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Abstract

Electrocardiogram (ECG) has become a popular bio-

metric to study since it is highly secured against spoofing

attack. In this study, we address the issues of hard-required

ECG data length and neglected causality when performing

ECG identity matching tasks. First, we propose an ECG

image generation algorithm that is able to handle any spec-

ified number of ECG heartbeats. Such an algorithm uses

detected R-peaks as folding points and projects ECG data

onto a two-dimensional image, which overcomes the chal-

lenge of hardly-required fixed length and truncated ECG.

Second, we leverage transfer learning and perform across-

session testing. We construct the ECG identification mod-

els based on the pretrained AlexNet and ReseNet18 mod-

els. Our ECG biometric models are trained on the past

ECG data and their performances are evaluated on fu-

ture ECG data. Furthermore, we develop a voting strategy

that is able to detect anomaly ECG heartbeats. Our novel

ECG image generation approach shows itself to be compet-

itive. Such method has been evaluated on the MIT-DB and

ECG-ID datasets. We observe satisfying results of the pro-

posed models in both datasets: 100% on the MIT-DB and

94.4% on ECG-ID. More importantly, our method is avail-

able to generate satisfying results by using a single ECG

beat to conduct identity matching task: 100% on the MIT-

DB and 91.7% on ECG-ID. In addition, qualitative analysis

presents the perceptual uniqueness of ECG between individ-

uals. We believe that the proposed ECG biometric system is

promising to identify humans with short ECG sequence.

1. Introduction

In modern society, biometric systems have been widely

applied to human identification to achieve high level secu-

rity. A standard biometric system is illustrated in Figure

1. Typical biometric systems process the data, extract their

Figure 1. Schematics of a standard biometric system and our con-

tributions. Standard biometric systems process the data, extract

the features, and evaluate the matching score between the query

and the database to determine the subject’s identity. Red box rep-

resents our contributions of novel ECG data pre-processing tech-

nique. Yellow box stands for extracting features from transfer

learning of the pre-trained CNN models. Green box stands for our

contribution of devising a voting strategy that is aware of anomaly.

features, and evaluate the matching score between the query

and the database to determine the subject’s identity. Nowa-

days, fingerprint, face, and iris are commonly used biomet-

rics [11]. However, all the aforementioned biometrics are

vulnerable to spoofing attacks [35]. For example, finger-

prints left on an object can be recreated with latex; iris im-

ages can be fooled with contact lenses; facial recognition

can be cracked by high-resolution stolen photos.

To circumvent the intrinsic issues in external biometrics,

electrocardiogram (ECG) has gained its popularity as a bio-

metric in recent years. ECG is a continuous measure of

electrical depolarization and repolarization throughout car-

diac activities; moreover, quasi-periodicity is observable in

ECG. An individual’s ECG is influenced by that individ-

ual’s cardiovascular system, and the uniqueness of ECG has

been reported in several studies [3, 18]. ECG shows several

advantages as a biometric: (1) difficult to be stolen; (2) able
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Figure 2. Illustration of a typical ECG waveform. P, Q, R, S, T, and

U waves are fiducial points that are commonly observed in healthy

subjects.

to indicate liveness; (3) easy to acquire.

Numerous feature extraction and pattern recognition

techniques have been proposed for ECG, and they can be

classified into two categories: fiducial and non-fiducial

strategies.

1. Fiducial Strategies: Figure 2 shows that a typical

ECG waveform contains fiducial points, namely, P, Q,

R, S, T, and U waves. Based on the prior knowl-

edge, researchers extract features such as the ampli-

tude and the slope composed of these fiducial points

[13, 24, 28]. The features selected from the QRS com-

plex have been the most popular in the proposed ECG

biometric systems because the QRS complex tends

to be stable against physical and emotional variations

[31]. The performance of fiducial methods depends on

not only the existence but also the accurate acquisition

of the fiducial points.

