

resolution. These challenging face images cause inaccurate

feature extraction and reduce the performance of the face

recognition system. Understanding the impact of the above

problems will help us to improve the face recognition sys-

tem.

For pose, the change in the pose of the faces makes the

face lack many important features, so it also makes the face

recognition system unable to accurately extract features for

recognition. For age, faces have different changes in differ-

ent period. For example, in adolescents, the facial features

change greatly in just a few months. However, in adulthood,

it hasn’t changed a lot in a few years, so it’s interesting to

understand the effectiveness of face recognition cross age.

For occlusion, face occlusion has been a problem that has

been discussed for many years in face recognition. Because

people often wear accessories, such as sunglasses, masks,

or objects blocked between the photographer and the ob-

ject. The above situations all make the important features

of the face be occluded. For low-resolution, face recogni-

tion systems are often used in surveillance system. Because

of the distance and motion, frequently low in resolution or

with blur quality. The above problems facial images can not

be recognized.

In this paper, we have selected several latest loss func-

tions, including the Center Loss [17], the Marginal Loss

[5], the Angular Softmax Loss [12], the Large Margin Co-

sine Loss [16] and the Additive Angular Margin Loss [4],

and compared their performance on five facial databases.

The five facial databases contain the IARPA Janus Bench-

mark–B (IJB-B) [18], IARPA Janus Benchmark–C (IJB-

C) [14], the FG-Net Aging Database (FG-Net) [11], the

AR Face Database (AR Face) [13] , and the Surveillance

Cameras Face Database (SCface) [2]. The above testing

databases contain the different types of faces, including

pose, age, occlusion and low-resolution,respectively. It will

make us more clear the impact of challenging faces on loss

functions by evaluating the 5 facial databases.

We show our flowchart in Fig. 1. The comparison is

based on the same CNN architecture and only the loss func-

tion is replaced by each specific one. In the training phase,

we change different loss functions to learn features with a

large margin space and also consider the different setting

on training datasets. In the testing phase, the face features

are extracted from CNN to extract face features and com-

pute the cosine similarity score to perform face verification.

Note that although the performances of the selected loss

functions are reported in their papers, they don’t evaluate

the performance on specific condition of facial databases.

Therefore, the comparison will shows the evolution of the

loss functions and how face recognition system performs

on the different situations. In our result, an attractive find-

ing of this study is that the cross-age performance is the

lowest among the four factors with a clear margin and af-

ter adding in low-resolution augmented data the Angular

Softmax Loss get the highter performance than the Addi-

tive Angular Margin loss. This highlight possible directions

for future research.

2. Selected Loss Functions

The loss functions selected in this study include the Cen-

ter Loss [17], the Marginal Loss [5], the Angular Softmax

Loss [12], the Large Margin Cosine Loss [16] and the Addi-

tive Angular Margin Loss [4]. As these loss functions con-

sider the Softmax Loss as a core reference, we introduce the

Softmax Loss first and then the others.

The Softmax Loss function can be written as follows:

Ls = −
1

Nb

Nb
∑

i=1

log
e
WT

yi
xi+byi

∑n

j=1 e
WT

j
xi+bj

(1)

where xi ∈ R
d denotes the d−dim deep feature of the

i-th sample, belonging to the yi-th class. Wj ∈ R
d denotes

the j-th column of the weight W ∈ R
d×n and bj ∈ R

n

is the bias term. Nb and n are the batch size and the class

number, respectively. The softmax loss is widely used in

deep face recognition [1]. However, the softmax loss func-

tion does not optimize the feature embedding to enhance

higher similarity for intra-class samples and diversity for

inter-class samples. This motivates the developments of

other loss functions.

2.1. Center Loss

Center loss [17] was proposed to improve the softmax

loss for face verification. It learns a center for the features

of each class and meanwhile tries to pull the deep features of

the same class close to the corresponding center. Given the

deep feature xi in a batch, the center loss can be computed

as:

Lce =
1

2

N
∑

i=1

‖xi − cyi
‖
2
2 (2)



where cyi
∈ R

d is the center of class yi. During training,

the center loss encourages the instances of the same classes

to be closer to a learnable class center. However, since the

class centers are updated at each iteration based on a mini-

batch instead of the whole dataset, the learning process can

be very unstable. It has to be under the joint supervision of

the softmax loss during training. Therefore, the following

combined loss is considered when applying center loss:

Lc = Ls + λLce

= −

Nb
∑

i=1

log
e
WT

yi
xi+byi

∑n

j=1 e
WT

j
xi+bj

+
λ

2

N
∑

i=1

‖xi − cyi
‖
2
2

(3)

where Ls is the softmax loss (1) and λ is a hyper-parameter

that balances the two losses.

