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Abstract

In this paper, we propose a system that enables pho-

toplethysmogram (PPG)-based authentication by using a

smartphone camera. PPG signals are obtained by record-

ing a video from the camera as users are resting their fin-

ger on top of the camera lens. The signals can be extracted

based on subtle changes in the video that are due to changes

in the light reflection properties of the skin as the blood

flows through the finger. We collect a dataset of PPG mea-

surements from a set of 15 users over the course of 6-11 ses-

sions per user using an iPhone X for the measurements. We

design an authentication pipeline that leverages the unique-

ness of each individual’s cardiovascular system, identifying

a set of distinctive features from each heartbeat. We con-

duct a set of experiments to evaluate the recognition perfor-

mance of the PPG biometric trait, including cross-session

scenarios which have been disregarded in previous work.

We found that when aggregating sufficient samples for the

decision we achieve an EER as low as 8%, but that the per-

formance greatly decreases in the cross-session scenario,

with an average EER of 20%.

1. Introduction

Biometric authentication is a popular approach to effort-

less user authentication, especially on mobile devices such

as smartphones or tablets. While both fingerprint scanning

and face recognition offer quick and accurate authentica-

tion, their modalities are also easy for attackers to observe.

At the same time, reliably detecting forged biometric sam-

ples (such as latex fingers) remains an arms race with at-

tackers crafting increasingly sophisticated forgeries. In re-

cent years, the photoplethysmogram (PPG) has become par-

ticularly interesting in the context of mobile devices. PPG

is a method to optically detect changes in blood flow vol-

ume and is often used in optical heart rate sensor of smart-

watches. In the medical domain, PPG is used to monitor

patients’ heart rates and blood oxygen levels through pulse

oximeters. Similarly to the electrocardiogram (ECG), PPG

offers a range of distinctive biometric features derived from

Time

Figure 1: System Overview. Users place their finger on

the smartphone camera. The blood flow to the fingertip

changes the light reflection properties of the skin creating

subtle changes in the color of the video frames (luma com-

ponent).

unique characteristics of an individual’s cardiovascular sys-

tem. Previous research in the field has relied on medi-

cal datasets or purpose-built PPG sensors. However, using

these systems is not practical due to the specialized hard-

ware required (for example, users are unlikely to clamp a

pulse oximeter on their finger for authentication).

In this work, we are proposing the first system to collect a

user’s PPG through a mobile phone camera and authenticate

them through the extracted signal. During a measurement,

the user places their finger on the phone’s camera while the

finger is illuminated by the phone camera flashlight (see

Figure 1). Smartphone-based PPG authentication has two

main advantages over established biometrics: Unlike fin-

gerprints or facial images, PPG is hard to observe from a

distance, making it less susceptible to presentation attacks.

In addition, the hardware requirements are low and no spe-

cialized sensors are needed. This makes the technique even

suitable for low-cost feature phones. We validate our ap-

proach through a user study with 15 participants and cap-

ture their PPG over 6-11 sessions. The multi-session nature

of our experiment allows us to explore the time stability of

the biometric, a component largely overlooked by previous

work. In order to facilitate future work in the field, we make

our code and the dataset available online1.

1https://github.com/ssloxford/seeing-red/
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Figure 2: The two modes of PPG collection. The absorption

mode is usually used by devices in a medical setting, such

as pulse oximeters, whereas the reflection mode is used in

smartwatches and other consumer systems. Our system op-

erates in reflection mode.

2. Background and Related Work

In this section, we will present the physiological foun-

dations of PPG-based authentication, discuss different mea-

surement methods and summarize related work.

2.1. Physiological foundations

A photoplethysmogram (PPG) is an optically obtained

plethysmogram that can be used to detect blood volume

changes in the microvascular bed of tissue [29]. Having

first been proposed in 1938, PPG is a relatively simple tech-

nique that only relies on a light source to illuminate the skin

tissue, and a photo detector to measure the small variations

in light intensity associated with changes in perfusion in the

catchment volume [21]. Within each heartbeat three distinct

fiducial points can be identified that relate to different stages

of the cardiac cycle (see Figure 4). Some biometric features

used in this work (see Section 4.7) are directly based on

these fiducial points and derive their distinctiveness from

the uniqueness of the person’s cardiovascular system.