2. Non-Fiducial Strategies: To generalize the ECG

identification models, researchers have suggested non-

fiducial methods. Such techniques do not rely on the

hand-crafted feature sets. Commonly used approaches

are automatic segmentation of ECG waveforms fol-

lowed by a machine-learning (ML) or deep-learning

(DL) model [26, 29].

Non-fiducial strategies have attracted attention recently

since ML and DL have shown promising results in accom-

plishing identity and image recognition tasks [7, 14, 9].

Several non-fiducial methods have been proposed in lit-

erature. For example, one-dimensional convolution neural

network (1D-CNN) models have been proposed by Chen

and Chen [4], Wu et al. [32], and Zhang et al. [34]. Be-

sides CNN, one-dimensional recurrent neural network (1D-

RNN) models have also been proposed by a number of re-

searchers, including Lynn et al. [17], and Salloum and Tsai

[25]. Other ECG identification approaches include sparse

representation method proposed by Li et al. [15] and 2D-

CNN methods proposed by Ranjan [23] and Byeon et al.

[2].

While the aforementioned methods present promising

ECG identification systems, we discover two issues that

could possibly lie in the proposed methods. First, the seg-

mentation of ECG requires to be an empirically fixed num-

ber. For example, in Salloum and Tsai’s work [25], the

length of the ECG waveform is forced to be 251 samples

for the MITDB dataset and 301 for the ECG-ID dataset;

both require the R-peaks positioning at the center. Simi-

lar ECG segmentation procedure has been adopted by Lynn

et al. [17], but they stack and concatenate ECG heartbeats.

In Chens’ work [4], 251 samples have to be acquired from

one ECG beat with the R-peak standing at the 71th position.

Generally speaking, some one-dimensional neural network

models can only handle data of fixed length and position,

which might not be generalizable for extreme ECG data.

Another issue is pointed out by a comparative analysis of

ECG biometric systems conducted by Odinaka et al. [20].

In their paper, the authors indicate that a reliable ECG iden-

tification model should be trained on past ECG data and per-

form identity testing on future ECG data, instead of train-

ing and testing the ECG data within the same period. To

be more specific, one should build an ECG identification

model and conduct across-session tests instead of within-

session tests. Some of the aforementioned works have re-

ported within-session results [17, 25, 34], which could pos-

sibly bias the evaluation.

In this work, we address the two issues through a com-

bination of approaches as shown in Figure 1. First, we pro-

pose an ECG image generation algorithm that is able to han-

dle any specified number of ECG heartbeats. Such an algo-

rithm uses detected R-peaks as folding points and projects

ECG data onto a two-dimensional image, which overcomes

the challenge of hardly-required fixed length and truncated

ECG. Second, we perform across-session testing. We con-

struct the ECG identification models by using the past ECG

data and evaluate their performance on future ECG data. We

leverage transfer learning of pre-trained CNN models to ef-

ficiently build the ECG biometric system. Furthermore, we

develop a voting strategy that is able to detect anomaly ECG

heartbeats.

The rest of the paper is organized as follows. We first

review the relevant literature in Section 2 and then present

our ECG image identification models in Section 3. Sub-

sequently, in Section 4, we describe the two public ECG

datasets, MITDB and ECG-ID, which are used to evalu-

ate the performance of the proposed identification models.

Next, we present and discuss our experiments and results in

Section 5. Finally, we conclude our work in Section 6.



2. Related Work

Numerous works have been proposed to recognize the

patterns of ECG waveforms, and on a large scale, they can

be classified by the approaches being either fiducial or non-

fiducial.

