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Abstract

Farm parcel delineation (delineation of boundaries of

farmland parcels/segmentation of farmland areas) provides

cadastral data that is important in developing and manag-

ing climate change policies. Specifically, farm parcel de-

lineation informs applications in downstream governmental

policies of land allocation, irrigation, fertilization, green-

house gases (GHG’s), etc. This data can also be useful for

the agricultural insurance sector for assessing compensa-

tions following damages associated with extreme weather

events - a growing trend related to climate change [4]. Us-

ing satellite imaging can be a scalable and cost-effective

manner to perform the task of farm parcel delineation to

collect this valuable data. In this paper, we break down

this task using satellite imaging into two approaches: 1)

Segmentation of parcel boundaries, and 2) Segmentation of

parcel areas. We implemented variations of U-Nets, one

of which takes into account temporal information, which

achieved the best results on our dataset on farm parcels in

France in 2017.

1. Introduction

Farm parcel delineation has been a highly manual task

before the use of computer vision and machine learning,

incurring high costs and time for those who are labeling

the data through ‘theodolites, total stations, and GPS’ [37].

Beyond costs, the cadastral information retrieved from de-

lineation of farm parcels is particularly important in form-

ing climate change policies for mitigation and adaptation.

More specifically, such information is important in devel-

oping and managing incentive plans on environmental and

climate change, allocation of water and irrigation, and poli-

cies around agricultural insurance for catastrophe. Over-

all, according to World Bank, land policies, specifically for

farm parcels, are considered to be highly intertwined with

climate change [4]. Hence, we believe that automating farm

parcel delineation in a scalable manner can cut down costs

and time by replacing the otherwise manual process of col-

lecting parcel-level information. Doing so can help inform

relevant policy makers and stakeholders on real-time cadas-

tral data very rapidly.

On the technical front, deep convolutional neural net-

works (CNNs) have been successfully applied to different

computer vision tasks including image recognition [18, 13,

31], object detection [36, 19, 25, 24], and object track-

ing [17, 2, 33, 34]. Following this trend, we investigate its

application in delineating farm parcel boundaries/areas us-

ing satellite imagery. Combination of CNNs with satellite

images is a scalable method that automates the otherwise

manual process [28, 35]. We further take into account tem-

poral data to improve results over the vanilla approach using

a single image for our farm parcel delineation task.

2. Related Work

In recent years, deep learning has become very popu-

lar in computer vision tasks due to its incredible success.
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Figure 1: Each row is an instance from the dataset. From left to right, the first 3 images are satellite images from January-

March, April-June, July-September respectively. The final 2 images are the binary image masks of boundaries and areas

respectively.

Known as a universal learning approach, the same deep neu-

ral network architecture can be applied with great success

over multiple domains [1]. One particular domain in com-

puter vision that deep learning has shown state-of-the-art

results is on image segmentation tasks.

There are two general Convolutional Neural Network

(CNN) architectures often used in image segmentation:

patch-based networks and Fully Convolutional Networks

(FCNs). The patch-based models [32] receive fixed-size

patches based on a central pixel as inputs to make a pre-

diction. Hence, to make predictions on a per-pixel level,

these models receive patches for each of the pixels of each

input image. However, using patch-based models to pro-

vide dense predictions on a per-pixel level is highly com-

putationally expensive [23]. On the other hand, FCNs are

built from locally connected layers and do not contain fully

connected layers. Hence, FCNs can perform training and

inference on a per-pixel level efficiently [20]. A particu-

lar FCN known as U-Net shows competitive performance

in image segmentation, especially in medical imaging but

also in other domains such as robotics through the use of

video data [30]. U-Net consists of a series of convolutional

layers that downsamples the image (encoder phase), 2 con-

volutional layers (bottleneck), and a series of convolutional

layers that upsamples the image (decoder phase) [26]. The

downsampling path captures context while the symmetric

upsampling path enables precise localization [26].

There are generally two approaches in training a CNN,

from scratch and transfer learning [9]. Using the transfer

learning approach, pretrained FCNs on ImageNet [6] gen-

erally provide improved performance over training mod-

els from scratch. This approach is especially useful when



limited data or computational resources is present [7]. In

particular, TernausNet, a U-Net with a VG11 encoder pre-

trained on ImageNet speeds up convergence and improves

segmentation accuracy over the trained from scratch coun-

terpart on boundary segmentation of cars [14].

