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Abstract

In this paper, we address a key limitation of exist-

ing 2D face recognition methods: robustness to occlu-

sions. To accomplish this task, we systematically ana-

lyzed the impact of facial attributes on the performance of

a state-of-the-art face recognition method and through ex-

tensive experimentation, quantitatively analyzed the perfor-

mance degradation under different types of occlusion. Our

proposed Occlusion-aware face REcOgnition (OREO) ap-

proach learned discriminative facial templates despite the

presence of such occlusions. First, an attention mechanism

was proposed that extracted local identity-related region.

The local features were then aggregated with the global rep-

resentations to form a single template. Second, a simple, yet

effective, training strategy was introduced to balance the

non-occluded and occluded facial images. Extensive exper-

iments demonstrated that OREO improved the generaliza-

tion ability of face recognition under occlusions by 10.17%
in a single-image-based setting and outperformed the base-

line by approximately 2% in terms of rank-1 accuracy in an

image-set-based scenario.

1. Introduction

The goal of this paper is to present a face recognition

method that is robust to facial occlusions originating from

facial attributes. For example, given a facial image of an

individual wearing sunglasses or a hat, we aspire to suc-

cessfully match this probe image with the corresponding

images in the gallery to obtain his/her identity. Note that

there are other challenges (such as self-occlusions or ex-

treme pose variations) that might affect the face recognition

performance. External occlusions can be defined as those

caused by facial accessories such as glasses, hats or dif-

ferent types of facial hair. Despite the recent success of

face recognition methods [9, 33, 37], most existing research

tends to focus solely on the pose challenge while failing to

(a) (b) (c)

Figure 1: Depiction of incorrectly matched samples using

ResNeXt-101 on the CFP-FF dataset: (a) false negative

matches due to occlusions; (b) false negative matches due

to age, pose, and facial expression variations; and (c) false

positive matches due to similar appearance.

account for other factors such as occlusion, age, and facial

expression variations, that can have a negative impact on the

face recognition performance.

Aiming to gain a better understanding of the common

failure cases, a ResNeXt-101 [14] model was trained on

the VGGFace2 [3] dataset and was evaluated on the CFP

dataset [34] using the frontal-to-frontal matching protocol

(CFP-FF). This model was selected to serve as a baseline

since its verification performance on the CFP dataset is al-

most state-of-the-art and at the same time, it is easy to train

in all deep learning frameworks. Figure 1 presents the false

positive and false negative pairs of images from the CFP

dataset based on predictions of the ResNeXt-101 model. It

is worth noting that in this protocol the faces have low varia-

tion in the yaw angle. The obtained results indicate that the

sources of error for most false matching results originate
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from factors such as occlusion and age difference. Similar

results are observed in the same dataset using the frontal-

to-profile matching protocol (CFP-FP). Based on these ob-

servations, we can confidently conclude that besides large

pose variations, occlusion is a significant factor that greatly

affects the recognition performance.

Why does face recognition performance degrade in the

presence of occlusions? First, important identity-related in-

formation might be excluded when the face is occluded.

Figure 1(a) depicts several samples that would be challeng-

ing for a human to decide whether the individuals with sun-

glasses belong to the same identity or not. Second, existing

deep learning approaches are data-driven, which means that

the generalization power of the model usually is limited by

the training data. However, current datasets are collected by

focusing mainly on the pose distribution. This introduces a

large class imbalance in terms of occlusion since, in the ma-

jority of the selected samples, the entire face is visible. A

limited number of approaches [6, 15, 56] have recently tried

to address this problem. However, such methods require

prior knowledge of occlusion presence [6, 56] to perform

de-occlusion on synthetically generated occlusions, which

is not practical in real-life applications.

