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Abstract

Latent fingerprints, a kind of fingerprints which are cap-

tured from the finger skin impressions at the crime scene,

have been adopted to identify suspected criminals for a long

time. However, poor latent fingerprint image quality owing

to unstructured overlapping patterns, unclear ridge struc-

ture, and various background noise has brought a chal-

lenge to the recognition of latent fingerprints. Therefore,

image enhancement is a crucial step for more accurate fin-

gerprint recognition. In this paper, a latent fingerprint en-

hancement method based on the progressive generative ad-

versarial network (GAN) is proposed. The powerful GAN

structure provides an efficient translation from latent fin-

gerprint to high-quality fingerprint. Our method consists of

two stages: Progressive Offline Training (POT) and Itera-

tive Online Testing (IOT). Progressive training makes our

model not only focus on the local features such as minu-

tiae but also preserve structure feature such as the orienta-

tion field. We extensively evaluate our model on NIST SD27

latent fingerprint dataset. With the help of orientation es-

timation task and progressive training scheme, our model

achieves better recognition accuracy.

1. Introduction

Fingerprints are one of the most important and reliable

biometric modalities because of the characteristic that a per-

son can be uniquely identified via it. Latent fingerprints,

which are captured from the finger skin impressions un-

intentionally left at the crime scene by accident, are very

useful in law enforcement and forensics applications. La-

tent fingerprint is a representative type of low-quality finger-

print. Compared to the rolled and plain fingerprints which

are collected under controlled condition, latent fingerprints

usually suffer from poor ridge structure and overlapping

unstructured noise [9, 2]. Fig. 1 gives examples of latent,

rolled, and plain fingerprint respectively.

Figure 1. Examples of latent, rolled, and plain fingerprint im-

ages (from left to right), which are selected from NIST SD27 [5]

dataset, NIST SD14 [21] dataset, and latent overlapped fingerprint

dataset [3] respectively.

The Automated Fingerprint Identification Systems

(AFIS [11]) have been widely adopted for fingerprints iden-

tification. Although AFIS achieves promising accuracy on

plain and rolled fingerprints, the performance is still not sat-

isfied for latent fingerprint images. As a result of the poor

image quality of these fingerprint images, most of the com-

mon feature extraction techniques often fail to accurately

extract useful features. To tackle these problems, finger-

print image enhancement is an important processing step to

reduce the noise, recover the corrupted regions and improve

the clarity of the ridge structure. When latent fingerprint

images are enhanced, more efficient and accurate feature

extraction is facilitated for better fingerprint matching and

identification performance.

Classic fingerprint image enhancement methods focus

on how to separate noise from the meaningful ridge pat-

tern and remove it. Information in the frequency domain

and orientation field are widely used because the orientation

and frequency characteristics of noise are different from the

ridge pattern part, which makes it easier to enhance the use-

ful region.

During the past few decades, we have entered a new era

and witnessed a huge revolution of artificial intelligence.

Among all the breakthrough of artificial intelligence tech-

niques, Deep neural networks (DNNs) achieved state-of-

the-art performance in many image recognition and un-
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Figure 2. The flowchart of our progressive generative adversarial network based model. Our method can be divided into two stages:

Progressive Offline Training (POT) and Iterative Online Testing (IOT). In the POT stage, the dashed lines denote the loss backpropagation

path when training our GAN progressively. In IOT stage, the latent fingerprint images are enhanced by the GAN model.

derstanding applications, such as object detection [7] and

face recognition [19]. Among all kinds of DNNs, Convo-

lutional Neural Networks (CNNs) have been most widely

used in image processing tasks, including image enhance-

ment. Since LeCun et al. proposed the first CNN structure

[13] and applied it to zip code recognition. Different CNNs

have been emerging. Zhang et al. [27] proposed DnCNN

model to handle blind Gaussian denoising with the residual

learning strategy. Following the flourish of deep learning

based image denoising and image restoration, latent finger-

print enhancement based on the deep neural network has

also been a hot research topic recently.