Apart from the traditional method of using a single im-

age as input and the ground truth segmented mask, ap-

proaches to incorporate additional relevant data sources

show improved performance on image segmentation tasks.

For instance, a recent approach using U-Nets to incorpo-

rate input images from multiple time frames as a means to

incorporate temporal information provide more promising

results over simply using a single image in the task of urban

land use classification [21].

For our particular task, supervised machine learning

and deep learning approaches using FCNs to delineate

farm parcels perform better than classical computer vision

methods and have produced state-of-the-art results [10, 11,

22]. The traditional methods such as edge-based detec-

tors perform reasonably well on delineating boundaries of

regularly-shaped farmland areas but fail in cases with more

complex farmland shapes. Furthermore, many of these tra-

ditional methods do not delineate boundaries contextually,

a relationship that can be utilized by deep learning meth-

ods [22].

3. Problem Statement

Given an input of satellite images represented with xt
i ∈

X t from an area with geo-coordinates ci = (lati, loni), we

output a binary mask represented with ŷi ∈ Ŷ . Here, the

index t represents the images over time from the area cen-

tered at ci. t = 0, t = 1, and t = 2 represent the time

ranges Jan-March, April-June, and July-Sept respectively.

The image captured in April-June is represented with xt=1

i

and it aligns with ground truth mask yi temporally. In our

study, we model the output mask to contain pixel wise bi-

nary labels. Specifically, our models output two different

masks: (1) delineated boundaries between farm parcels, (2)

segmentation masks of farm parcels. In the first case, the

goal is to assign the pixel with image coordinates, m and

n, the label 1 if it lies on the boundary of a farm parcel

as fb : xt
i(m,n) 7→ ŷi(m,n) = 1 where fb represents

the boundary segmentation network. In the second task,

our goal is to map a pixel in the image space with coor-

dinates m and n to label 1 if it lies inside the farm parcel as

fa : xt
i(m,n) 7→ ŷ(m,n) = 1 where fa represents the area

segmentation network.

3.1. Dataset

3.1.1 Data Description

The dataset represented with (X t,Y) consists of Sentinel-2

satellite imagery (224px × 224px RGB image correspond-

Figure 2: Spatial coverage of the shapefile used for the

dataset to sample polygons.

ing to 2.24km × 2.24km of land area) along with corre-

sponding binary masks of boundaries and areas of farm

parcels [8]. Sample instances from the dataset are shown

in Fig. 1. Sentinel-2 is used over other satellite imag-

ing datasets such as DigitalGlobe as Sentinel-2 covers a

much larger area of coverage per image, allowing more

farm parcels to be delineated in a single image. Further-

more, Sentinel-2 is freely available and has a relatively short

revisit time globally, making the dataset a suitable choice

in collecting the most recent cadastral information through

satellite imaging.

(a) Example polygon from the

shapefile

(b) Region where the polygon is

overlaid.

Figure 3: Sample polygon from the shapefile and the cor-

responding region to be overlaid. The satellite image is

zoomed-in to better visualize where the polygon would be

overlaid.



(a) Spatial U-Net (b) Spatio-temporal U-Net

Figure 4: U-Net models (a type of Fully Convolutional Network) used for our boundary and area segmentation task. The

Spatial U-Net takes in a single satellite image as input and outputs the binary mask whereas the Spatio-temporal U-Net takes

into account 3 images from different timestamps to output the binary mask.

3.1.2 Data Generation

First, we started with downloading the shapefile consisting

of the polygons (in Lambert-93 coordinate system) of farm

parcel boundaries of France (2017) with the spatial cover-

age shown in Fig. 2 from a publicly available resource 1.