Aiming to improve the generalization of face recognition

methods, we first investigate which type of occlusion affects

the most the final performance. Our experimental analysis

indicated that the main reasons for the performance degra-

dation in the presence of occlusions are: (i) identity signal

degradation (i.e., information related to the identity of the

individual is lost in the presence of occlusion), and (ii) oc-

clusion imbalance in the training set. To address the first

challenge of identity signal degradation due to occlusions,

an attention mechanism is introduced which is learned di-

rectly from the training data. Since the global facial tem-

plate captures information learned from the whole facial

image (regardless of whether occlusion occurs), the atten-

tion mechanism aims to disentangle the identity information

using the global representation and extract local identity-

related features from the non-occluded regions of the im-

age. In this way, global and local features are jointly learned

from the facial images and are then aggregated into a sin-

gle template. To address the challenge of the occlusion

imbalance in the training set, an occlusion-balanced sam-

pling strategy is designed to train the model with batches

that are equally balanced with non-occluded and occluded

images. Based on this strategy, an additional learning ob-

jective is proposed that improves the discriminative ability

of the embeddings learned from our algorithm. Thus, the

proposed occlusion-aware feature generator results in facial

embeddings that are robust to occlusions originating from

visual attributes. Our results demonstrate that OREO signif-

icantly improves the face recognition performance without

requiring any prior information or additional supervision.

Through extensive experiments and ablation studies, we

demonstrate that the proposed approach achieves compara-

ble or better face recognition performance on non-occluded

facial images and at the same time significantly improves

the generalization ability of the facial embedding generator

on facial images in which occlusion is present.

In summary, the contributions of this work are: (i) An

analysis of the impact of attributes to the face recognition

performance is conducted on the Celeb-A dataset and its

key insights are presented. (ii) An attention mechanism is

introduced that disentangles the features into global and lo-

cal parts, resulting in more discriminative representations.

In this way, the global features contain identity-related in-

formation while the local features learned through our at-

tention mechanism are robust to occlusions caused by vi-

sual attributes. (iii) An occlusion-balanced sampling strat-

egy along with a new loss function are proposed to alleviate

the large class imbalance that is prevalent due to non-oc-

cluded images in existing datasets.

2. Related Work

Face Recognition under Occlusion: Face recognition

techniques that generate 2D frontal images or facial em-

beddings from a single image have been proposed that: (i)

use a 3D model [27, 49, 50], (ii) generative adversarial net-

works [1, 5, 8, 19, 38, 53, 57, 59], and (iii) various trans-

formations [2, 63, 65]. Recent works have also focused on

long-tail [54, 64] or noisy data [17] Additionally, multiple

loss functions [9, 10, 23, 24, 25, 41, 44, 45, 58, 60, 62] have

been developed to guide the network to learn more discrim-

inative face representations, but usually, ignore facial oc-

clusions. Early methods approached face recognition in the

presence of occlusions by using variations of sparse cod-

ing [11, 39, 55, 61]. However, such techniques work well

only with a limited number of identities, and with frontal

facial images in a lab controlled environment. The works

of He et al. [15] and Wang et al. [43] addressed this limita-

tion by matching face patches under the assumption that the

occlusion masks were known beforehand and that the oc-

cluded faces from the gallery/probe were also known, which

is not realistic. Guo et al. [12] fit a 3D model on images

in-the-wild to render black glasses and enlarge the training

set. However, this method was designed to tackle a specific

type of occlusion and cannot cover most occlusion cases

that might appear in scenarios in the wild. Finally, Song

et al. [36] proposed a mask-learning method to tackle oc-

clusions in face recognition applications. A pairwise differ-

ential siamese network was introduced so that correspon-

dences could be built between occluded facial blocks and

corrupted feature elements.

Visual Attention: Several works have appeared recently

that demonstrate the ability of visual attention to learn dis-

criminative feature representations [16, 22, 32, 40, 66].
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Figure 2: Depiction of CMCs demonstrating the impact of selected facial attributes on the face identification performance

using a ResNeXt-101 as a backbone architecture that generates facial embeddings. The corresponding Celeb-A attributes

are: (a) Bangs, (b) Eyeglasses, (c) Mustache, (d) Sideburns, (e) Smiling, and (f) Wearing Hat.

Most methods [7, 31, 42] extract saliency heatmaps at

multiple-scales to build richer representations but fail to

account for the correlation between the attention masks at

different levels. Jetley et al. [20] proposed a self-attention

mechanism that focuses on different regions to obtain lo-

cal features for image classification under the hypothesis

that the global representation contains the class informa-

tion. However, in their architecture, the global features are

not regularized by the identity loss function, which does not

support their original hypothesis. Castanon et al. [4] used

visual attention to quantify the discriminative region on fa-

cial images. Other methods [30, 46, 47, 51] apply attention

mechanisms to weigh the representations from multiple im-

ages. Finally, Shi et al. [35] introduced a spatial transformer

to find the discriminative region but their method required

additional networks to obtain the local features.