For fiducial approaches, researchers first extract the fea-

tures from ECG waveforms and then apply machine learn-

ing classifiers to accomplish ECG biometric tasks. The fea-

tures are often extracted first by labeling the characteristic

points (P, Q, R, S, T, and U waves depicted in Figure 2) and

then computed based on the algorithms devised by the re-

searchers. For instance, Biel et al. combine 10 fiducials to-

gether with PCA and use generative model classifier to per-

form ECG biometric tasks [1]. Biel et al.’s model demon-

strates an identification rate of 100% on 20 subjects with

ECG collected through multiple days. Shen extract 17 fidu-

cials from ECG waveforms and apply k-nearest neighbor

(kNN) classifier to do identity matching [27]. Shen reports

an identification rate of 95.3% on 168 subjects with ECG

data collected on a single day.

For non-fiducial methods, we can split the techniques

into ML and DL. For ML tactics, researchers extract non-

fiducial features first and then perform identity matching

with ML algorithms. For DL strategies, researchers com-

bine the feature extraction and matching score computation

together in a neural network model; or, they may leverage

DL model as a feature extractor and perform classification

task with other ML/DL classifiers.

For ML example, Ye et al. extract non-fiducial features

with independent component analysis and discrete wavelet

transform and utilize support vector machine of radial ba-

sis kernel to classify the subjects [33]. An identification

rate of > 80% has been reported by Ye et al. on 65 sub-

jects with ECG data measured on the same day. Ghofrani

and Bostani choose autocorrelation and period transform as

their weapon to extract non-fiducial features [5]. Then, they

complete ECG biometric tasks with kNN and achieve an

identification rate of 100% on 12 subjects.

For DL example, Salloum and Tsai build one hidden

layer 1D-RNN with different functional units and evalu-

ate the performance of the models on the ECG-ID and

MITDB datasets. Their best identification rate is 100% for

both datasets with long short-term memory (LSTM) chosen,

which outperforms gated recurrent units. Moreover, the se-

quence length is required to be nine consecutive heartbeats

[25]. Wu et al. combine 1D-CNN and RNN together and

demonstrate identification rates of 99.70% and 97.54% on

the MITDB and ECG-ID datasets, respectively. Zhang et

al. develop a multi-resolution 1D-CNN which has archie-

tecture similar to AlexNet and achieve an identification rate

of 91.1% on the MITDB dataset.

For fiducial methods, the identification rate is influenced

by the accuracy of extracted fiducial features, and for non-

Figure 3. Demonstration of folding a raw signal into a two-

dimensional ECG image. On the left, we present a raw ECG sam-

ple with five heartbeats; on the right, we draw the image of the

ECG sample, which is generated by our folding approach. The

five R-peaks are denoted in red circles and arrows on the left and

right plots.

fiducial methods, depends on the structure of learning mod-

els and ECG data representation. We aim at developing a

non-fiducial ECG identification technique that can address

the data segmentation issue.

3. Using ECG image to identify humans

In this section, we present our ECG image identification

system. There are four steps in building the whole system.

First, we detect the R-peaks of ECG signals. Second, we

generate a two-dimensional image for each segment of ECG

signals. Third, we perform transfer learning to fine-tune

the identification model parameters. Last, we use voting

strategy to identify the subjects.

3.1. Detecting ECG R­peaks

Our first step is to detect each ECG beat from the raw

signals. To complete this task, we use the Pan-Tompkins al-

gorithm to detect the R-peaks of the raw signals [21]. Pan-

Tompkins algorithm is a real-time and state of the art R-

peaks detection method. It detects R-peaks by processing

the raw signal through filtering and automatic threshold-

ing. According to Pan and Tompkins’s paper [21], the Pan-

Tompkins algorithm can correctly detect 99.3% R-peaks in

MITDB.

3.2. Generating 2D ECG Image

Figure 3 showcases the raw ECG signal and its gener-

ated ECG image. We develop an ECG image generation

algorithm that can handle varying numbers of ECG beats.

To explain the image generation procedure, we denote the

detected R-peaks as Ri, where symbol i stands for the po-

sition of the R-peaks. Given a sequence of N R-peaks

{Ri1 , Ri2 , Ri3 , ..., RiN } in ascending order, we compute

the midpoints between each two consecutive R-peaks and

create a new sequence {Rj1 , Rj2 , Rj3 , ..., RjN−1
}, in which

jk is the midpoints of the kth and k + 1th R-peaks.