Fig. 3 presents a sample polygon from the shapefile. After-

wards, we projected the existing coordinate system of all

the polygons to the geographic coordinate system of lat-

itude/longitude. We sampled 2000 regions by randomly

sampling 2000 ci(lati, loni) that have at least one farm par-

cel in its vicinity (within 2.24km radius) in France. Our im-

age geolocation parameter ci(lati, loni) represents the cen-

ter of the square region i that spans 2.24km× 2.24km. To

ensure that there is at least one farm parcel in each region

i, we sampled random polygons in the downloaded shape-

file and calculated the centroid (in latitude and longitude) of

each polygon until we collected 2000 centroids that do not

overlap. We then selected polygons in the original shape-

file that are within the bounds of these 2000 square regions

to create a filtered shapefile. To generate the binary bound-

ary mask for each square region i, we parsed the filtered

shapefile to combine the set of polygons of farmland bound-

aries that are only relevant for that particular square region i.

Afterwards, we projected the geographic coordinate system

(lati, loni) onto the 224px× 224px image based on linear-

scaling. To draw the boundaries, we used OpenCV’s poly-

lines functionality [3]. We set the thickness of the boundary

to be 2 pixels. For the corresponding binary mask of farm-

land areas, we used OpenCV’s fillPoly functionality [3].

1https://www.data.gouv.fr/en/datasets/registre-parcellaire-graphique-

rpg-contours-des-parcelles-et-ilots-culturaux-et-leur-groupe-de-cultures-

majoritaire/

Second, we collected the Sentinel-2 RGB satellite im-

agery xt
i (224px × 224px) corresponding to each square

region i over 3 time ranges t = 0 (January - March), t = 1
(April - June), and t = 2 (July-September) in 2017. Each xt

i

is a composite satellite image over the 3-month time range.

4. Methods

Given our dataset represented with (X t,Y) we propose

two methods to segment farmland boundaries and areas.

Our first method uses only one image that is representative

of time range (April-June), xt=1

i . The second method, on

the other hand, utilizes 3 images, x
t=0,1,2
i , that is represen-

tative of 3 time ranges mentioned previously.

4.1. Spatial U­Net

We decided to use U-Net as it has shown competitive

performance over multiple domains in image segmenta-

tion [26]. We coin our U-Net model [26] for this task as the

Spatial U-Net which includes 3 channels for the input. The

model takes in a single RGB satellite image x1

i (April-June)

as input and outputs a binary mask of boundaries/areas. We

experiment with both a Spatial U-Net trained from scratch

and also a pretrained Spatial U-Net whose encoder is ini-

tialized with weights learned on the ImageNet classification

task [7].

4.2. Spatio­temporal U­Net

In addition to the Spatial U-Net, we propose a Spatio-

temporal U-Net model that utilizes 9 channels representing

3 RGB images over time as (t = 0, t = 1, t = 2) from the

area i centered at ci. In some cases we found that an image



Figure 5: Pretrained Spatio-temporal U-Net. The pretrained Spatio-temporal U-Net differs from the (pretrained) Spatial U-

Net (and non-pretrained Spatio-temporal U-Net) in that this model adds an additional convolution layer to map the 9 channels

from 3 RGB satellite images into the 3-channel pretrained Spatial U-Net.

out of 3 images is not available. In such cases, we replace

the missing image with x1

i , which always exists.

We also experiment with a pretrained Spatio-temporal U-

Net. To use the pretrained weights, the architecture of the

pretrained Spatio-temporal U-Net instead includes a con-

volution layer that simply maps the 9 channels into the 3-

channel pretrained Spatial U-Net as shown in Fig. 5.

5. Experiments

5.1. Metrics

We evaluated all the models on the Dice score and per-

pixel accuracy. The Dice score is also known as the F1 score

and formulated as

DICE =
2TP

2TP + FP + FN
(1)

where TP = True Positive, FP = False Positive and FN =

False Negative.

While accuracy is an intuitive metric, the Dice score is

considered as a better metric in the cases with class imbal-

ance between boundary/non-boundary pixels. It has been

widely used in image segmentation tasks across different

domains [41, 15, 29].

5.2. Implementation Details

We implemented all the U-Net models in Keras [5]. The

U-Net models that are not pretrained incorporates dilated

convolutions for the encoder instead of regular convolu-

tions [39] as dilated convolutions can better aggregate the

context of the whole image. We initialized the weights of

the encoder of pretrained models from the ImageNet clas-

sification task with the ResNet-34 backbone by extracting

the same number of layers from the ResNet-34 as the num-

ber of encoder layers in our models [38, 7]. We trained

all the models using the Adam optimizer [16], a learning

rate of 1e-4, batch size of 6 over 200 epochs with NVIDIA

GeForce GTX 1080 Ti. Finally, we experimented with both

the binary cross entropy and the Dice loss functions to train

the models.