In this paper, instead of simulating each case of facial oc-

clusion, a new method is presented that directly learns from

images in-the-wild that contain a plethora of occlusion vari-

ations. Our approach improves the generalization ability of

the facial embedding generator, without having any prior

knowledge of whether the occlusion is present.

3. Systematic Analysis on Impact of Facial At-

tributes on Face Recognition

Aiming to quantitatively analyze the impact of occlu-

sion, a series of experiments are conducted on the Celeb-A

dataset [26], which consists of 10, 177 face identities and 40
facial attributes. Attributes that describe the subject (e.g.,

Gender) were ignored and only those that might impact

the face recognition performance were selected: Bangs,

Eyeglasses, Mustache, Sideburns, Smiling, and

Wearing Hat. For each attribute, the images without

this attribute were enrolled as the gallery and images w/

or w/o this attribute were enrolled as probes. In both the

gallery and probe, each identity has only a single image. A

ResNeXt-101 was deployed as the facial embedding gener-

ator and six face identification experiments were conducted.

For each of the six attributes, Cumulative Match Curves

(CMC) are provided in Fig. 2 w/ and w/o that attribute, re-

spectively. Note that since there are different identities and

a different number of images involved in each experiment,

the horizontal comparison of the identification rate across

attributes does not lead to meaningful conclusions.

In Fig. 2, the identification rates with and without

each attribute are presented. Our results indicate that

the face recognition performance decreases in the pres-

ence of the attributes Bangs, Eyeglasses, Mustache,

Sideburns, and Wearing Hat. The attributes can be

ranked according to the rank-1 identification rate degra-

dation as follows: Eyeglasses (18.23%) > Wearing

Hat (12.14%) > Bangs (6.97%) > Sideburns (2.56%)

∼ Mustache (2.41%). These results demonstrate that oc-

clusion originating from facial accessories (i.e., eyeglasses,
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Figure 3: (a) Given a pair of non-occluded and occluded images (In, Io), the template generator G learns the facial embed-

dings (tn, to) and the attributes predictions an, ao with the attributes classifiers (D) and identity classifier (C) using facial

attribute classification loss LA, identity classification loss LC , and the proposed similarity triplet loss LT . (b) Depiction of

the generator in detail, which contains: (i) the output feature maps of the last two blocks (B2, B3) of the backbone architec-

ture, (ii) the attention mechanism GA consisting of masks (A2, A3) that learn the local features in two different ways, and

(iii) GF which aggregates the global and local features to the final embedding.

and hat) as well as facial hair (i.e., mustache, bangs, and

sideburns) is an important challenge that affects the per-

formance of face recognition algorithms. Additionally, we

observed that occlusion due to external accessories affects

the performance more than occlusion originating from fa-

cial hair. Finally, note that the identification performance is

almost the same regardless of whether the subject is smil-

ing or not. The main reason for these results is that such

datasets are collected from the web and thus, they usually

cover a large range of head poses and contain enough im-

ages of smiling individuals. However, there is still a high

imbalance in other factors such as occlusion, which reduces

the robustness of face recognition methods. While testing

the facial attribute predictor on the VGGFace2 dataset we

observed class imbalance ranging from 19:1 (Bangs) to 6:1

(Wearing Hat) in the VGGFace2 dataset.

4. Improving the Generalization

The training process of OREO (depicted in Fig. 3 (a))

consists of (i) an occlusion-balanced sampling (OBS) to ad-

dress the occlusion imbalance; (ii) an occlusion-aware at-

tention network (OAN) to jointly learn the global and lo-

cal features; and (iii) the objective functions that guide the

training process. Aiming to balance the occluded and non-

occluded images within the batch, random pairs of non-

occluded and occluded images are sampled and provided as

input to the network. Then, the proposed attention mech-

anism is plugged into the backbone architecture to gen-

erate the attention mask and aggregate the local with the

global features to construct a single template. The final ag-

gregated features are trained to learn occlusion-robust tem-

plate guided by the softmax cross-entropy, sigmoid cross-

entropy, and similarity triplet loss (STL) functions.