Motivated by the idea that orientation estimation and fin-

gerprint enhancement can share representation in the deep

neural network, we proposed a multi-task based progres-

sive generative adversarial network (PGAN) model. In our

model, latent fingerprint enhancement can be denoted as an

image-to-image translation problem and powerful represen-

tation capacity of a deep generative adversarial network can

be applied to this task. The method we proposed can be

decomposed into two stages: Progressive Offline Training

(POT) and Iterative Online Testing (IOT). The deep GAN

model is trained on POT stage and then is applied to IOT

stage. The flowchart of our method is illustrated in Fig. 2.

In the POT stage, our GAN is trained with paired data.

To generate the paired data of latent fingerprint and cor-

responding high-quality fingerprint, we simulate the la-

tent fingerprint synthetically combining the noise and high-

quality fingerprint images. Another problem is that gener-

ating performance of GAN is poor on high-resolution im-

ages and suffers from checkboard artifacts. This is because

the generator of GAN follows an encoder-decoder structure,

where deconvolution is applied in the decoder. To solve the

problem, the progressive growing of GAN arise applied in

the training process which can effectively boost the stability

and performance of GAN.

In the IOT stage, the segmented latent fingerprint is input

into the GAN trained in the POT stage. Generally, a finger-

print image after a single iteration of the image translation

still suffers from unstructured noise. To solve this problem,

we iteratively enhance the image until the fingerprint image

quality achieves a satisfying result. In the latter iteration,

the restored high-quality region can be good guidance for

the enhancement of remaining low-quality regions.

To show the effectiveness and efficiency of our method,

we extensively evaluate our model on NIST SD27 latent fin-

gerprint dataset. From the Cumulative Match Characteristic

(CMC) curve on NIST SD27 and three subsets, we can see
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our progressive GAN based method outperforms the previ-

ous model by a great margin. The key contribution of this

paper can be summarized as follows:

• We propose a generative adversarial network based la-

tent fingerprint enhancement method, which consists

os two stages: Progressive Offline Training (POT) and

Iterative Online Testing (IOT).

• We propose a progressive training method to boost

the stability and performance of GAN, and propose a

multi-task training method to fully exploit the informa-

tion of the orientation field.

• We evaluate our model on NIST SD27 latent finger-

print dataset and show the Cumulative Match Charac-

teristic (CMC) curve on NIST SD27 and three subsets.

• We compare our model with state-of-the-art latent fin-

gerprint enhancement methods. Our results are better

than other enhancement methods in terms of both ef-

fectiveness and efficiency.

2. Related Works

2.1. Latent fingerprint enhancement

To enhance the latent fingerprint images, Gabor filtering

is proposed by Lin et al [8]. As the fingerprint consists of

interleaved parallel ridge and valley flows with well-defined

frequency and orientation, Gabor filtering can make full use

of this information. Gabor filter can be defined as a sinu-

soidal plane wave tapered by a Gaussian to capture the peri-

odic and non-stationary nature of fingerprint regions, which

achieve promising effects on the improvement of ridge clar-

ity [22].

Although Gabor filtering can improve the ridge clarity to

some extent, it fails to restore the ridge structure influenced

by unstructured noise precisely. To tackle this problem, the

Global dictionary [4] was proposed to improve the accu-

racy of orientation field estimation. Liu et al. [15] proposed

multi-scale patch based sparse representation with dictio-

naries. In their work, the dictionaries are made up of a set

of Gabor elementary functions and the multi-scale sparse

representation is applied to reconstruct high-quality finger-

print.

An image can be decomposed into the cartoon part and

texture part according to the total variation (TV) model. To

exploit this cue, image decomposition based on minimiza-

tion of total variation has been researched to enhance the

latent fingerprint images [26, 25]. The core idea of the TV

model is that the texture component represents a meaningful

structure of the image while the cartoon component is char-

acterized as non-repeated structured noise. We can remove

the cartoon component of the fingerprint image and keep the

texture component as the enhanced result. Zhang et al. pro-

posed an adaptive directional total variation (ADTV) model

[26] to improve the effectiveness of fingerprint segmenta-

tion and enhancement. However, it is difficult to accurately

restore the ridge pattern as cartoon component of the finger-

print image also contains some meaningful fingerprint pat-

tern information. As a result, the enhanced fingerprint pat-

tern is weak and suffers from missing information, which

will lead to the poor performance of fingerprint matching

and identification.