For experiments with the Spatial U-Net, each data in-

stance is represented by (x1

i , yi), which corresponds to the

satellite image and ground truth mask collected in April-

June. As for experiments with the Spatio-temporal U-Net,

each data instance is represented by ({x0

i , x
1

i , x
2

i }, yi). The

dataset is split using a random distribution and the split per-

centages for train/validation/test are 80/10/10, respectively.

The implementation of the whole pipeline can be found in

our github repository 2.

2Code repo: https://github.com/sustainlab-group/ParcelDelineation



Spatial

U-Net

U-Net

(Pretrained on ImageNet )

Spatio-temporal

U-Net

Spatio-temporal U-Net

(Pretrained on ImageNet)

Dice Score - Boundary 0.56 0.54 0.60 0.61

Dice Score - Area 0.72 0.75 0.80 0.81

Accuracy - Boundary 0.76 0.78 0.81 0.82

Accuracy - Area 0.71 0.77 0.82 0.83

Table 1: Boundary and area segmentation results in terms of the Dice score and accuracy.

5.3. Results

We provide the Dice score and per-pixel accuracy for

both boundary and area segmentation tasks for all the mod-

els trained using the binary cross entropy loss in Table 1. We

also provide qualitative results (i.e. samples of predictions

of output binary masks) for the pretrained Spatio-temporal

U-Net in Fig. 6 and a qualitative comparison between the

pretrained Spatio-temporal U-Net and pretrained Spatial U-

Net in Fig. 7.

As shown in Table 1, the Spatial U-Net performs the

worst on the area segmentation task with a Dice score of

0.72 and accuracy of 0.71. The pretrained Spatial U-Net

performs the worst on the boundary segmentation task with

a Dice score of 0.54 though the pretrained Spatial U-Net

does have a higher accuracy of 0.75 compared to the Spa-

tial U-Net’s accuracy of 0.72.

The pretrained Spatio-temporal U-Net performs best for

both boundary and area segmentation tasks on all metrics,

achieving 0.61 Dice score and 0.82 accuracy on the bound-

ary segmentation task and 0.81 Dice score and 0.83 accu-

racy on the area segmentation task.

6. Analysis

6.1. Quantitative Analysis

Area vs. Boundary Segmentation The area segmenta-

tion results seem to indicate a very powerful performance

from the models. However, a large region of each satellite

image is farmland area. Therefore, the quantitative border

segmentation results provide a more indicative measure of

the performance of each model. Hence, we put most of the

emphasis on quantitative analysis on the boundary segmen-

tation task. However, the area segmentation results are still

useful for qualitative comparisons.

Pretrained vs. Trained From Scratch Spatial U-Net

Despite limited amount of training data, we observe from

Table 1 that even the baseline Spatial U-Net performs rea-

sonably well with a Dice score of 0.56 and 0.72 on the

boundary and area segmentation tasks respectively. How-

ever, we are surprised that the pretrained Spatial U-Net

has a lower Dice score for the boundary segmentation task

(though the accuracy is higher for the pretrained Spatial

U-Net). One main difference between the pretrained and

trained from scratch Spatial U-Net is the use of dilated con-

volutions in the latter model. The dilated convolutions are

found to be effective in improving the learned contextual

information in satellite images [12, 40].

Spatio-temporal vs. Spatial U-Net When we compare

the Spatio-temporal U-Net with the Spatial U-Net, we ob-

serve an increase in performance on the boundary segmen-

tation task with the Spatio-temporal U-Net. This improve-

ment indicates the utility of temporal information. The

Spatio-temporal U-Net has an increase of 7% in Dice score

and an increase of 11% in accuracy over the Spatial U-Net.

Across the pretrained counterparts, the pretrained Spatio-

temporal U-Net also has an increase of 13% in Dice score

and an increase of 5% in accuracy over the pretrained Spa-

tial U-Net.