Occlusion-Balanced Sampling. In a hypothetical scenario

in which the training data would be accompanied by occlu-

sion ground-truth labels, the training set could easily be split

into two groups of occluded and non-occluded images from

which balanced batches could be sampled and fed to the

neural network. However, this is not the case with existing

face recognition training datasets since occlusion ground-

truth labels are not provided. Aiming to generate occlusion

labels, we focused on facial attributes that contain occlusion

information. A state-of-the-art face attribute predictor [32]

was trained on the Celeb-A dataset and it was then applied

to the training set to generate pseudo-labels. Those attribute

pseudo-labels can then be utilized to facilitate occlusion-

balanced sampling during training. It is worth noting this

approach is dataset-independent and can be generalized to

any face dataset since we solely rely on the attribute pre-

dictions learned from the Celeb-A dataset. By using this

strategy, the network G is feed-forwarded with pairs of ran-

domly chosen non-occluded and occluded images denoted

by {{In, yn}, {Io, yo}}i, i = {1, . . . , N}, where y contains

the identity and attributes of the facial images and N is the

total number of pairs. Since OBS randomly generates pairs

of occluded and non-occluded facial images in each epoch,

their distribution within the batch is ensured to be balanced.

Occlusion-aware Attention Network. The template gen-

erator G consists of three components: (i) a backbone net-

work GB , (ii) an attention mechanism GA, and (iii) a fea-
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ture aggregation module GF . Features are generated from

two pathways as depicted in Figure 3 (b): a bottom-up for

the global representations and a top-down for the local fea-

tures. The bottom-up term describes the process of using

representations of larger spatial dimensions to obtain a low-

dimensional global embedding. The top-down term uses

low-dimensional feature embeddings as input to the pro-

posed attention masks applied in higher dimensions to gen-

erate local representations. In the bottom-up pathway, the

process of the network to generate global features is de-

scribed by tg = GB(I). In the top-down pathway, since

the global features include information from the occluded

region of the face, an attention module GA is proposed that

distills the identity-related features from the global feature

maps to the local representations tl. Finally, a feature aggre-

gation module GF is employed that aggregates the global

and local features into a single compact representation t.

The objective of attention modules GA is to help the model

identify which areas of the original image contain impor-

tant information based on the identity and attribute labels.

Assuming the feature maps extracted from different blocks

of the backbone network are denoted by {B1, B2, B3, B4},

then the two-step attention mechanism is designed as fol-

lows. In the first level (denoted by A3 in Fig. 3 (b)), we

focus on self-attention and thus, the feature map B3 is first

broadcasted and then added with the global representation

tg to generate the attention mask A3. The objective of A3 is

to find the high-response region of the feature map by giv-

ing emphasis to the identity-related features and construct

the local representation tl3 . This process is described by the

following equation:

tl3 = A3 ∗B3 = h3(t
g, B3) ∗B3 , (1)

where h3 is a sequence of convolution layers to reduce the

channels and generate a single-channel attention map and

the “∗” operation corresponds to element-wise multiplica-

tion. The final global feature tg is preserved as part of the

final representation of the network so that tg learns identity-

related information. Thus, tg guides the network to learn

local attention maps on features from the previous block

and distill the identity information from the most discrim-

inative region to construct tl. Our experiments indicated

that the most discriminative region on the face from our

first level attention mechanism is the eye region. While this

is sufficient for most attributes, this is not the case when

the individual is wearing glasses. To improve the gener-

alization ability of the model in such cases, an additional

attention mechanism is introduced on the feature map B2

to force the network to focus on other regions of the face.

In the second level (denoted by A2 in Fig. 3 (b)), the at-

tention map is guided by the facial attribute predictions in

a weakly-supervised manner (i.e., no attribute ground-truth

information is utilized since we only have access to the vi-

sual attribute predictions). Thus, the local representations

at this level are computed by:

tl2 = (1−A2) ∗B2 = (1− h2(t
g, B2)) ∗B2 , (2)

where h2 is an attention operation guided by both identity

labels and attributes labels. Since the attention map A2 is

guided not only by the identity loss function but also by

the attribute predictions, the network is capable of focus-

ing on image regions related to both the identity and the

visual attributes. The global and local features {tg, tl2, t
l
3}

are concatenated into one single vector and are projected in

a single feature template t, which enforces both global and

local features to preserve semantic identity information.

