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Abstract

Precision agriculture has become a key factor for in-

creasing crop yields by providing essential information to

decision makers. In this work, we present a deep learn-

ing method for simultaneous segmentation and counting of

cranberries to aid in yield estimation and sun exposure pre-

dictions. Notably, supervision is done using low cost cen-

ter point annotations. The approach, named Triple-S Net-

work, incorporates a three-part loss with shape priors to

promote better fitting to objects of known shape typical in

agricultural scenes. Our results improve overall segmen-

tation performance by more than 6.74% and counting re-

sults by 22.91% when compared to state-of-the-art. To train

and evaluate the network, we have collected the CRan-

berry Aerial Imagery Dataset (CRAID), the largest dataset

of aerial drone imagery from cranberry fields. This dataset

will be made publicly available.

1. Introduction

The challenges of agriculture presents new opportunities

for computer vision methods. Evaluation of crop health,

sun exposure and anticipated yields using computational

algorithms leads to new methods of farming and resource

management. Automated segmentation and counting pro-

vides a method of determining value of produce and an-

ticipated profits, as well as optimizing irrigation and water

management. Current yield estimation methods rely on data

from previous years or manual measurements of small re-

gions. These processes limit the accuracy of predicted yield

since weather can be vastly different in consequent years,

and randomly sampled measurements may be skewed and

costly. Recent studies [42, 23, 37] show that lack of in-

formed decision-making is a significant cause of lost pro-

duce. For example, [37] investigates the effect of sudden

changes in air temperature from heat waves causing regions

with up to 100% yield loss due to a combination of heat

stress and water stress. Managing water resources requires

balancing the tradeoff of irrigation costs and yield risk. Our

Figure 1: Overview of pipeline. Left: scene illustration

of data collection stage. Top right: image captured by the

drone. Bottom right: segmentation and count outputs of

our Triple-S network. Colors in prediction mask are ran-

dom and are used to represent instances (colors may repeat).

Best viewed in color and zoomed.

goal is to build a non-invasive vision-based crop analysis

platform that segments and counts exposed berries, and can

serve as a low-cost automated tool for estimating yield and

sun exposure. Current precision agriculture state-of-the-art

(SOTA) methods utilize ground vehicles, high resolution

cameras, lidars, multispectral sensors, and thermal sensors

to automate this process, creating more accurate and cost

effective solutions to yield and sun exposure estimations.

These instruments are utilized in recent precision agricul-

ture work seeking to detect and segment fruits and weeds

[44, 3, 2, 24, 33]. However, these sensors are expensive,

require specialized knowledge to operate, and often need

close proximity to the targeted objects. Systems such as in

[3, 2] also require the use of invasive ground vehicle and

trained drivers which further increase the cost of the sys-

tem. Surveys of remote sensing with unmanned aerial vehi-

cles (UAVs) [34] highlight the importance of non-invasive

systems in precision agriculture. Detection of fruit stress



and pathogens with UAVs [16, 1, 5, 31, 46, 22, 8] typically

require expensive hyperspectral and thermal sensors. Ad-

ditionally, most UAV methods focus on fruit crop images

which are simpler compared to cranberry crops that have

numerous occluding leaves in the canopy imagery (see Fig-

ure 2). Our approach seeks to count and segment cran-

berries in RGB images collected by non-invasive equip-

ment. Recent segmentation methods require training al-

gorithms using pixel-wise ground truth obtained manually

[50, 29, 13], but such ground truth is expensive to obtain.

We develop a novel method using only point-wise annota-

tions which are an order magnitude cheaper than full pixel-

wise supervision [4]. Our approach pairs the point-click an-

notations with additional shape and convexity cues to pro-

duce instance segmentation results.

The primary contributions of this work are as follows:

• We propose a method named Triple-S Network that en-

courages shape-specific instance segmentation predic-

tions for small, many-object scenes driven by known

shape priors and point supervision.

• We present a a selective watershed algorithm that uses

both negative and positive seeds for selective segmen-

tation masks generation.

• We outperform SOTA point supervision semantic seg-

mentation and counting methods on our dataset.

• We provide the largest publicly available dataset of

aerial images of cranberry crops with pixel-wise and

center point annotations named Cranberry Aerial Im-

agery Dataset (CRAID).