Moving to the era of deep learning, more learning-based

latent fingerprint enhancement methods, especially CNN-

based enhancement method are much more widely adopted.

Cao and Jain [1] put forward orientation estimation as a

classification problem and used the CNN for fingerprint ori-

entation estimation. Inspired by their work, FingerNet [14]

is proposed by Li et al. Following the pixels-to-pixels and

end-to-end learning manner, FingerNet is a deep convolu-

tional neural network based method to enhance latent fin-

gerprints and achieve state-of-the-art accuracy on a various

dataset. More recently, Qian et al. proposed a DenseUNet

based latent fingerprint enhancement model [17]. In their

work, they generate the paired training data with the aid

of a TV model to separate structured noise. Skip connec-

tions are used in DenseUNet architecture which boosts the

representation power of the network. Also, they use a qual-

ity control module as a switch of iterative testing, which

effectively helps remove the noise in the latent fingerprint

images.

2.2. Generative Adversarial Network

As one of the most important breakthroughs of deep

learning recently, generative adversarial network (GAN)

has achieved significant improvement in many computer

vision tasks including image generation [6] and image-to-

image translation [10, 28]. GAN is composed of two parts:

generator G and discriminator D. Discriminator D learn to

distinguish real sample and generated sample generated by

generator G while generator G learn to ”fool” the discrimi-

nator D.

Follow the core idea of GAN, researchers have attempted

to improve fingerprint enhancement by the generative ad-

versarial network. Svoboda et al. [20] are the first to

use the generative network to predict the missing parts of

the ridge pattern. More recently, COOGAN [16] is pro-

posed to utilize the supervision of orientation and quality

and achieve state-of-the-art performance on the NIST SD27

dataset. These approaches bring a new direction for latent

fingerprint enhancement.

3. Proposed Method

In this section, we will first define the latent fingerprint

enhancement problem and describe how to apply condi-
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tional GAN (cGAN) to the enhancement task. Then we will

show the network architecture and some important hyper-

parameter of our progressive GAN. Finally, the details of

the progressive training of GAN will be given.

3.1. Problem Formulation

Latent fingerprint enhancement involves translating the

original latent fingerprint images into high-quality finger-

print with a clear ridge structure. So it can be formulated as

an image-to-image translation problem [10]. Our goal can

be denoted as learning a mapping f : DL → DE , where

DL represents the latent fingerprint domain and E repre-

sents the target domain where enhanced fingerprint lie in.

Generative adversarial networks can map a sample from

a random distribution Pdata to the target domain. The gen-

erator G is supervised by reconstruction loss (i.e. L1 or

L2 loss) with corresponding ground truth in the domain E.

Meanwhile, the discriminator D learns to discriminate the

generated sample from G and the ground truth from the tar-

get domain. The generator G tries to maximize the possibil-

ity of discriminator D making a mistake [6]. The objective

function can be denoted as:

LGAN = Ex∼pdata
[log(D(x))]

+ Ex∼pdata
[log(1−D(G(x)))]

(1)

In our application of latent fingerprint enhancement, the

source domain is the given latent fingerprint rather than a

random distribution. The input of the generator is real sam-

ples of latent fingerprint images. Also, the input sample

serves as a condition of the discriminator. As the discrim-

inator takes both the enhanced fingerprint generated by G

and the ground truth of the high-quality fingerprint, the G

should learn to preserve the details and remove the noise to

fool the discriminator D.

3.2. Generative Adversarial Network Architecture

Our proposed generative adversarial network is made up

of generator and discriminator. An overview of the pro-

posed GAN architecture is depicted in Fig. 3. The input of

the generator is the original latent fingerprint image and the

corresponding manually labeled segmentation, the output

is the enhanced fingerprint image and the orientation field

estimation. Then the output of the generator and the corre-

sponding ground truth (ground truth fingerprint and orienta-

tion field) is input into the discriminator. The output of the

PacthGAN discriminator is a probability map of the same

size as the number of patches.