Learning Objectives. Loss functions are employed for

training: (i) the softmax cross-entropy loss LC for iden-

tity classification, (ii) the sigmoid binary cross-entropy loss

LA for attribute prediction, and (iii) a new loss LT designed

for the occlusion-balanced sampling. The identity classifi-

cation loss is defined as:

LC = −
1

M

M
∑︁

i=0

log
exp

(︀

Wyc

i
ti + byc

i

)︀

∑︀n

j=1
exp (Wjti + bj)

, (3)

where ti and yci represent the features and the ground-truth

identity labels of the ith sample in the batch, W and b de-

note the weights and bias in the classifier, and M and n

correspond to the batch size and the number of identities in

the training set, respectively. Following that, the sigmoid

binary cross-entropy loss LA can be defined as

LA = −
1

M

M
∑︁

i=0

log σ(ai)y
a
i +log(1−σ(ai))(1−yai ) , (4)

where ya corresponds to the attribute labels (pseudo-labels

obtained by the attribute predictor) and σ(·) is the sigmoid

activation applied on the attribute predictions a (i.e., predic-

tions of the occlusion-aware face recognition network G).

In the matching stage, the cosine distance is used to com-

pute the similarity between two feature embeddings. Since

images with the same identity have a higher similarity score

than those with a different identity, we introduce a similar-

ity triplet loss (STL) as regularization to make the final fa-

cial embedding more discriminative. During training, each

batch comprises pairs of non-occluded and occluded images

with each pair having the same identity. Let tn and to be

the final feature representations of non-occluded images In
and occluded images Io respectively. The similarity matrix

S ∈ R
M×M within the batch is then computed, where M

is the batch size. In the similarity matrix S, we aim to iden-

tify: (i) hard positives which are pairs of samples that orig-

inate from the same identity but have low similarity score

sp(tn, to) and (ii) hard negatives which are pairs of sam-

ples with different identities but with high similarity score

5



Method
Bangs Eyeglasses Mustache Sideburns Wearing Hat

ADP (%)
w/o w/ w/o w/ w/o w/ w/o w/ w/o w/

ResNeXt-101 [14] 73.76 66.79 81.38 63.14 83.26 80.85 81.47 78.91 77.74 65.60 8.46
OREO 74.65*

68.66*
81.99 65.53*

84.72*
82.53*

83.13*
81.47*

80.02*
68.34*

7.60

Table 1: Comparison of rank-1 identification rate (%) on the Celeb-A dataset w/ and w/o the specified attribute. ADP

corresponds to the average degradation percentage. The lower the value of ADP, the more robust the method is. Note that

“∗” denotes statistically significant improvements using the McNemar’s statistical test.

sn(tn, to). Then, the objective function is defined as:

LT =

M
∑︁

i=1

[sni (tn, to)− s
p
i (tn, to) +m]+ . (5)

A margin m ∈ R
+ is maintained to enforce that small an-

gles (high similarity score) belong to the same identity and

large angles (low similarity score) belong to different iden-

tities. Finally, the whole network is trained using the sum-

mation of the individual losses: L = LC + LA + LT .

5. Experiments

Four evaluation datasets are used to extensively evaluate

our algorithm under different scenarios. To generate the oc-

clusion meta-data (i.e., attributes) of the training set, a state-

of-the-art face attribute predictor [32] is used to predict the

occlusion-related attributes on the training set. The evalu-

ation protocol of each dataset is strictly followed. For face

verification, Identification Error Trade-off is reported with

true acceptance rates (TAR) at different false accept rates

(FAR). For face identification, CMC is reported. These

evaluation metrics were computed using FaRE toolkit [48].

5.1. Comparison with state of the art

Celeb-A: In-the-wild Face Identification. We tested our

algorithm on the Celeb-A dataset [26] under various types

of occlusion. It is worth noting that the identity labels of the

Celeb-A dataset were not utilized since OREO was trained

solely on the VGGFace2 dataset. The rank-1 identification

rate w/ and w/o each attribute is presented in Table 1. We

observe that OREO outperforms ResNeXt-101 in all set-

tings (w/ and w/o attributes), which suggests that our al-

gorithm can learn robust discriminative feature representa-

tions regardless of occlusions. The improvement is statis-

tically significant in all attributes according to the McNe-

mar’s test. In addition, OREO demonstrated a lower av-

erage degradation percentage than the baseline by 10.17%
in terms of relative performance. This indicates that our

algorithm improves the generalization ability of the facial

embedding generator in the presence of occlusions.