2. Related Work

Computer Vision in Agriculture. Early precision agri-

culture using aerial imagery began in the 1980’s and in-

cludes Soil Teq’s field soil fertility mapping system for

crops [49] using spectral features. Studies that correlate

precision agriculture to higher yields of crops [6, 45] mo-

tivated researchers to use computer vision for new ways to

measure, survey, and estimate yield of crops. Early work in

this domain utilizes colors, shapes [7, 38, 12, 15], reflection

levels [47, 22], and multi-spectral features [14, 10, 16] to

detect and evaluate fruits, wheat, and weeds. Those meth-

ods apply image pre-processing techniques such as contrast

and thresholding with machine learning algorithms such as

k-nearest neighbors, decision trees, and support vector ma-

chines. While early models may perform well under con-

trolled conditions and small datasets, they fail to generalize

over diverse and noisy inputs common in real world applica-

tions. More recent models incorporate deep learning algo-

rithms to generalize over different environments. Song et al.

[44] propose patch-wise fruit classification, using a combi-

nation of color classifiers for key-point extraction and fixed

patches around each key-point. Those patches are then clas-

sified as either fruit or non-fruit images. Bargoti and Under-

wood [3] propose a segmentation model using fully convo-

lutional networks (FCN) [30] using fully supervised RGB

images and meta-data pertaining to camera angle, camera

location, type of tree captured, and weather conditions. The

model’s output is then processed by the watershed algo-

rithm [35] to produce separable regions used for fruit count-

ing. Combining elements from [3, 44], Kestur et al. [24] use

200 × 200 input patches to a modified fully convolutional

network to generate masks patch-wise and stitch them to-

gether. A similar FCN model [33] is trained on near infra

red (NIR) and RGB sequences. These models, however, of-

fer limited performance with high operation costs, requiring

ground vehicles and fully supervised ground truth data. In

addition to significant prior work using convolutional net-

works in fruit imaging, automated weed detection methods

use similar deep learning models [48] to distinguish be-

tween weed types in RGB images taken from a fixed al-

titude. The model is trained with image level labels that

indicate weed type and is tested on input’s 9 sub-images,

providing patch-wise weed predictions.

Weakly Supervised Segmentation and Counting. In-

stance segmentation seeks to not only find the class of each

pixel, but also the object instance it belongs to, which indi-

rectly provides object counts in a given scene. Initial devel-

opment in this task domain is derived from R-CNN [18, 17],

utilizing proposal based segmentation. More recent work

attempts to minimize the amount of supervision while pro-

ducing similar performance. The work of [9, 25] first

suggested semantic segmentation methods using bounding

boxes, followed by [43] to showcase SOTA segmentation

using predefined class-wise filling rates. While these meth-

ods perform well on everyday scenes, they require bounding

box annotations which are more expensive than point an-

notations, and are computationally demanding, utilizing re-

gion proposal networks [18, 39] to generate proposal masks

for sets of anchors originating at each pixel. Less super-

vised methods [51, 28] aim to segment scenes based on im-

age level labels. PRM (Peak Response Map) [51] makes use

of class peak response to obtain instance aware visual cues

from given inputs. The network generates peak response

maps by backpropagating local peaks found in intermedi-

ate attention maps. While [51] reports SOTA performance

on common datasets, the method exhibits increasing errors

when the size and number of objects in the scene increase,

which is confirmed by our experiments. Additionally, the

network requires pre-processed segment proposals gener-

ated by a separate region proposal network. Expanding on

PRM [51], [28] refines its output to create pseudo masks

used as ground truth to a fully supervised Mask R-CNN [20]

model that is robust to noisy masks. Similar to PRM, [28]

also requires a separate object proposal network to gener-



Figure 2: Examples of CRAID images with overlaid berry-wise and point-wise ground truth masks. Red and blue dots

represent cranberry and background examples. Colors in ground truth masks are random and are used to represent instances.

Colors may repeat. Best viewed in color and zoomed.

ate its pseudo masks while facing similar difficulties with

small, many object scenes. While instance segmentation

finds count indirectly, [40] chooses to directly find counts

and locations using center point annotations. This method

introduces the Weighted Hausdorff Distance loss to encour-

age better localization, while regressing over the joint la-

tent features and network output to directly estimate counts.