The systolic peak is a result of the direct pressure wave

traveling from the left ventricle to the periphery of the

body [5]. Its amplitude relates to stroke volume [23] and

is used to estimate continuous blood pressure [7]. The dias-

tolic peak (or inflection) is a result of reflections of the pres-

sure wave by arteries of the lower body [5]. The time differ-

ence between the systolic peak and diastolic peak has been

previously used as a measure of large artery stiffness [22]

The dicrotic notch is a small and brief increase in arterial

blood pressure that appears when the aortic valve closes and

is commonly used as an equivalent of end-systolic left ven-

tricular pressure [8]. A more in-depth review of the PPG

signal morphology and the medical reasons for the distinc-

tiveness of individual components can be found in [11].

2.2. Measuring PPG

In a clinical setting, PPG is typically measured with a

pulse oximeter, usually clamped to a person’s finger, and

consists of a light source on the top and a photosensor on

the bottom, as shown in Figure 2. The sensor then measures

changes in light absorption, allowing it to distinguish be-

tween oxygenated and deoxygenated blood. A PPG sensor

used in absorption mode must be located on the body at a

site where transmitted light can be detected [25]. Conse-

quently, measurement sites are limited to the extremities of

the body, such as the fingertips or earlobes.

In recent years, PPG sensors have become increasingly

popular in wearable devices (smartwatches in particular) to

allow continuous heart rate measurements without the need

for a chest strap. PPG-enabled watches use a set of LEDs to

illuminate the skin tissue and a photosensor to capture the

resulting reflection, as seen in Figure 2. The key difference

to pulse oximeter measurements is that the light source and

photosensor are adjacent. This is required as the absorption

mode is not feasible on the wrist.

2.3. PPG for Authentication

While PPG was first proposed in 1938, it has only been

used for authentication since 2003. Work in this area differs

in terms of measurement device (particularly reflection vs

absorption mode), sample size, feature types and consider-

ation of feature stability over time. A summary of the field

with regard to these properties can be found in Table 1.

Most early work in the field uses relatively simple, low-

dimensional feature sets [12, 13], focusing on the number

of peaks and the slope of parts of the waveform. Bao et al.

use heart rate variability (HRV) derived from PPG as a sole

feature [2].

More recent work has significantly extended the set of

features to more comprehensively capture the distinctive-

ness of each constituent part of the PPG waveform and in-

corporates non-fiducial methods in order to avoid the dif-

ficulty of peak detection in noisy signals [16]. The latter

is particularly useful for the reflective measurement mode

where the the diastolic peak and dicrotic notch are often

hard to identify.

Unlike earlier work, which collected data from a sin-

gle measurement session, Kavsaoğlu et al. conducted three

recording sessions with 30 participants [18]. In order to

compare intra-session and cross-session performance, they

report individual results for each of the sessions and for

a combined dataset consisting of both sessions. The au-

thors achieve identification rates of 90.44% and 94.44% for

single-session tests and 87.22% for the combined dataset.

However data from the sessions have not been separated in

the evaluation, which positively biases the results compared

to a real-world scenario [10].

The most important difference in our work is the mea-

surement device. Previous work relies on either purpose-

built hardware or medical-grade devices, whereas we use

readily available consumer hardware. In addition, most re-



Ref Measurement Subjects Dataset Sessions

[13] reflection 17 own 1

[12] reflection 17 own 1

[2] unknown 12 own 1

[33] absorption 3 own 1

[30] absorption 14/15 [1] 1

[4] absorption 44 own 1

[18] reflection 30 own 3

[28] absorption 23 [19] 1

[16] absorption 42 [17] 1

[15] absorption 42 [17] 1

[31] absorption 20 own 1

Our work reflection 15 own 6-11

Table 1: Related work on PPG-based authentication.

search uses single-session data and performs training and

testing within the same session. Due to the single-session

nature of most experiments, it is possible that systems dis-

tinguish measurement sessions, rather than individuals. For

example, PPG measurements are affected by skin tempera-

ture [14] and sensor contact pressure and position [6], both

of which can easily introduce artifacts into the signal that

would only be present in this recording.