CFP: In-the-wild Face Verification. The CFP [34] is used

to evaluate face verification performance on images in-the-

wild, which contain variations in pose, occlusion, and age.

In the first experiment, we qualitatively visualize the re-

gion of frontal-face images that demonstrated the highest

response, because such regions provide the most meaning-

ful information to the final embedding. We chose a state-of-

the-art algorithm [20] as our baseline to compare the atten-

tion mask learned from the data. Figure 4 depicts samples

from the CFP dataset with different occlusion variations.

Compared to the attention mask of Jetley et al. [20], our

attention mechanism has the following advantages: (i) By

combining the global with the local feature maps to generate

the attention mask, the global representation demonstrates a

higher response around the eye regions, which indicates that

the eyes contain discriminative identity-related information.

It also explains why the Eyeglasses attribute demon-

strated the highest performance drop in Section 3; (ii) By

learning the attention from local feature maps guided by the

occlusion pseudo-labels generated by our method, we ob-

serve that the proposed attention mask is focusing more on

the non-occluded region. In addition, it helps the embed-

dings aggregate information from the non-occluded facial

region instead of solely relying on the eye regions as indi-

cated by our first observation. Note that, the self-attention

described in Eq. (1) is learned directly from the data with-

out having access to ground-truth masks that would help

our model identify better the most discriminative regions

(hence the failure case depicted in the second to last image

of the second row in Figure 4). This is why an additional

attention map was introduced in Eq. (2) which is learned in

a weakly-supervised manner from the attribute predictions

and helps our algorithm to focus on the non-occluded region

(right-most image of the second row).

In the second experiment, we used the CFP-FP protocol

to quantitatively evaluate the face verification performance

and the experimental results are presented in Table 3. We

used the following metrics to evaluate the performance: (i)

the verification accuracy, and (ii) the TAR at FAR equal to

10−3, 10−2, and 10−1. Compared to all baselines, OREO

achieves state-of-the-art results on this dataset in terms of

accuracy and increases the TAR at low FARs. The mod-

erately better accuracy results demonstrate that OREO can

also improve the performance of general face recognition.

UHDB31: Lab-controlled Face Identification. The

UHDB31 [21] dataset is used to evaluate the face identifi-

cation performance under different pose variations. OREO
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Input Jetley et al. [20] Ours Input Jetley et al. [20] Ours Input Jetley et al. [20] Ours

Figure 4: Visualization of the discriminative region using an attention mechanism. The first attention map of OREO focuses

on the discriminative region (eyes), whereas the second attention map focuses on the non-occluded facial region.

Pitch

Yaw
−90∘ −60∘ −30∘ 0∘ +30∘ +60∘ +90∘

+30∘ 58, 82, 96 95, 99, 100 100, 100, 100 100, 100, 100 99, 99, 100 92, 99, 100 60, 75, 94

0∘ 84, 96, 98 99, 100, 100 100, 100, 100 - 100, 100, 100 99, 100, 100 91, 96, 100

−30∘ 44, 74, 86 80, 97, 99 99, 100, 100 99, 100, 100 97, 100, 100 90, 96, 100 35, 78, 95

Table 2: Comparison of Rank-1 identification rate (%) of different methods on the UHDB31.R128.I03 dataset. The results

in each cell are ordered in the sequence of FaceNet [33], UR2D-E [49], and OREO.

Method Acc. (%)
TAR (%) @ FAR=

10−3 10−2 10−1

DR-GAN [38] 93.4± 1.2 - - -

MTL-CNN [52] 94.4± 1.2 - - -

ArcFace [9] 93.9± 0.8 80.2± 5.9 86.0± 2.8 94.3± 1.5
ResNeXt-101 [14] 97.1± 0.8 81.9± 11.4 92.3± 4.1 98.9± 0.8

OREO 97.5± 0.5 85.5± 5.3 94.1± 2.5 99.2± 0.7

Table 3: Comparison of the face verification performance

with state-of-the-art face recognition techniques on the CFP

dataset using CFP-FP protocol. The evaluation results are

presented by the average ± standard deviation over 10 folds.

outperformed FaceNet [33] and UR2D-E [49] in all settings

and especially in large pose variations (e.g., yaw = −90o,

pitch = +30o, which indicates that our algorithm is robust

to pose variations (Table 2).