The work closest to our approach is LC-FCN (Localization-

based Counting FCN) [27], in which the model aims to de-

tect regions in objects using center point annotations driven

by a loss function that encourages object boundaries, point

localization, and overall image loss. The split loss used in

LC-FCN utilizes the set of pixels representing the bound-

aries of objects obtained by the watershed algorithm and is

calculated for individual blobs and overall image. In con-

trast, our split loss considers the set of pixels representing

the possible regions objects can expand to without crossing

to neighboring objects and is calculated against the predic-

tion mask (see Figure 4 for visual comparison). This ap-

proach aims to penalize the model if the predicted area is

too small, while LC-FCN only penalizes the model if an

object crosses a boundary. Additionally, we better consti-

tute object borders using our selective watershed algorithm

which uses negative and positive ground truth annotations to

define positive and negative regions, unlike LC-FCN which

only uses positive ground truth annotations in it watershed

split loss.

3. CRAID: CRanberry Aerial Imagery Dataset

3.1. Data Collection

We collect 21,436 cranberry images of size 456 × 608
to create the largest repository of aerial RGB imagery of

cranberry fields which we name CRAID. Images were col-

lected using a Phantom 4 drone from a small range of

altitudes with manually fixed camera settings: 100 ISO,

1/240 shutter speed, and 5.0 F-Stop. Data was acquired at

weekly intervals to capture albedo variations in cranberries,



Figure 3: The network architecture of our proposed method. U-Net [41] with encoder E and decoder D is used as a backbone

to generate masks guided by segmentation lossLSeg , split loss LSplit and shape loss LShape. Our selective watershed

algorithm, Wselect, is used to better define expandable regions and boundaries in the predicted mask before computing the split

loss. The shape loss branch first determines connected components, noted as CC, in the prediction mask before calculating

individual shape loss. During inference, the predicted mask is obtained directly from the U-Net, and the count is calculated

by the number of connected components present in the predicted segmentation.

starting at early bloom to post harvest. Drone trajectory

is fixed throughout the collection season using initial ran-

domly sampled path points at each cranberry bed. Before

each recording session, a set of images of a checkerboard

from different angels is captured for camera calibration pur-

poses.

3.2. Annotation Procedure

We annotate 21,436 images with center points for train-

ing, and 702 images with pixel-wise annotations for testing

and evaluation. All annotations are peer reviewed by other

annotators through consensus, a process in which a given

annotated image is passed to at least one more annotator for

further labeling before it is submitted for a final review.

Center Point Annotations. Annotators are instructed to

locate and tag cranberry center points, and equal number

of background points. Background points are annotated at

random locations, as far as possible from nearby cranberry

annotations.

Berry-wise Annotations. Annotations follow two main

guidelines: (1) only visible cranberries are annotated; (2) if

a cranberry is occluded by leaves, the occluded parts are in-

cluded resulting in a pixel-wise annotation that captures the

shape of the occluded cranberry, hence termed berry-wise

annotations. While order of visibility is not preserved dur-

ing this annotation procedure, the annotations are instance-

wise, which allows separability of objects if needed.

3.3. Dataset Details

CRAID has an average of 39.22 cranberries per image,

with minimum count of 0 and maximum count of 167.

Berry-wise annotated images have an average of 33.72%

pixel cover. Average point-wise annotation time for a single

image is 4.32 minutes, while berry-wise annotations take

22.13 minutes. Our relatively high annotation time com-

pared to average estimated time reported in [4] is mainly

caused by image complexity and high object counts.

4. Triple-S Network

Our approach is built upon U-Net [41] and consists of

three branches: segmentation, split, and shape, construct-

ing our proposed Triple-S Network illustrated in Figure 3.

The segmentation branch aims to provide overall segmen-

tation loss against point ground truth. The split and shape

branches separate and refine individual blobs in segmenta-

tion outputs in accordance to boundaries and shape priors.

The overall loss function is defined by

L(X,Y ) =λ0LSeg(X,Y ) + λ1LSplit(X,Y )

+ λ2LShape(X,Y ).
(1)



(a) (b) (c)

Figure 4: Visual comparison between (a) watershed [35], (b) split watershed used in [27], and (c) our selective watershed.