3. Experiment Design

In this section we principally present our data collection

method, which we subsequently use for developing our au-

thentication systems.

3.1. Collection Apparatus

As previously mentioned, a key contribution of our work

is the ability to use PPG for authentication without purpose-

built hardware. As such, our system makes use of a smart-

phone’s camera and camera flash to act as the photosensor

and light source respectively. One challenge in this setup

is presented by the camera light: commercial PPG sensors

in reflection mode use green light as its wave length leads

to ideal penetration depth [21]. Conversely, the phone cam-

era uses white light, which leads to noisier measurements.

We collect the PPG data using a custom iOS application,

running on an Apple iPhone X.

Users are instructed verbally to hold the phone in their

dominant hand, and place their finger lightly over both

the camera and camera flash. They are instructed to sit

down whilst performing the capture, and to remain as still

as possible throughout; the application automatically stops

recording if too much movement is detected i.e total accel-

eration exceeds 1.3g (12.75m/s2).

Additionally, we fix the camera ISO and exposure time

to be the minimum possible, given the camera FPS and res-

olution settings. Likewise, we set the white balance gain to

be the maximum in the red channel, and minimum in the

blue and green channels. By fixing these settings we en-

sure consistency between capture sessions, reducing noise

in the signal and increasing the information captured about

the color changes.

A single capture session, as taken by the application,

consists of a video recorded in 1280 x 720 resolution at 240

frames per second, for a duration of 30 seconds. The video

is resized to 360 x 240 and uploaded to a server for vali-

dation. After each capture session, the researcher supervis-

ing the data collection takes the phone away from the user

and returns it to them for any subsequent capture sessions,

leading to users placing their finger on the camera differ-

ently each time. A validation function analyses the red light

channel of the video once it has been uploaded to the server,

and rejects the video if there are sudden jumps or a lack of

red light, as these are likely caused by the user lifting their

finger from the camera.

3.2. Collection Procedure

We collect data for a total of 15 participants, performing

between 6 and 11 capture sessions (measurements) per par-

ticipant. There were 13 male and 2 female participants. Of

the participants, 13 identify as white, one as Indian and one

as South-East Asian. Each participant is handed the device

running the application and given the above instructions on

how to use the application, as well as being given a visual

prompt towards correct usage on the screen. Captures for

each participant were taken across multiple sittings, with no

more than three capture sessions occurring in the same sit-

ting. Sittings were taken approximately a day apart, with a

median of 32.1 hours between any pair of capture sessions.

3.3. Research Ethics

Before the data collection, we obtained informed con-

sent from the participants. Our data collection process and

experiment took place with ethical approval from our insti-

tution: reference SSD/CUREC1A CS C1A 19 032.

4. Method

Our method consists of a pipeline of steps which trans-

form the raw video captured by the camera into biometric

samples which can be used for authentication. We design

the pipeline with the aim of running the system in real-time,

meaning that all processing steps can be run as the video is

being captured (i.e., we never use processing that requires

looking at a whole video file, only at the video recorded up

to that point).

4.1. Signal Extraction

To obtain the signal from the raw video, we compute the

mean of the pixel-wise luma component from the pixels in

each video frame, so that if F is a video composed by a
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Figure 3: Signal over the course of the preprocessing steps.

The first plot shows the luma component extracted by the

video frames (Eq.1). The second plot shows the signal after

de-trending with rolling average and the third plot shows

the signal after the low-pass filtering, which is used in the

rest of the pipeline.

sequence of frames {f1, ..., fm}, then the signal originating

from F is:

S = {Y (f1), ..., Y (fm)},where

Y (f) =
1

n

∑

i,j∈f

[0.299f
(r)
i,j + 0.587f

(g)
i,j + 0.114f

(b)
i,j ].