2.2. Marginal Loss

The Marginal Loss function [5] was proposed to simul-

taneously maximize the inter-class distances and minimize

the intra-class variations. The Margin Loss function focuses

on the marginal samples and is computed as follows:

Lma =
1

m2 −m

m
∑

i,j,i 6=j

(

ξ−yij

(

θ−
∥

∥

∥

xi

‖xi‖
−

xj

‖xj‖

∥

∥

∥

2

2

))

(4)

The term yij ∈ {±1} indicates whether the faces xi and

xj are from the same class or not, θ is the distance thresh-

old to distinguish whether the faces are from the same per-

son/class, and ξ is the error margin besides the classification

hyperplane [5]. Similar to the center loss prone to be unsta-

ble in training, the Marginal Loss will also be unstable at

training because of the batch normalization. It is thus com-

puted with the joint supervision with the Softmax loss Ls,

as given below:

Lm = Ls + λLma (5)

The hyper-parameter λ balances the two losses. The

coupling with the cross-entropy loss provides separable fea-

tures and prevents the loss from degrading to zero [5].

2.3. Angular Softmax Loss

The Angular Softmax Loss was proposed to improve the

issues with the bias bj = 0 and ‖Wj‖ = 1 [12]. The is-

sue of the bias bj = 0 is handled by transforming the logit

[15] as WT
j xi = ‖Wj‖ ‖xi‖ cos θj , where θj is the angle

between the weight Wj and the feature xi. The issue with

the individual weight ‖Wj‖ = 1 is handled by taking the

l2 normalization to make the prediction only depend on the

angle between the feature vector and the weight vector. To

make it discriminative, the authors generalize it to the fol-

lowing Angular Softmax (called A-Softmax in short) Loss

LAS , and name their solution “SphereFace”.

Las = −
1

N

N
∑

i=1

log
e‖xi‖ cos(mθyi )

e‖xi‖ cos(mθyi ) +
∑n

j=1,j 6=yi
e‖xi‖ cos θj

.

(6)
where θyi

∈ [0, π
m
]. A-Softmax loss has stronger re-

quirements for a correct classification when m≥2, which

generates an angular classification margin between the

learned features of different classes. A-Softmax loss im-

poses a discriminative power to the learned features via an-

gular margin, equivalent to learning features that are dis-

criminative on a hypersphere manifold, while Euclidean

margin losses learn features in Euclidean space.

2.4. Large Margin Cosine Loss

The Large Margin Cosine loss [16] was proposed to

solve the issues with the A-Softmax loss. The decision

boundary of the A-Softmax loss is defined over the angular

space by cos(mθ1) = cos(θ2), which can be difficult to op-

timize due to the non-monotonicity of the cosine function.

To overcome this difficulty, the large margin cosine loss

takes the normalized features as input to learn the highly

discriminative features by maximizing the inter-class cosine

margin. The authors define a hyper-parameter m such that

the decision boundary is given by cos(θ1) −m = cos(θ2),
where θi is the angle between the feature and weight of class

i. They reformulate the softmax loss as a cosine loss by ap-

plying the l2 normalization on both the feature and weight

vectors to remove radial variations, based on which a co-

sine margin term m is introduced to further maximize the

decision margin in the angular space. The authors call their

solution “CosFace”. The large margin Cosine loss Lco is

computed as follows:

Lco = −
1

N

N
∑

i=1

log
es(cos θyi−m)

es(cos θyi−m) +
∑n

j=1,j 6=yi
es cos θj

(7)

2.5. Additive Angular Margin Loss

The Additive Angular Margin Loss [4] was proposed to

further improve the discriminative power of the loss consid-

ered in a face recognition model and to stabilize the train-

ing process. Following the work in [12, 16], the authors

further normalize the feature and weight vectors, and coin

their solution “ArcFace”. The difference is that they add

an additive angular margin penalty m between xi and Wyi

to simultaneously enhance the intra-class compactness and

inter-class discrepancy. The Additive Angular Margin Loss

Laa is computed as follows:

Laa = −
1

N

N
∑

i=1

log
es(cos(θyi+m))

es(cos(θyi+m)) +
∑n

j=1,j 6=yi
es cos θj

.

(8)



Despite the numerical similarity between ArcFace and pre-

vious works, the proposed additive angular margin has a

better geometric attribute as the angular margin has the ex-

act correspondence to the geodesic distance. It is shown in

[4] that the ArcFace has a constant linear angular margin

throughout the decision boundaries when handling binary

classification; however, the SphereFace and CosFace only

give a nonlinear angular margin.