Highlighted pixels are considered in their respective method. Our method utilizes negative ground truth points (also called

background) to generate more selective information better suited for learning. Note that (b) only considers the set of pixels

representing the borders generated by the split watershed. Blue and red markers represent positive and negative ground truth

points. Best viewed in color and zoomed.

Where X and Y represent the set of input images and point

annotations respectively, and λ∗ represents the weights of

proposed losses. We define y as the set of ground truth

points (from berry-wise annotations) and ỹ as the predicted

mask of image x.

4.1. Segmentation Branch

LSeg aims to encourage the model towards correct blob

localization guided by positive point annotations. Let s̃ be

the softmax probability prediction output for image x. Let

pn, pp ∈ y denote the positive and negative ground truth

points, respectively. We then define the segmentation loss

by

LSeg(s̃, y) = −
∑

pp

log(s̃)−
∑

pn

(1− log(s̃)). (2)

4.2. Split Branch

The split loss function serves two purposes: discourage

overlapping instances, and define expansion direction for

predicted segments. We define the selective watershed al-

gorithm Wselect, a modification of W [35], to utilize both

positive and negative markers to produce background and

object specific regions. Using W(y), we obtain a set R of

distinct regions for all ground truth points. We can then find

the set of positive regions as rp = {r ∈ R : pp ∩ r 6= ∅}.

The set of negative regions rn is defined similarly and

rp ∩ rn = ∅. Figure 4 visualizes the set of pixels con-

sidered in our method compared to other variations of the

watershed algorithm. We apply Wselect on ỹ with y as mark-

ers to obtain rp, the set of pixels representing the regions

each instance can expand to without stepping onto other in-

stances. rp is then passed through an erosion algorithm [19]

to better distinguish instances’ boundaries. The complete

split loss function is

LSplit(ỹ, y) = −
∑

rp

E(Wselect(ỹ, y))

−
∑

rn

E(Wselect(ỹ, y)).
(3)

Wselect represents the selective watershed algorithm, and E
represents the erosion algorithm [19].

4.3. Shape Branch

This work examines two shape priors appropriate for

cranberries: convexity and circularity. These priors are used

to guide the model towards meaningful structuring of the

predicted blobs to fit berry-wise ground truth.

Convexity Loss. Let B represent the set of all blobs (dis-

tinct contiguous set of pixels) in y detected using the con-

nected components algorithm [11] and let b ∈ B denote an

individual blob. Similarly, let B̃ be the set of blobs detected

in ỹ with b̃ ∈ B̃ denoting an individual blob. We can define

a convexity measure of a predicted blob as the ratio between

the blob area to its convex hull as follows

C(b̃) =
area(b̃)

area(ConvexHull(b̃))
. (4)

Since objects in our dataset are always circular or ellipti-

cal when accounting for occlusion, the area enclosed by the

predicted blob should always match or almost match the

area enclosed by its convex hull, meaning our convexity

measurement for each ground truth blob b ∈ B is always

close to one. The convexity loss LConvex general form is

given by

LConvex(ỹ, y) =
1

|B̃|

∑

b̃∈B̃∈ỹ,b∈B∈y

z(b̃, b), (5)



where

z(b̃, b) =











1

2
(C(b̃)− C(b))2,

if |C(b̃)− C(b)| < 1

|C(b̃)− C(b)| − 1

2
, otherwise.

(6)

This is a variation of Huber loss [21], in which the gradient

is calculated with respect to the residual (supplementary for

details). Note that |B̃| represents the cardinality of that set.