(1)

In Equation 1, i and j iterate over the pixels of the image

and the superscripts (r) indicate the considered RGB chan-

nel of the frame, either red green or blue. The channel co-

efficients of Equation 1 are taken from the ITU-R BT.601

standard.2

4.2. Signal Preprocessing

After the signal from a video is extracted, we apply the

following preprocessing steps to remove noise. First, in or-

der to remove trends from the signal we compute and sub-

tract a rolling average of the signal with the signal itself. We

use a window size of 1 second for the rolling average. Then,

we use a low pass filter to remove high frequency noise,

with cutoff frequency at 4Hz, i.e., 240beats per minute. See

Figure 3 for a visualization of the processed signals.

4.3. Beat Separation

As mentioned above, in our approach we want to per-

form single beat authentication, therefore we design a beat

detection algorithm to separate individual beats in the sig-

nal. We report in Algorithm 1 the procedure to obtain in-

dividual beats from a preprocessed signal. Alg. 1 first finds

the minimums of a smoothed version of the signal (moving

average, Line 3), and then matches those minimums to the

minimums in the original signal. The arg rel min instruc-

tion extracts all relative minimums indexes from the signal.

2https://en.wikipedia.org/wiki/Rec._601

Algorithm 1 - Beat Separation. Given a signal detects

individual heartbeats boundaries.

1: Input: preprocessed signal S, max bpm U , sampling

rate fps, smoothing window size ws.

2: g = 60 · fps
U

⊲ minimum inter-beat gap

3: A = moving average(S,ws)
4: mins(S) = arg rel min S

5: mins(A) = arg rel min A

6: B = {} ⊲ Individual Beats

7: for i ∈ mins(A) do

8: Si = {si−g, ..., si+g}
9: j = arg min

i−g,...,i+g

Si

10: B = B + {j}
11: end for

12: return B

We found that this algorithm leads to a more reliable beat

separation, as the signals often presents random noise which

survives the preprocessing above.

4.4. Fiducial Points Detection

After individual beats have been extracted, we detect

fiducial points in the signal, which are used to extract fea-

tures. We focus on three points in particular: (i) systolic

peak, (ii) dicrotic notch and (iii) diastolic peak. In low-noise

signals, these points are easily found by finding maximums

and minimums in the signal and its first derivative, see Fig-

ure 4. However we found that this procedure needs to ac-

count for noisy signals, so we craft a more robust algorithm

to detect them which falls back to best guess points.

4.5. Beat Signal Quality

Oftentimes, slight hand or finger movements may cause

noise in the signal which bypasses our filtering pipeline. We

therefore design a set of quality criteria for individual beats

with the goal of excluding noisy beats from further process-

ing. These criteria are the following:

• max bpm: all beats which correspond to > 120 bpm,

as these are caused by noise which bypasses the sepa-

ration of Alg. 1;

• number of peaks: all beats with more than three dis-

tinct maximums;

• distance from reference: all beats that are too differ-

ent from a reference expected beat wave. We compute

this difference using dynamic time warping [27] be-

tween the current beat and the reference and we set a

threshold of 2.0, i.e., beats with distance higher than

2.0 are discarded. The reference wave is the average

beat wave in our dataset.
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Figure 4: Visualization of fiducial point based features for a

single beat. Time span features are based on time from start

of an individual heartbeat, and are normalized to account

for different bpm.

All beats that match at least one of these conditions are

flagged as failed to acquire (FTA). Using these quality filters

leads to better authentication accuracy at the cost of slightly

longer authentication time. In the analysis, we report the

results including and excluding these beats.

4.6. Feature Extraction

We consider four groups of features: statistical, curve

widths, frequency domain and fiducial points based. To

make features independent of a user’s bpm at the time of

capture, after the physiological features are computed, we

re-sample beats onto a fixed sampling rate of 1,000 Hz and

we normalize them so that the amplitude values lie in [0,

1]. Features are computed on a beat-basis, so that each beat

leads to a sample.