3. Experiments

3.1. Training/Testing Datasets

3.1.1 Training Dataset

MS-Celeb-1M. The MS-Celeb-1M [8] can be the largest

face recognition dataset in the world. It is a dataset of 10

million face images for 100K subjects collected from the

Internet. The majority of subjects in this dataset are Ameri-

can and British actors, journalists, artists, musicians and so

on. However, this dataset has many mislabeled images, and

we have cleaned it and extracted 5.8 million face images for

85K subjects by applying a semi-automatic procedure.

3.1.2 Testing Datasets

IJB-B and IJB-C. The IJB-B [18] and IJB-C [14] can be

two of the most mainstream face databases. IJB-B [18] has

76.8K face images from 1,845 individuals that form 12,115

templates with 10,270 intra (same-person) pairs and 8M ex-

tra (different-person) pairs. IJB-C [14] has 148.8K face

images from 3,531 individuals that form 23,124 templates

with 19,557 intra pairs and 15,639K extra pairs. These two

datasets contain face images of different conditions regard-

less of subject conditions (pose, expression, occlusion) or

acquisition conditions (illumination, standoff, etc.). The di-

versity of face images can verify how a face recognition

system performs in a variety of environments.

FG-Net. The FG-Net Aging Database [11] contains

1002 images from 82 different subjects with ages ranging

between newborns to 69 years old subjects. Each subject

has 6-18 face images at different ages. In our cross-age

face verification, we randomly form 490,545 pairs, includ-

ing 5,693 intra pairs and 484,852 extra pairs. The intra pairs

refer to two images from same subjects, but their ages are

different. The extra pairs refer to two images from different

subjects and their ages can either be the same or different.

AR Face. The AR Face Database [13] contains over

4,000 color images corresponding to 126 people’s faces.

Each person participated in two sessions, separated by two

weeks (14 days) time. There are many features like different

facial expressions, illumination conditions, and occlusions

(sun glasses and scarf). In this paper, we only use AR Face

[13] with natural occlusions, including wearing glasses and

scarfs to test the performance of occluded face recognition.

Figure 2. The samples in IJB-B [18] and IJB-C [14]. Each row

denotes one subjects.

Figure 3. The samples in FG-Net [11]. Each pair denotes one

cross-age subjects.

Because the author didn’t provide the testing protocol of

face verification, we select all 2268 images with the neu-

tral expression, sun glasses and scarf occlusion to form the

5,309 intra pairs and 832,402 extra pairs. The intra pairs re-

fer to two images from same subjects, but the occluded-part

of these faces are different.

SCface. The Surveillance Cameras Face Database [2]

is the true surveillance face recognition benchmark. This

dataset contains 4,160 face images of 130 identities cap-

tured in uncontrolled indoor environment using five video

surveillance cameras of various qualities. In the testing set,

We follow the protocols in [2] and the testing dataset con-

tains 688 images from 43 identities which are taken at dis-

tances of 4.20, 2.60 and 1.00 meters. The numbers of the

intra pairs and extra pairs are 688 and 27,090 pairs, respec-

tively.



Figure 4. The samples in AR Face [13]. Each row denotes one

subjects.

3.2. Experiment Setups

As mentioned in the beginning of this paper, although

the above state-of-the-art loss functions are reportedly as-

sessed in the works that proposed them, the differences in

the training/testing databases, the network architectures and

settings, the pre-processing and other parameters make the

comparison hard to confirm. We, therefore, consider a uni-

fied architecture with the ResNet-100 [9] as the feature em-

bedding network with the same pre-processing and best set-

tings as reported in [4] and only change the loss function for

the experiments.

Our study focuses on the challenges from the four vari-

ables: pose, age, occlusion, and low resolution for face veri-

fication. In all experiments, we use the MS-Celeb-1M [8] as

the basic training dataset. For the experiments on occlusion

and low-resolution, we use the model trained on MS-Celeb-

1M as a pretrained model and retrain it on the data aug-

mented in occlusion and low-resolution. For performance

evaluation, we use the IJB-B [18] and IJB-C [14] for pose,

the FG-Net [11] for age, the AR Face [13] for occlusion and

the SCface [2] for low resolution. Additionally, because the

faces in the AR Face are all frontal. In order to better un-

derstand the impact of occluded face images, we also use

IJB-B [18] as another performance evaluation criterion for

occlusion.

Preprocessing. For preprocessing the face images, we

employ the MTCNN [19] to detect the faces and landmarks.

Five landmarks, including two eyes, nose and two mouth

corners, are used to crop each face, and then normalize the

size to 112×112. In the testing, we compute the cosine

distance of two features to obtain the similarity score.