Circularity Loss. Another approach is to directly find the

circularity difference between the predicted blob b̃ ∈ B̃ and

ground truth b ∈ B. We formulate our loss function similar

to the unconstrained nonlinear programming problem for-

mulation proposed by [36], looking to find the least square

reference circle (notated as LSC) of a given blob. Let rb
be the set of radii originating at the center of blob b. The

circularity measurement of blob b is then defined by the dif-

ference between the maximum and minimum radii that exist

in rb. The reference circle LSC is given by

LSC(b) = max(
√

(ui − uc)2 + (vi − vc)2)

−min(
√

(ui − uc)2 + (vi − vc)2)∀i ∈ b,
(7)

where (ui, vi) are the coordinates of pixel i in blob b with
center (uc, vc). Coordinates are with respect to the input

image x. The final circularity loss formulation is defined as

LCirc(ỹ, y) =
1

|B̃|

∑

b̃∈B̃∈ỹ,b∈B∈y

z(b̃, b), (8)

with

z(b̃, b) =











1

2
(LSC(b̃)− LSC(b))2,

if |LSC(b̃)− LSC(b)| < 1

|LSC(b̃)− LSC(b)| − 1

2
, otherwise.

(9)

Since we want to predict circular or close to circular blobs,

our ground truth LSC(b) is zero, encouraging minimal dif-

ference between maximum and minimum radii.

4.4. Count Branch

This section explains the count loss used for ablation

study, in which we explore the contribution and advantage

of direct count learning with and without the usage of shape

priors. LCount aims to directly guide the model towards

the correct number of instances, c, present in image x. This

branch first separates blobs B from the segmentation pre-

diction using connected components algorithm [11] noted

as CC, and the resulting connected components count c̃ is

used as count prediction. This means that small regions

present in the segmentation prediction results high count

prediction, which penalizes the model and discourages it

from such predictions. More formally

LCount(C̃, C) =
1

|C|

∑

c∈C,c̃∈C̃

zc , (10)

where

zc =

{

1

2
(c̃− c)2, if |c̃− c| < 1

|c̃− c| − 1

2
, otherwise,

(11)

Here, c̃ = |CC(ỹ)|. C and C̃ are the ground truth and

predicted counts for all samples. Lcount is small if the dif-

ference between c̃ and c is small.

5. Experiments

5.1. Implementation Details

Network Architecture. Since we want to highlight the

contribution of shape priors and boundary setting, we

choose to adopt a standard fully convolutional network

(FCN) introduced at [41]. The network consists of an en-

coder with eight blocks, each consists of two convolution

layers followed by batch normalization and rectified linear

unit (ReLU) layers. After each block we apply a 2× 2 max

pooling layer with a stride of 2. The encoder captures 3

channel inputs, and yields 1024 channel output. The de-

coder is also formed with eight blocks, each consists of

feature map upsampling, two up convolution layers which

halve the number of channels followed by batch normaliza-

tion and ReLU layers. The output at each decoder block is

concatenated to the corresponding encoder block. At the fi-

nal layer, we use a 1×1 convolution layer to map 64 channel

output to the number of classes.

Training and Evaluation Setup. We train our network

from scratch using 90/5/5 data split with Adam optimizer

[26], starting learning rate of 0.001, and cosine annealing

scheduler [32]. Random flips and normalization transforms

are applied to the training input. We let the networks train

on a single NVIDIA GTX 1080 for 25,000 iterations or un-

til convergence, whichever comes first. For metrics, we re-

port Mean Absolute Error (MAE) for counting and Mean

Intersection over Union (mIoU) for segmentation. MAE

score calculates the sum of absolute differences between

count ground truth and predictions, divided by the number

of examples. Count predictions are found using the number

of connected components [11] computed on the segmen-

tation prediction mask. mIoU computes the ratio between

intersection and union between prediction and ground truth

masks. We also consider the inverse MAE to mIoU ratio

Qcs to indicate how well a model does on both metrics. Qcs

measures the trade-off between counting and segmentation

performances, and is used as a joint performance indica-

tor. During training, models with best MAE, best mIoU,

and best Qcs are saved. For models that incorporate seg-

mentation, validation and testing is preformed on fully su-

pervised images, and models are chosen using the best Qcs.