IJB-C: Set-based Face Identification and Verification.

The IJB-C dataset [28] is a mixed media set-based dataset

with open-set protocols comprising images with different

occlusion variations. Two experiments are performed on

this dataset following 1:1 mixed verification protocol and

1:N mixed identification protocol. To generate the facial

embedding for the whole set, the corresponding images are

fed to the neural networks and the average of the embed-

dings from all images within a set is computed. The eval-

uation metrics include the verification metric of ROC, the

identification metric of retrieval rate, the true positive iden-

tification rate (TPIR) at different false positive identifica-

tion rates (FPIR). From the obtained results in Table 4, we

observe that OREO outperforms four out of six baselines

in all metrics and comes second to ArcFace only in some

cases under the mixed verification and identification proto-

cols. ArcFace was trained on the MS1M [13] dataset which

contains significantly more identities and data than the VG-

GFace2 dataset. OREO performs well across the board

and outperforms ArcFace at high FARs in the verification

protocol as well as in the identification retrieval protocol.

When compared against the baseline, OREO significantly

improves the performance in both verification and identifi-

cation. For example, when FAR is equal to 10−7 the TAR

improves from 28.72% to 51.97%. These results demon-

strate that OREO can successfully learn features that are

robust to occlusions.

5.2. Ablation Study

An ablation study was conducted to explore the im-

pact of the proposed components: (i) the attention mech-

anism (OAN), (ii) the balanced training strategy (OBS),

and (iii) the similarity triplet loss (STL). The results of the

contributions of each component along with the backbone

network [14] and an attention-based baseline [20] on the

LFW [18] and CFP [34] datasets are depicted in Table 5.

For faster turnaround, in this study we used only the first

500 subjects of VGGFace2 [3] as training set which is why

the results between Table 3 and Table 5 are different. Com-

pared to the backbone network, OREO increases the verifi-

cation accuracy by at least 1.10%.

Occlusion-aware Attention Network. OAN helps the net-

work focus on the local discriminative regions by pooling

local features. From the results in Table 5, we observe that

the backbone architecture that encodes only global repre-

sentations achieves better results than the method of Jetley

et al. [20], which leverages only local information. The
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Method

1:1 Mixed Verification 1:N Mixed Identification

TAR (%) @ FAR= TPIR (%) @ FPIR= Retrieval Rate (%)

10−7 10−6 10−5 10−4 10−3 10−2 10−1 10−3 10−2 10−1 Rank-1 Rank-5 Rank-10

GOTS [28] 3.00 3.00 6.61 14.67 33.04 61.99 80.93 2.66 5.78 15.60 37.85 52.50 60.24
FaceNet [33] 15.00 20.95 33.30 48.69 66.45 81.76 92.45 20.58 32.40 50.98 69.22 79.00 81.36
VGGFace [29] 20.00 32.20 43.69 59.75 74.79 87.13 95.64 26.18 45.06 62.75 78.60 86.00 89.20
MN-vc [47] - - - 86.20 92.70 96.80 98.90 - - - - - -

ArcFace [9] 60.50 73.56 81.70 87.90 91.14 95.98 97.92 70.90 81.98 87.63 92.25 94.31 95.30

ResNeXt-101 [14] 28.72 58.09 71.19 81.76 90.70 95.75 98.86 53.66 71.50 82.47 91.88 95.51 97.29
OREO 51.97 62.36 75.86 85.19 92.81 97.11 99.37 65.47 77.11 85.92 93.76 96.68 97.74

Table 4: Comparison of the face verification and identification performance of different methods on the IJB-C dataset.

Top performance is marked with black and second-best with blue. OREO significantly improves the face verification and

identification performance compared to the baseline, and achieves state-of-the-art results in terms of retrieval rate.