Generator The generator we use is a ”U-Net” structure

[18]. In the ”U-Net” generator, there are skip connections

connecting ith Conv layer and n − ith Deconv layer. The

skip connection can pass the feature between the encoder

and decoder which will help the preservation of the details

such as ridge pattern. In our work, the kernel size of the

Conv and Deconv layer is set to be 5×5 and the strides are

set to be 1×1. The activation we use is ReLu activation. To

suppress the noise in the image, the feature extracted by the

Conv layer should be abstract, which requires the receptive

field to be large. We also replace the pooling and unpooling

layers with the Conv and Deconv layers. The kernel size of

these layers is set to be 2×2 and the stride is also set to be

2×2. These Conv and Deconv layers have the same func-

tion of pooling and unpooling layers while learning more

abstract representation. The output of the generator is the

enhanced fingerprint image and the estimated orientation

field.

Discriminator The discriminator we use is a ”Patch-

GAN” [10] structure CNN classifier. Rather than output

a single value of the possibility of true or fake, PatchGAN

output a probability map. Each value in the map represents

the probability of a single patch in the image. This architec-

ture can help recover texture and preserve the details in the

high-resolution image. The patch size we use is 70×70.

3.3. Objective Function

To train our generative adversarial network, the objec-

tive function should be given. In the proposed model, the

loss function consists of three parts: adversarial loss, recon-

struction loss, and orientation loss.

Adversarial Loss The objective function of GAN has

been shown in Equ. 1. In the backpropagation process dur-

ing the training, both the generator G and discriminator D

minimize the adversarial loss. The generator will be penal-

ized if the generated image is correctly identified. In our

latent fingerprint enhancement application, we are using a

conditional generative adversarial network (cGAN). Thus,

the loss function should be modified as

LcGAN (G,D, x) = E(x,y)∼p(x,y)[log(D(x, y))]

+ Ex∼px(x)[log(1−D(x,G(x)))].
(2)

Reconstruction Loss The generator G can translate la-

tent fingerprint x into enhanced high-quality fingerprint y,

while the ground truth high-quality fingerprint is y∗. Recon-

struction loss aims to preserve the similarities between the

enhanced image and the corresponding ground truth. We

use the L1 loss as the reconstruction loss, which can be for-

mulated as:

Ll1(G, x, y∗) = ‖y∗ −G(x)‖ . (3)

Orientation Loss Our model follows a multi-task learn-

ing scheme: generating enhanced fingerprint and output the
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Figure 3. Generative Adversarial Network architecture. In the generator, each cuboid pair of the same size in the encoder part represents

two consequent ”Conv+Relu” layers. Each cuboid triple of the same size in the decoder represents two consequent ”Deconv+Concat+Relu”

layers, among which the concatenate layers are shown in yellow. The skip connection is between the ith Conv layer and n − ith Deconv

layer. The output of the generator is the enhanced fingerprint image and the estimated orientation field. In discriminator, we use the

PatchGAN architecture the same as pix2pix [10]. The output of discriminator is a probability map.

orientation field estimation. Since the orientation estima-

tion and fingerprint enhancement share the same represen-

tation in the neural network, the multi-task learning from

end to end can abstract more meaningful features than a sin-

gle task. To reduce the dimension of the orientation feature,

we down-sample the orientation field feature map and the

corresponding ground truth generated by a gradient-based

method same as [14]. For each patch with a given size, the

neural network can predict an angle value in the range of

180◦, which makes up the estimation field oe. If the ground

truth orientation field is og , the orientation loss can be de-

noted as the cross-entropy (CE) between the estimated and

ground-truth orientation field:

Lori(oe, og) = CE(oe, og) = −
∑

i

ogi log(oei). (4)

Total Loss Combining these three loss function, we can

define our total loss as

Ltotal = LcGAN + λ1Ll1 + λ2Lori, (5)

where λ1 and λ2 are weighing coefficient used to balance

between the different components. Therefore, our training

goal is to optimize the objective function:

Gopt = min
G

max
D

Ltotal. (6)

3.4. Progressive Training

The progressive growing training of GAN is proposed by

Karras et al [12]. The core idea of progressive training is

to start training from a low-resolution and add new layers

to the model increasingly. This training method can signifi-

cantly stabilize the training of GAN. In our work, the input

image is 816×816, which possesses a relatively high resolu-

tion. When training an image translation GAN on such high

resolution, the generated image quality is low and the loss

is hard to converge. To tackle these problems, progressive

training is introduced in our latent fingerprint application.