For counting specific methods, models are selected based

on the best MAE results. Formal formulation of reported



Training Ground Truth Method \ Metric mIoU (%) MAE Qcs

Pixel-wise U-Net [41] 78.56 9.60 8.19

Points

U-Net [41] 60.61 18.67 3.25

[40] - 39.22 -

m[40] - 21.76 -

LC-FCN [27] 61.97 17.46 3.55

Points

Ours (LSeg + LSplit) 67.39 16.33 4.13

Ours (LSeg + LSplit + LCount) 62.54 13.46 4.65

Ours (LSeg + LSplit + LCirc) 67.85 14.25 4.76

Ours (LSeg + LSplit + LCirc + LCount) 65.89 14.31 4.60

Ours (LSeg + LSplit + LConvex) 68.71 15.90 4.32

Ours (LSeg + LSplit + LConvex + LCount) 65.35 15.93 4.10

Table 1: Mean Intersection over Union (%) accuracy (higher is better), Mean Average Error (MAE) (lower is better), and

Inverse MAE to mIoU ratio Qcs (higher is better) metrics on CRAID. Our proposed method outperforms the SOTA (trained

with point annotations) in all metrics. All evaluation is done against pixel-wise ground truth.

metrics are defined by

MAE =
1

n

n
∑

i=1

|c̃i − ci| ,

mIoU =
1

n

n
∑

i=1

yi ∩ ỹi

yi ∪ ỹi
,

Qcs =
1

MAE
∗ mIoU.

(12)

Where c, c̃ represent true and predicted counts in image i,

and n indicates the number of examples in the dataset.

5.2. Baselines

We compare our method to SOTA in counting [40], joint

counting and segmentation [27], and semantic segmentation

algorithms [41]. All baselines were trained from scratch to

ensure fair comparison. The original formulation in [40]

was unable to learn meaningful counts in our data caused

by a ReLU layer at the regressor branch that zeros estimated

counts. Instead, we modify [40] (referred to as m[40]) by

using a Parametric ReLU, which learns an additional pa-

rameter to better handle negative values. It is possible that

further tuning of hyperparameters is necessary for better

performance. U-Net with point supervision baseline was

trained with adjusted class weights to allow better learning.

Also, important to note that we recognize that LC-FCN [27]

does not aim to segment images, but since its approach is

similar enough and the lack of other comparable works, we

slightly modified its code to output segmentation masks and

included results in both metrics.

5.3. Results

Table 1 presents comparisons between baselines and our

method for counting and segmentation metrics. As can be

observed, our method outperforms [40], m[40], and LC-

FCN [27] in those metrics. We see superior counting perfor-

mance against [40], which proved unable to correctly count

cranberries in CRAID images, although it performed signif-

icantly better on other datasets. The comparison to LC-FCN

can also be seen in Figure 5, where better separability be-

tween objects results in better counting, and more accurate

shape results in better segmentation performance. Notice

that the segmented blobs maintain elliptical shapes, com-

pared to irregular shaped blobs produced by [27].

5.4. Ablation

We explore the contribution of each added module in our

proposed method and compare them to the SOTA methods

in counting and segmentation. We find that using known

shape priors as a blob structuring indicator dramatically

improve segmentation performance. While using LConvex

shows better results on segmentation, LCirc provides bet-

ter outcome overall with the highest inverse MAE to mIoU

ratio. Table 1 also shows that adding a count loss to seg-

mentation and split losses boosts counting precision but de-

grades segmentation performance. The results also show

that count loss always degrades overall results when paired

with shape priors. We also examine how shape cues com-

pare to color cues for our network. Typically, color cues are

strong indicators in similar objects, which is a challenge in

agriculture applications as color is a dynamic feature vary-

ing between seasons. The last row of Figure 5 shows how

the network handles leaves around cranberries that redden



Input Image Ground Truth Ours LC-FCN

Figure 5: Qualitative comparison with SOTA methods on CRAID. Our method (LSeg + LSplit + LConvex) shows that using

shape priors and better boundary and region selection allows robust segmentation and counting performance. Colors in

prediction masks are random and are used to represent instances. Colors may repeat. Best viewed in color and zoomed.

during late fruit ripening period. It can be seen that while

there are many red leaves in the scene, the majority are pre-

dicted as background by the network.

5.5. Conclusion

In this paper, we present a novel approach to count and
segment objects utilizing point supervision and shape pri-
ors. We propose the Triple-S network that employs our se-
lective watershed algorithm, and shape loss functions to en-
courage convex and circular object masks. We present a first

of its kind publicly available dataset and software toolkit for
supporting precision agriculture in cranberry fields. The ap-
proach can be extended to other crops such as blueberries,
grapes, and olives.
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