Statistical. These are straightforward statistical features

that are based on the physiological traits of the users and

for a single beat include: (i) maximum value, (ii) minimum

value, (iii) the difference max-min and (iv) the length of the

beat. Given that our camera settings are fixed, features (i)-

(iii) are a result of the absolute values found in the luma

component of the video frames, which are related to skin

tone and amount of blood flowing through the finger. Fea-

ture (iv) is just related to the individual’s heart rate at rest,

which has some variability, but we found it to be a distinc-

tive features in our case.

Curve Widths. These features are the widths of the curve

defined by the beat at a set of pre-defined heights. For a cer-

tain height h ∈ [0, 1], where 1 is the maximum height and

0 the minimum, we consider the curve that lies above the

threshold h and compute the distance between the extremes

of this curve, see Figure 4. We choose 18 different heights

evenly spaced in [0.05, 0.95] and compute one width feature

for each of them.

Frequency Domain. For each beat we compute the dis-

crete Fourier transform and use it as features. Section 4.7

discusses how we reduce the dimensionality of these fea-

tures with feature selection.

Fiducial Points. We add a set of features based on the loca-

tion of the fiducial points discussed above based on related

work, see Figure 4 for examples of the features used.

4.7. Feature Selection

After feature extraction, each beat is represented by a to-

tal of 541 features, 4 physiological, 18 curve widths, 500

frequency domain and 19 from the fiducial points. To re-

duce dimensionality and remove redundant features, we ap-

ply multi step feature selection.

Step 1. We use principal component analysis (PCA) [32]

to reduce the number of features in the frequency domain

and the curve width groups. For the frequency features, we

fit a PCA with 100 components and retain only the first n
components so that these n components describe 99% of

the space variance. For the curve width features, we do the

same but fit a PCA model with 15 components. We find

that roughly 5 components are necessary for the frequency

group (depending on the dataset) while 9 are sufficient for

the width group.

Step 2. In this step, we combine two different techniques

for feature selection on the remaining features. At first, we

compute the pairwise correlation coefficient between fea-

tures and for a pair of feature distributions (f1, f2) we drop

one feature from the dataset at random if the correlation co-

efficient between them is rf1,f2 > .95. Then, to avoid the

effect of outliers, we remove all feature values which lie

outside the 1st and 99th percentile of the feature distribu-

tion. Then we use minimum redundancy maximum rele-

vance (mRMR) feature selection [24] to select the top 60%

performing features (differently from the original paper, we

choose the Mutual Information Quotient criteria in the algo-

rithm). Afterwards, we select the top 60% features ranked

on their relative mutual information (RMI). We use the non-

parametric approach to estimate RMI introduced in [26] to

avoid imprecisions arising from modeling continuous dis-

tributions with discrete bins. Finally, we choose all the fea-

tures that pass both selections (RMI and mRMR) to create

our final feature set. Section 5 presents and discusses the

selected features set.

5. Results

In this section we present the results for a set of authen-

tication use-cases.

Preliminaries. In each use-case, we mainly monitor the

equal error rate (EER) of the authentication, that is the point

at which False Reject Rate (FRR) and False Accept Rate

(FAR) are equal. In each experiment, rather than using the

classification output from the classifier as the decision (ac-

cept/reject), we use the distance from the decision boundary

(or prediction probability) to make the classification deci-

sion, i.e., we list all distances coming from the positive (the



Feature mRMR (MIQ) RMI

A2/A1 1.29 0.14

tb1 1.11 0.13

b/a2 1.11 0.10

b2 1.02 0.13

max 1.02 0.17

min 0.88 0.23

a2 0.86 0.12

tb2 0.82 0.12

tsp 0.77 0.12

fftPCA0
0.75 0.09

length 0.72 0.12

fftPCA1
0.70 0.08

tdn 0.69 0.15

ta2
0.67 0.08

fftPCA5
0.66 0.08

b1 0.64 0.12

ta1
0.64 0.10

A1 0.61 0.11

Table 2: Features retained and their importances after the

feature selection step, for both ALL and post-FTA datasets.