The process of progressive training is shown in Fig. 4.

As can be seen in Fig. 4, we first start training our GAN

at a small scale with only a few Conv and Deconv layers.

The spatial resolution of the first step is 22×22. The origi-

nal training data is down-sampled into this resolution. After

some iteration, we add a new Conv and a new Deconv layer

to the two ends of the generator, add a new Conv layer to

the discriminator. In the second step, the spatial resolution
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Figure 4. Progressive growing training of GAN. The blue rectan-

gle represents the generator and the orange rectangle represents

the discriminator. The training process is from left to right. The

number N ×N in the figure represent the spatial resolution of the

input or the output.

is 48×48. After adding new layers for 5 times, the input

resolution is 816×816, which is the spatial resolution of our

generated data.

The model is trained on 30000 pairs of latent fingerprints

and their corresponding ground truth. How to generate the

training data will be disscussed in section 4.1. The opti-

mizer we use is Adam Optimizer with learning rate 1e-4,

β1=0.9, and β2=0.999. In the progressive growing stage,

the GAN is trained for 1 epoch for each network scale and

spatial resolution. After the growing training is completed,

the GAN model is already converged. We further train the

GAN for 3 epochs. The batch size is 8 and whole training

process is finished on a single NVIDIA 1080Ti GPU in 10

hours.

4. Experiments and Results

4.1. Dataset

The dataset used in this work is collected or generated

from NIST SD27 [5] and NIST SD14 [21]. The training set

contains 30000 synthetic fingerprint images generated by

combining noise from NIST SD27 and high-quality finger-

print from NIST SD14. The testing set contains 258 latent

fingerprint images from NIST SD27.

It requires a large amount of paired training data to

train a generative adversarial network from scratch. In

our work, the paired training data includes the latent fin-

gerprints and the corresponding enhanced images and seg-

mentation masks. However, there is no publicly available

database consisting of pairs of low quality latent and high

quality enhanced fingerprint images for training. In addi-

tion, the number of available latent fingerprint images is

limited comparing to rolled and plain fingerprint images. In

NIST SD27 latent fingerprint dataset, there are merely 258

latent images and their corresponding template fingerprints.

As a result, it is more widely accepted to use NIST SD27

as the test images dataset rather than the training dataset.

To tackle the problem of training data scarcity, a solution is

to synthetically generate the latent fingerprints by simulat-

ing the conditions in which a latent fingerprint is typically

acquired such as in different overlapping patterns and back-

grounds. Fig. 2 illustrates the process of generating paired

training data for latent fingerprint enhancement. This pro-

cedure generally includes the generation of latent finger-

prints and their corresponding enhancement ground truth,

which are obtained with the good quality fingerprints from

which the latent fingerprint are simulated. The samples in

the training set simulate the structured noise and can rep-

resent the latent fingerprints acquired environment. Fig. 5

gives some examples of generated training data.

(a)

(b)

Figure 5. Examples of: (a) the generated Latent fingerprint images

(b) enhanced binary fingerprints.

Latent Fingerprint Generation To generate the latent

fingerprints, we simulate the conditions under which the

latent fingerprints are usually captured by adding differ-

ent noises and backgrounds into good quality fingerprints.

Specifically, we synthetically add the high quality finger-

prints with the structured noises to generate the latent fin-

gerprints for training. Instead of NIST SD27, we use NIST

SD14 to prepare the good quality fingerprints. NIST SD14

consists of 27,000 pairs of rolled fingerprints with various

fingerprint types. We manually check and choose 200 high

quality fingerprints from NIST SD14. Besides, we decom-

pose the latent images of NIST SD27 into texture and car-

toon components using the TV method [24] to simulate the

various noise of latent images. The structured noises are

obtained from the cartoon components.

After we have the noise pattern and high-quality finger-

print, the simulated fingerprint Il can be a linear combina-

tion as follows:

Il = w × Ig + (1− w)× Is, (7)

where Ig represents the good quality fingerprint and Is is

the decomposed noise pattern from the TV model. Weight-

ing coefficient w varies from 0.3 to 0.7 for whole patch

noise. For data augmentation, we also add varying levels of

Gaussian noise to the generated latent fingerprint and make

some shifts and rotations of them. The final generated latent
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fingerprint images are of a size 816× 816. Fig. 5 (a) shows

some examples of generated latent fingerprint images.