Once we have the R-peak and midpoint sequences, we

generate the image in the following procedure:

X[k, :] =

{

D[Rj⌈k/2⌉
: 1 : Ri⌈k/2⌉+1

], if k%2 = 1
D[Rj⌈k/2⌉+1

: −1 : Ri⌈k/2⌉+1
], otherwise

(1)

where X[k, :] represents the kth row of the generated image

X , and D is the ECG data. For the odd number of row,

we project the ECG data from the midpoint to the R-peak

onto the row in sequential order; as for the even number

of row, we project the ECG data from the R-peak to the

next midpoint in reverse order. Here, we directly treat each

pixel as one time-point, and the pixel’s value represents the

corresponding ECG voltage. Since the period of heartbeats

ranges from 0.5 − 2 Hz, we guarantee the image size is

bounded by 2(N − 1)× 2fs, where fs is the data sampling

rate and N being the number of the ECG beats.

3.3. Building ECG Identification Models

Unlike conventional biometric identification system, we

combine feature extraction and matching distance evalua-

tion together by using the pre-trained deep learning models.

In this research, we select ResNet18 [8] and AlexNet [12] as

our pre-trained networks to conduct transfer learning since

they are known for the abilities to extract informative fea-

tures from images. For each network, we change the input

size to M ×M ×1 and output size to C in which M ×M is

the size of the ECG image and C is the number of subjects

to identify.

Model CNNs Dataset # ECG Beat

a AlexNet ECG-ID 1

b AlexNet ECG-ID 2

c AlexNet ECG-ID 3

d AlexNet ECG-ID 4

e AlexNet ECG-ID 5

f AlexNet MIT-DB 1

g AlexNet MIT-DB 2

h AlexNet MIT-DB 3

i AlexNet MIT-DB 4

j AlexNet MIT-DB 5

k ResNet18 ECG-ID 1

l ResNet18 ECG-ID 2

m ResNet18 ECG-ID 3

n ResNet18 ECG-ID 4

o ResNet18 ECG-ID 5

p ResNet18 MIT-DB 1

q ResNet18 MIT-DB 2

r ResNet18 MIT-DB 3

s ResNet18 MIT-DB 4

t ResNet18 MIT-DB 5

Table 1. Models Tested in this work.

Figure 4. Demonstration of the subject identification result of one

ECG beat.

Table 1 displays all the models built in the current re-

search. For each ECG sample, we are free to select the

heartbeat number and generate the ECG image by using

the approach introduced in 3.2. Therefore, for each given

length (defined by heartbeat counts) of data sample, we

trained an identification model. For example, X-HB model

means an identification model for input images of X con-

secutive heartbeats. In this study, we built the models for

sequence length varying from one to five for each dataset.

3.4. Voting for Identification

We adopt anomaly detection and majority vote in final

identification decision. Suppose we trained 1-HB, 2-HB,

and 3-HB models, for each testing heartbeat, we would have

three identification results computed by each model, respec-

tively. Then, we claim the testing heartbeat to be anomaly

if any two results differ from each other. In other words, a

heartbeat is valid only if it shows identical identity across all

the identification models. For each recording, we first sift

the valid heartbeats and then use majority vote to determine

the identity of the subject. The identification rate is calcu-

lated by the number of correct prediction made divided by

total prediction number.

We provide an example to elucidate the introduced iden-

tity matching strategy in Figures 4 and 5. To simplify the

explanation, we consider the case of ECG beats with mod-

els trained on sequence length varying from one to three. In

Figure 4, we display the outputs and identity matching re-

sults of three models from the same ECG beat. If we iden-



Figure 5. Demonstration of the subject identification result of three

ECG beats using our voting strategy.

tify the subject based on a single ECG beat, we only need

to take the output of 1-HB model into account; if we iden-

tify the subject using two consecutive ECG beats, then we

take outputs from 1-HB and 2-HB models into considera-

tion. In Figure 4, both 1-HB and 2-HB generate the same

identity output; therefore, the subject identity is matchable.