The importances reported are computed in the ALL dataset.

user) and negative (other users) samples, and find the EER

by changing the threshold.

Aggregation. We report results for aggregating the decision

on multiple samples, i.e., we choose an aggregation window

size n, collect n samples and compute the decision based on

the aggregated samples. The aggregation function we use is

the mean.3 To gather more data points, whenever we aggre-

gate samples together, we randomly draw sample sequences

of length n for 100 times from the positive (genuine) class.

For a certain user, to construct the negative (impostor) class,

we randomly draw sample sequences of length n for 10

times for each other user. This way, each EER value for

a user is computed using 100 + 10 × (|U | − 1) = 240 au-

thentication attempts.

At the end of our data collection, we obtain a dataset of

a total of 3,836 samples (one sample equals one beat) with

at least 178 samples per user. Of the samples, 3,529 (92%)

pass the beat signal quality checks discussed in Section 4.5.

Throughout the evaluation, we refer to these two separate

datasets as ALL and Post-FTA and we report results for

both. After feature selection, we retained the top 18 features

for both ALL and Post-FTA, see Table 2 for details.

5.1. Multi­class Case

Setup. We randomly split the data into two stratified folds

and train two different classifiers, support vector machine

(SVM) with a radial basis function kernel and gradient

boosted trees (GBT). For SVM we use a standard scaler to

3We also tried median but it performed worse on average.
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Figure 5: EERs in the multi-class case, for various clas-

sifiers and aggregation window sizes. Values are averaged

over the two folds before plotting. Whiskers show the range

of the data, horizontal lines in boxes show the median.

normalize the data before feeding it into the classifier, and

only use the training part to fit the scaler.

Results. We report in Figure 5 the obtained EERs. We

found that single sample EER lies around 15%, but de-

creases quickly to less than 5% when using an aggregation

window size > 10. Out of the tested models we found that

SVM performs the best, with an EER of <1% at aggrega-

tion window size of 20.

5.2. One­class Case

Setup. As a PPG-based authentication system leveraging

the smartphone camera would reside on the user’s device,

the system would likely only have access to the legitimate

user’s data (provided at enrolment). We therefore consider

the case where the training algorithms do not have access to

any negative class data. We use two algorithms which can

be fit only to a single class: Isolation Forest (IsFrst) [20] and

a one class SVM (OSVM). The training data is therefore

only provided at enrolment, when the user first uses the sys-

tem, and as such we vary the number of samples provided

at enrolment. This helps us provide insights on how many

samples are necessary to capture sufficient intra-user varia-

tion. The rest of the experiment follows the same method

described at the beginning of Section 5, with the difference

that we repeat the enrolment 10 times to ensure that the en-

rolment samples do not bias the results (selecting particu-

larly good/bad samples for enrolment will greatly influence

the results). To compute the EER, we use the distance from

the decision boundary for OSVM and the anomaly score for

IsFrst. The results are averaged over the number of repeated

enrolments first and then over the individual users.

Results. We report the results of the analysis in Figure 6.

The figure shows the distributions of EERs across: (i) ALL

or Post-FTA dataset, (ii) number of enrolment samples, (iii)

aggregation window size. The number of enrolment sam-

ples represents a small fraction of the available user data
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Figure 6: EERs in the one-class case, for various classifier, aggregation window sizes and no. of enrollment samples. Values

are averaged over the number of random enrollments first and then across users. The first row of plots reports the results for

the ALL dataset, while the second row reports the post-FTA dataset. Each plot reports the aggregation window size n used

at the top, i.e., either 2, 5, 10 or 20. Whiskers show the 95% confidence intervals.

(for each user we have at least 178 samples, and we use

as few as 10 for training). We found that OSVM performs

slightly better on average but not in a consistent manner.