The size of each fingerprint images in NIST SD27 is

768×800 pixels and we use image padding to change

the size into 816×816 which is more suitable for train-

ing. Finally, we generate 30,000 pairs of latent finger-

print images and their corresponding binarized enhance-

ment ground truth.

4.2. Evaluation Metrics

The ultimate goal for latent fingerprint enhancement is

to improve the clarity of useful details and suppress vari-

ous noises from the image for better recognition accuracy.

Therefore, we can evaluate the effectiveness of our model

using the accuracy of fingerprint identification. The match-

ing database contains 258 fingerprints from NIST SD27

and 27000 fingerprints from NIST SD14. We use commer-

cial fingerprint matchining software VeriFinger SDK 4.3

(https://www.neurotechnology.com/) for the feature extrac-

tion and matching. VeriFinger is commonly used by pre-

vious work and we can compare our model with the previ-

ous methods in the same environment. We use Cumulative

Match Characteristic (CMC) curves to show the enhance-

ment effectiveness of our model.

4.3. Results

We design some ablation experiments to evaluate the ef-

fectiveness of our method and compare the proposed en-

hancement method with previous methods. The first exper-

iment is to test the effectiveness of the multi-task learning

scheme and progressive growing training. In this experi-

ment, we compare the proposed multi-task learning scheme

with those without orientation estimation and progressive

training as well as the raw image. From the results shown

in Fig. 6 we can see that orientation estimation tasks and

progressive growing training schemes can improve the re-

Figure 6. Ablation study experiment results on Orientation estimation task and Progressive growing training scheme
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sults.

In addition, the second experiment is performed to com-

pare the results with and without the iterative testing. Our

iterative online testing (IOT) stage aims to iteratively en-

hance the latent fingerprint to make sure that the noise is

removed as much as possible. From the enhancement re-

sults comparision shown in Fig. 7, we can see that the ridge

pattern of an iteratively enhanced fingerprint is clearer and

noise is removed to a greater extent.

Figure 7. Ablation study on iterative online testing. Each column

represents a sample from the three subsets from NIST SD27. The

first, second, and third rows are the original latent fingerprint, the

enhancement results without iteration, and the enhancement re-

sults with iteration resepectively. The red circle denotes the sig-

nificant improvement of iterative testing.

Finally, we compare our proposed method to other meth-

ods published in the literature [17, 14, 4]. These methods

were also tested on the NIST 27 database. We directly used

the results reported in the literatures for comparison. The

Cumulative Match Characteristic (CMC) curves compar-

sion on our test set are shown in Fig. 8. From the results we

can see that our progressive GAN based method performs

better than other enhancement algorithms significantly.

4.3.1 Efficiency

To look into the efficiency of our method, we compare the

test time for each image in different methods in the same

configuration. As we can see in Tab. 1, our progressive

GAN based method has a significant boost in efficiency over

the previous methods. The high efficiency of our iterative

online testing makes it possible for a more efficient realtime

fingerprint identification system.
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Figure 8. CMC curves comparing our method with previous latent

fingerprint enhancement method DenseUNet [17], FingerNet [14],

method proposed by Feng et al. [4], and the raw image.

Table 1. Test time per image

Method Computation time (sec)

ADTV [26] 58.2

Localized Dict [23] 8.6

Ours 0.034

5. Conclusion

In this paper, we propose a GAN based latent fingerprint

enhancement method. Our method is inspired by the multi-

task learning and progressive growing training of GAN.

Firstly, we give the problem formulation and define the la-

tent fingerprint enhancement as an image-to-image transla-

tion problem. Then we design the multi-task GAN network

to fully exploit the shared representation between orienta-

tion estimation and enhancement. Additionally, we propose

a progressive growing training scheme which stabilizes the

training of GAN. To show the effectiveness of our method,

we evaluate our model on the NIST SD27 dataset and ap-

ply the enhanced result to the fingerprint matching appli-

cation. The results shows that our method performs better

than other methods.
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