Finally, if we recognize the subject with three consecutive

ECG beats, then we take all three outputs into consideration.

Since the output of the 3-HB model deviates from 1-HB and

2-HB models, we mark the ECG heartbeat as anomaly.

Following the anomaly detection of single ECG beat, we

perform majority voting to finalize the identity matching of

the subject. In Figure 5, we consider a sequence of three

ECG beats. For 1-HB model, we conduct majority vote

without ambiguity. Considering the results of two consecu-

tive ECG beats, we observe one anomaly and two identical

matchings; as a result, we match the subject to subject 1.

Finally, for three consecutive ECG beats, we arrive at two

anomalies and one successful subject match. We still match

the subject to subject 1 since we do not take anomalies into

account when voting.

4. Datasets

We ran our identification models on two publicly avail-

able datasets that are often used for ECG biometric system

evaluation: MITDB [19] and ECG-ID [16]. Both datasets

are downloadable from PhysioNet database [6].

The MITDB dataset contains 48 two-channel 30-minute

recordings of ECG measured from 47 subjects (25 male and

22 female) diagnosed of arrhythmia. Only one subject has

two recordings. Every recording is sampled at a frequency

of 360 Hz with 11-bit resolution over a 10 mV range.

The ECG-ID dataset contains 310 one-channel record-

ings of ECG obtained from 90 subjects (44 male and 46

female). Each subject has various number of recordings,

which ranges from one to twenty. Some subjects have

recordings collected on the same day, while the others have

recordings measured over 6 months. All the recordings have

length of 20 seconds sampled at 500 Hz with 12-bit resolu-

tion over 10 mV range. The ECG-ID is mentioned as a

challenging dataset by several previous works [15, 23, 32].

5. Experiments

5.1. Experimental Setup and Implementation

We aim at using the past ECG to verify the identity of

future ECG; as a result, we choose to follow the experi-

ment settings in [32] for the MITDB dataset and [22] for

the ECG-ID dataset. For the MITDB dataset, we use the

first 70% of heartbeats as training and the rest as testing for

all 47 subjects. Concerning the ECG-ID dataset, we select

the same 12 subjects (id: 3, 10, 24, 25, 30, 32, 34, 36, 52,

53, 59, 72) who have recordings collected on multiple days

as Patro et al. did [22]. We train our identification models

on the first two recordings and test them on the following

three recordings.

We conduct all the experiments with MATLAB R2019B.

For image generation, we set the image size as 2(N−1)×fs
and resize the image to 80 × 80 to train the models. For

training process, we use adam optimizer [10] with learning

rate 0.0001. Based on the size of the two datasets, we set

the mini-batch size to 20 for the ECG-ID dataset and 100 for

the MIT-DB dataset. We found that 20 epochs were enough

for the models to converge, so we set 20 as the number of

the epoch for our experiments.

5.2. Identification of ECG Image

We show the performance of each model in Table 2, in

which the plus sign stands for adopting the voting strat-

egy introduced in 3.4. Considering the MITDB dataset,

our model performs very well with an identification rate of

100% in all number of ECG. We think there are two rea-

sons that can explain such good results. First, we have suffi-

ciently large data sample during the training process for the

MIT-DB dataset. Second, although we used the past ECG to

predict the future, the recording is still the same one for each

individual. As for the ECG-ID dataset, interesting results

have shown. Single beat and five consecutive beats pro-

duce the best results in both AlexNet and ResNet18 transfer

learning models. In addition, ResNet18 trained with five

consecutive beats achieves the best performance with an

identification rate of 94.4%. This indicates that two and

three consecutive beats are prone to identity matching er-

rors than single beat does. Such a phenomenon might be

induced by short-term bad ECG data acquisition. Neverthe-

less, keep adding beat numbers on top of three consecutive

beats pulls back to good results.