Method

Module CFP-FF CFP-FP LFW

OAN OBS STL Acc. (%)
TAR (%) @ FAR=

Acc. (%)
TAR (%) @ FAR=

Acc. (%)
TAR (%) @ FAR=

10−3 10−2 10−1 10−3 10−2 10−1 10−3 10−2 10−1

ResNeXt-101 [14] 94.77 43.71 82.15 97.03 88.66 32.71 50.20 85.17 94.77 64.77 84.50 96.31
Jetley et al. [20] X 93.47 40.48 78.07 94.75 83.71 22.23 39.07 71.31 92.70 55.63 77.23 93.61

OREO

X 95.41 49.69 85.68 97.56 90.24 35.34 59.87 89.33 95.90 66.33 90.00 97.47
X 95.33 46.02 86.01 97.53 89.21 33.49 56.51 87.49 95.55 71.63 89.80 97.12
X X 95.66 48.39 87.76 97.74 89.49 36.97 59.56 88.31 96.17 74.13 90.63 97.63

X X X 95.86 49.74 89.38 97.48 90.60 40.06 63.90 90.64 96.20 68.13 92.03 97.86

Table 5: Impact of the individual proposed components under face verification protocols on the CFP and LFW datasets.

proposed attention mechanism outperforms both techniques

since it includes both global and local features into the final

embedding guided by the identity loss. Finally, compared

to ResNeXt-101 which served as our baseline, OAN results

in absolute improvements ranging from 0.64% to 1.58% in

terms of verification accuracy.

Occlusion Balanced Sampling. OBS creates pairs of oc-

cluded and non-occluded images to alleviate the problem of

occlusion imbalance during training. OBS results in abso-

lute improvements ranging from 0.56% to 0.78% in terms

of verification accuracy compared to the performance of the

backbone network. These results indicate that OBS has a

limited effect on these datasets because they contain a lim-

ited number of occluded samples.

Similarity Triplet Loss. STL works as regularization to

the final loss, as it increases the similarity of two feature

embeddings that belong to the same identity and penalizes

the network when the similarity is high but the features are

originating from different identities. STL does not force

the representations to be learned in the same scale which is

an advantage compared to other alternative similarity loss

functions [9, 25, 41]. Since STL requires pairs of occluded

and non-occluded images, OBS is a prerequisite for this

loss, which is why an experimental result with only STL

is not provided in Table 5. We observe that STL improves

the performance by at least 0.83% in terms of verification

accuracy. In addition, by comparing the TARs at low FARs

on all three datasets, we observe that OBS along with STL

are the components that affect the most performance com-

pared to ResNeXt-101. The obtained results demonstrate

that the features learned with STL are more discriminative

than those learned using only a softmax cross-entropy loss.

6. Conclusion

In this paper, we systematically analyzed the impact of

facial attributes to the performance of a state-of-the-art face

recognition method and quantitatively evaluated the per-

formance degradation under different types of occlusion

caused by facial attributes. To address this degradation,

we proposed OREO: an occlusion-aware approach that im-

proves the generalization ability on facial images occluded.

An attention mechanism was designed that extracts local

identity-related information. In addition, a simple yet effec-

tive occlusion-balanced sampling strategy and a similarity-

based triplet loss function were proposed to balance the

non-occluded and occluded images and learn more discrim-

inative representations. Through ablation studies and ex-

tensive experiments, we demonstrated that OREO achieves

state-of-the-art results on several publicly available datasets

and provided an effective way to better understand the rep-

resentations learned by the proposed method.

Acknowledgment This material was supported by the U.S. De-

partment of Homeland Security under Grant Award Number 2017-

STBTI-0001-0201 with resources provided by the Core facility for

Advanced Computing and Data Science at the University of Hous-

ton.

8



References

[1] J. Bao, D. Chen, F. Wen, H. Li, and G. Hua. Towards open-

set identity preserving face synthesis. In Proc. IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

6713–6722, Salt Lake City, UT, Jun. 18–22 2018. 2

[2] K. Cao, Y. Rong, C. Li, X. Tang, and C. C. Loy. Pose-

robust face recognition via deep residual equivariant map-

ping. In Proc. IEEE Conference on Computer Vision and

Pattern Recognition, Salt Lake City, UT, Jun. 18–22 2018. 2

[3] Q. Cao, L. Shen, W. Xie, O. M. Parkhi, and A. Zisserman.

VGGFace2: A dataset for recognising faces across pose and

age. In Proc. IEEE Conference on Automatic Face and Ges-

ture Recognition, Xi’an, China, May 15–19 2018. 1, 7
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