Pose. Large-pose face recognition is a very challenging

problem in this field. Because the IJB-B [18] and the IJB-

C [14] datasets have many face images with various poses,

we choose these two databases for performance evaluation

. For training, we use the MS-Celeb-1M [8] as the train-

Figure 5. The samples in SCface [2]. Each pair denotes one sub-

jects in different resolution.

ing dataset. Resenet-100 was selected as the main feature

embedding network and only change the loss function. Fi-

nally, face recognition was evaluated by calculating the co-

sine distance between the two features.

Age. Recognizing a cross-age face can be very challeng-

ing. In the training phase, we use the original MS-Celeb-

1M training set. To evaluate the performance, we choose

the FG-Net [11] as the cross-age testing database.

Occlusion. Partial occlusion is a common challeng-

ing factor for face recognition. In addition to the origi-

nal MS-Celeb-1M training set, we add in the occlusion-

augmented MS-Celeb-1M data for training. The perfor-

mance is evaluated on the IJB-B with partial occlusion and

the AR database. The procedure for making the occlusion-

augmented data is shown in Fig. 6. Given the MTCNN-

detected 5 landmarks, we cover the eyes by a 20 × 60 black

block and the mouth by a 20 × 50 black block. The same

procedure is also applied to the IJB-B for making data for

evaluation.

Resolution. Recognizing a low-resolution face can be

very challenging, but this is often the case with the faces

captured from surveillance cameras. Due to the distance

and motion, the faces captured in surveillance cameras are

frequently low in resolution or with blur quality. To evaluate

the performance, we retrain the MS-Celeb-1M-pretrained

model by adding in low-resolution augmented data. Similar

to the above partial occlusion, we change the resolution of

the data in the MS-Celeb-1M from 112 × 112 (original) to

56 × 56, 28 × 28, and 14 × 14 by using bilinear interpola-

tion. The testing dataset is the SCface [6].

The programs are written in Python with the MXNet

deep learning framework [3]. We use the batch size 64 and

train the networks on a Ubuntu 18.04 with Titan X GPU,

and CUDA 9.0 with cuDNN 7.6. The learning rate starts

from 0.1 and is divided by 10 at the 8th, 12th and 16th

epochs.



Figure 6. Data augmentation for occlusion.

Figure 7. Data augmentation for low resolution.

3.3. Evaluation Results

Pose. Table 1 and Table 2 show the verification rate in

TAR on the IJB-B and IJB-C respectively. The ArcFace

with the Additive Angular Margin loss outperforms all, fol-

lowed by the CosFace with the Large Margin Cosine loss,

then the SphereFace with the Angular Softmax loss, then

the Marginal loss and the Center loss. Note that the TARs

in (·) are from [4] which differ from our results in a small

margin.

Age. The cross-age performance on FG-Net is shown

in Table 3. The ArcFace outperforms all, followed by the

SphereFace, and then the CosFace. It shows that the An-

gular Softmax loss can be better than the Large Margin

Cosine loss for demonstrating the robustness against age-

related appearance variation. An attractive finding of this

study is that the cross-age performance is the lowest among

the four factors with a clear margin. This highlights a po-

tential direction for the future research in this field.

Occlusion. Table 4 shows the performance on the AR

Face Database. It can be observed that the ArcFace also

gets the best performance on the face occlusion dataset,

but the SphereFace also has higher performance than the

CosFace. After adding data augmentation, the performance

of all models is slightly improved, which proves that this

method of data augmentation effectively improve the recog-

nition rate of the face recognition system under the occlude-

face. In addition, we find that the SphereFace has greatly

improved about 14.7% at 0.001% FAR after using data aug-

mentation. Table 5 and Table 6 show the performance on

the IJB-B. We respectively test the model on the eyes and

mouth occlusion of the IJB-B. The result shows in face ver-

ification extract the feature from the eyes is more accurate

than the mouth and no matter in Table 5 and Table 6 the

ArcFace outperforms all.

Low-resolution. To get a understanding of face recog-

nition system’s difference on low resolution dataset, we

give the detailed performance of the SCface under differ-

ent loss functions and training data in Table 5. Before

adding the data augmentation, the ArcFace also gets the best

performance. However, after using the data augmentation,

the SphereFace unexpectedly achieves the hightest perfor-

mance. The above experimental data shows we should use

the SphereFace as the loss function in face recognition of

low resolution and the data augmentation is effective.