Using the Post-FTA dataset leads to better recognition re-

sults (as low as 4% at 20 aggregated samples) and smaller

variations in the EER distributions, while the average EER

for the ALL dataset is above 10% for most configurations

with the exception of using IsFrst and aggregating 20 sam-

ples.

5.3. One­class Cross­Session

Setup. The evaluation methodology is identical to the one

described in Section 5.2, with the difference that now we

select enrolment data by choosing a number of sessions (we

have at least 6 sessions per user, with a mean of 9.3 ses-

sions and median of 10 sessions) and test on the remaining

sessions. A key difference to the work by Kavsaouglu et

al. [18] is that we draw training and testing samples from

separate sessions. This makes our analysis more realistic,

as our results are not positively biased by features that are

not stable between sessions.

Results. We report the results of the analysis in Figure 7.

As in the previous section, the figure shows the distributions

of EERs across: (i) ALL or Post-FTA dataset, (ii) num-

ber of enrolment sessions, (iii) aggregation window size.

As mentioned in Section 3.2, we have 6-11 measurement

sessions per user, the number of enrolment sessions (which

varies between 1-3) represents between 10%-50% of avail-

able data per user. We found that the EERs are much higher

in this case, with most scenarios scoring over 20% EER on

average and high variance in the results. This suggests that

each PPG measurement is not only unique to the user, but

also to the way the measurement is being taken, leading to

most of our features being inconsistent over separate ses-

sions.

5.4. EER User Distribution

We investigate how EER distributes over different users,

showing the results in Figure 8. The figure shows how the

distribution is uneven across users, with the worst perform-

ing user contributing the most to the overall EER. User 6

has over 20% EER in the One-class case and above 30% in

the cross session case, while the authentication is relatively

stable for a subset of users even in the cross-session scenario

(e.g., User 3, 5, 11, 12 have below 5% EER). We found that

such results are highly susceptible to the quality of samples

used for enrolment, suggesting that stricter quality metrics

in this phase could further improve robustness. Equally this

effect could be caused due to specific, unknown character-

istics of given individuals, as has been shown to be the case

in biometric systems previously [9].

6. Conclusion

In this paper, we proposed a system that enables PPG-

based authentication by using a smartphone camera. The

PPG signal is collected by recording a video from the cam-

era as the user is resting their finger on top of the lens. We

extract the signal based on subtle changes in the video that

are due to changes in the light absorption properties of the

skin as the blood flows through the finger. Using an iPhone
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Figure 8: Distribution of EERs across users in our dataset, for the one-class and cross-session case, the Post-FTA dataset and

an aggregation window size of 20. Whiskers show the 95% confidence intervals.

X, we collect a dataset of PPG measurements from a set of

15 users, over the course of 6-11 capture sessions per user.

We design a pipeline for the data analysis and conduct a

set of experiments to evaluate the recognition performance

based on a set of features extracted from individual heart-

beats. We found that when aggregating sufficient samples

for a decision we can achieve equal error rates as low as

8%, but that the performance greatly decreases in the cross-

session scenario, with EERs around 20% on average across

all users.

Future Work. We observed that a set of factors greatly

affect the fidelity of the signal. At first, we found that

the warmth of the fingertip changes the amount of blood

flow, leading to slightly different measurements. Secondly,

breathing has an effect on the signal: heartbeats are stronger

when inhaling compared to exhaling [3]. Additionally,

slight hand and/or finger movements generate noise that

can be (in part) corrected by using accelerometer and gy-

roscope measurements. We also plan to better understand

the device capabilities needed for this technique to be used

successfully. Firstly, evaluating the hardware layout impact

on the signal quality, in particular distance between light

source and camera. Secondly, using lower frame rates and

lower resolution recordings, as using more coarse-grained

measurements will enable the use of PPG authentication on

lower-end devices. Finally, a larger dataset, both in terms

of users and sessions will help us draw more insights on the

time stability of the PPG biometric trait.
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