Model Identification Rate

a 88.89%

a+b 83.33%

a+b+c 83.33%

a+b+c+d 91.7%

a+b+c+d+e 91.7%

f 100%

f+g 100%

f+g+h 100%

f+g+h+i 100%

f+g+h+i+j 100%

k 91.7%

k+l 88.9%

k+l+m 88.9%

k+l+m+n 91.7%

k+l+m+n+o 94.4%

p 100%

p+q 100%

p+q+r 100%

p+q+r+s 100%

p+q+r+s+t 100%

Table 2. Performance of the models in this work.

Model on MIT-DB Identification Rate

1D-CNN + LSTM [32] 99.70%

Ours [AlexNet and ResNet18] 100%

Model on ECG-ID Identification Rate

Fiducial [22] 88.9%

PCANet + SVM [30] 94.4%

Ours [ResNet18-5 beats] 94.4%

Table 3. Comparison to the state of the art.

5.3. Comparison to the state of the art

We compare the performance of our model to the state of

the art in Table 3. Our model shows its competency in both

datasets. In MIT-DB dataset, most published results demon-

strate outstanding identification results. As to the ECG-ID

results, it appears that non-fiducial methods such as ours

and Wang et al. [30] are likely to explore the features for

better identity matching. The reasons could be due to the

short and varying states of the ECG data in the ECG-ID

dataset. We investigate into the mis-classified subject and

discover that both our model and Wang et al.’s falsify two

recordings of subject 72 as subject 59. Given the fact that

two models arrive at the same mis-classification, it seems

reasonable to conclude that the two recordings of subject

72 are susceptible to be categorized as subject 59.

Figure 6. Demonstration of ECG image generated from two sub-

jects in the ECG-ID dataset. All the images are constructed from

five consecutive ECG beats. Three figures on the left plot ECG

image of subject 3, while three figures on the right plot ECG im-

age of subject 72. The first two rows are recordings in the training

set; the last row shows ECG image in the testing set.

5.4. Qualitative Results of ECG Image

Figures 6 and 7 demonstrate the ECG images generated

from two different subjects within the ECG-ID dataset and

the MIT-DB dataset, respectively. We observe not only the

perceptual difference between each two subjects but also the

visual similarity between different recordings of the same

subject. Focusing on the ECG-ID dataset, we are able to

tell that subject 72 has either larger P wave or T wave com-

pared to subject 3, whereas subject 3 has a sharper R-peak.

In addition, the testing data of subject 2 differs from its

training data more than subject 3 does. Shifting the atten-

tion to the MIT-DB dataset, we observe the differences of

heart rate between subject 100 and subject 234. Subject 234

has a higher heart rate compared to subject 100 because it

displays shorter folding segment. Furthermore, arrhythmic

heart beats are clearly shown in the testing data of subject

100, in which the folding ECG segments have observable

different lengths. In summary, the qualitative results show-

case that ECG could be a promising biometric.

6. Conclusion

We contribute a novel ECG image generation approach

that is able to generate competitive ECG biometric mod-



Figure 7. Demonstration of ECG image generated from two sub-

jects in the MIT-DB dataset. All the images are constructed from

five consecutive ECG beats. Three figures on the left plot ECG

image of subject 100, while three figures on the right plot ECG

image of subject 234. The first two rows are recordings in the

training set; the last row shows ECG image in the testing set.

els by leveraging transfer learning method. Such approach

has been evaluated on MIT-DB and ECG-ID datasets. We

observe satisfiable results of the proposed models in both

datasets: 100% on the MIT-DB and 94.4% on ECG-ID. In

addition, qualitative results demonstrate the uniqueness of

ECG in each subject. More importantly, our method also

generate satisfying results by using a single ECG beat to

conduct identity matching task.
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