Model
TAR(%)@FAR

AUC (%)
0.01% 0.001% 0.0001%

Center Loss [17] 88.9 80.2 68.3 98.7

Marginal Loss [5] 90.1 82.5 72.6 98.9

SphereFace [12] 94.3 91.4 81.3 99.6

CosFace [16] 95.9 92.6 89.1 99.4

ArcFace [4] 97.4 94.9 92.6 (94.2) 99.5

Table 1. Verification rate (in % TAR) for state-of-the-art loss func-

tions tested on the IJB-B. (·) shows the performance reported in

[4].

Model
TAR(%)@FAR

AUC (%)
0.01% 0.001% 0.0001%

Center Loss [17] 90.4 83.5 74.1 98.9

Marginal Loss [5] 92.6 87.4 79.9 99.1

SphereFace [12] 96.8 91.7 86.1 99.6

CosFace [16] 96.8 93.3 90.2 99.5

ArcFace [4] 97.9 96.1 93.6 (95.6) 99.6

Table 2. Verification rate (in % TAR) for state-of-the-art loss func-

tions tested on the IJB-C. (·) shows the performance reported in

[4].

Model
TAR(%)@FAR

AUC (%)
0.1% 0.01% 0.001%

SphereFace [12] 86.1 65.6 43.6 95.1

CosFace [16] 84.1 56.6 33.7 94.2

ArcFace [4] 89.7 71.3 52.3 96.3

Table 3. Verification rate (in % TAR) for state-of-the-art loss func-

tions tested on the FG-Net.

4. Conclusion

As new loss functions and benchmark databases keep

emerging, there must be an evaluation that reports the latest

assessment every once in a short period of time. Verified on

five latest benchmark datasets, we have compared the four

challenging factors, including pose, age, occlusion and res-

olution with the state-of-the-art loss functions. Although for

most factors, the ArcFace outperforms others. However, the

best performance against low-resolution is achieved by the

SphereFace. Another attractive finding of this study is that



Model
TAR(%)@FAR

AUC (%)
0.1% 0.01% 0.001%

SphereFace [12] 97.2 83.3 71.4 98.9

CosFace [16] 94.3 79.6 72.7 98.2

ArcFace [4] 99.5 92.7 81.3 99.6

SphereFaceocc 99.6 95.3 86.1 99.7

CosFaceocc 96.7 83.7 75.1 98.8

ArcFaceocc 99.8 98.0 91.3 99.9

Table 4. Verification rate (in % TAR) for state-of-the-art loss func-

tions tested on the AR Face. occ means the model fine-tune on the

MS-Celeb-1M of occluded data augmentation.

Model
TAR(%)@FAR

AUC (%)
0.01% 0.001% 0.0001%

SphereFace [12] 85.9 55.4 20.8 99.1

CosFace [16] 89.2 76.7 59.7 98.6

ArcFace [4] 94.9 89.8 81.4 99.3

SphereFaceocc 94.0 83.1 60.3 99.5

CosFaceocc 92.2 82.6 68.4 98.8

ArcFaceocc 96.7 93.4 89.9 99.5

Table 5. Verification rate (in % TAR) for state-of-the-art loss func-

tions tested on the eyes occlusion of the IJB-B. occ means the

model fine-tune on the MS-Celeb-1M of occluded data augmen-

tation.

Model
TAR(%)@FAR

AUC (%)
0.01% 0.001% 0.0001%

SphereFace [12] 93.8 80.8 56.8 99.5

CosFace [16] 93.9 87.1 77.8 99.3

ArcFace [4] 96.4 92.3 87.8 99.5

SphereFaceocc 96.2 90.1 79.8 99.6

CosFaceocc 94.9 89.1 81.7 99.3

ArcFaceocc 97.1 94.8 91.0 99.5

Table 6. Verification rate (in % TAR) for state-of-the-art loss func-

tions tested on the mouth occlusion of the IJB-B. occ means the

model fine-tune on the MS-Celeb-1M of occluded data augmenta-

tion.

Model
TAR(%)@FAR

AUC (%)
0.1% 0.01% 0.001%

SphereFace [12] 91.2 75.8 65.4 97.2

CosFace [16] 93.2 79.2 69.6 97.6

ArcFace [4] 95.2 84.3 74.3 98.2

SphereFacelow 97.9 89.2 74.7 99.3

CosFacelow 97.7 88.4 78.5 99.1

ArcFacelow 97.5 88.2 79.1 99.1

Table 7. Verification rate (in % TAR) for state-of-the-art loss func-

tions tested on the SCface. low means the model fine-tune on the

MS-Celeb-1M of low resolution data augmentation.

the cross-age performance is the lowest among the four fac-

tors with a clear margin. This highlight possible directions

for future research. The above result shows that analyze the

loss functions in different factors, which may lead to a better

design of novel loss function and better use of the existing

ones.
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