On the other hand, pretraining seems to only slightly

boost the performance of the model though it does greatly

increase the convergence rate during training. The effects of

pretraining can not be completely isolated, however, as the

architecture of the pretrained and the non-pretrained coun-

terparts slightly differ for the Spatio-temporal U-Net mod-

els.

6.2. Qualitative Analysis

6.2.1 Qualitative performance of the Spatio-temporal

U-Net

Fig. 6 presents samples of predictions using our pre-

trained Spatio-temporal model. We observe that the pre-

trained Spatio-temporal model provides predictions reason-

ably well on the regularly shaped farmland areas as shown

in Fig. 6 (a)-(c) for both the border and area segmentation

tasks. However, the model misses more positive predic-

tions of farmland pixels for irregularly shaped and densely

packed farmland areas as shown in Fig. 6 (d)- (f) and (j)-

(l), it still provides reasonable predictions. In particular, for

the area segmentation task, we observe that the model is of-

ten able to predict areas that may seem like farmland areas

at a cursory glance to the human eye but are instead build-

ings/barren areas/bushes correctly.
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(a) Input (Apr-Jun, Jul-Sept)

,

(b) Border prediction

,

(c) Area prediction

, ,

(d) Input (Jan-Mar, Apr-Jun, Jul-Sept)

,

(e) Border prediction

,

(f) Area prediction

,

(g) Input (Apr-Jun, Jul-Sept)

,

(h) Border prediction

,

(i) Area prediction

,

(j) Input (Apr-Jun, Jul-Sept)

,

(k) Border prediction

,

(l) Area prediction

Figure 6: Example predictions by the Spatio-temporal U-Net. From left to right, the first 2 or 3 images (depending on

availability of Jan-Mar image) are the input satellite images. The next set of two images are the ground truth binary mask and

the model’s prediction respectively for the border segmentation task. The final set of two images are the ground truth binary

mask and the model’s prediction respectively for the area segmentation task.

6.2.2 Cloud-covered areas

In cases where the input image in a particular timestamp t

is obscured by clouds (as in Fig. 6 input image (g)), the pre-

trained Spatio-temporal model performs worse compared to

cases of non-obscured input images. However, the model

still provides correct predictions in certain cloud-covered

regions. This may be because even though the rest of the

image(s) may have slightly different farmland shapes, they

still help ‘fill in the gap’ for the cloud-obscured image. We

notice that the model still segments some farmland areas

and boundaries correctly despite image(s) being obscured

by the clouds.

Fig. 7 provides a more concrete comparison between the

pretrained Spatio-temporal U-Net and the pretrained Spa-

tial U-Net for the same cloud-covered input satellite images

presented in Fig. 6 (g). As observed for both border and area

segmentation predictions in Fig. 7, the pretrained Spatial U-

Net misses positive predictions of boundaries and areas in

regions where clouds are present (i.e. on the upper right

corner of the satellite image in April-June in Fig. 7 (a)).

However, the pretrained Spatio-temporal model is able to

‘fill in the gap’ using images from two different time ranges

(April-June and July-Sept).

For boundary segmentation, the pretrained Spatio-

temporal model outputs smoother and more connected

boundaries in these cloud-covered areas compared to the

pretrained Spatial U-Net. For area segmentation, the pre-

trained Spatio-temporal U-Net correctly predicts a large
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(a) Input satellite images (Apr-Jun on the left and Jul-Sept on the right)

(b) Border predictions by the pretrained Spatio-temporal U-Net, pre-

trained Spatial U-Net and ground truth

(c) Area predictions by the pretrained Spatio-temporal U-Net, pretrained

Spatial U-Net and ground truth

Figure 7: Border and area segmentation results comparison

between the pretrained Spatial U-Net and pretrained Spatio-

temporal U-Net. Row (a) presents satellite images with

cloud coverage. Row (b) and (c) are border and area pre-

dictions from the two compared models respectively. For

row (b) and row (c), from left to right, the first image is

the prediction from the pretrained Spatial U-Net; the second

image is the prediction from the pretrained Spatio-temporal

U-Net; the third image is the ground truth.

part of the cloud-covered area as farmland pixels whereas

the pretrained Spatial U-Net mostly predicts cloud-covered

areas to be non-farmland area pixels. This further validates

the hypothesis of Spatio-temporal models being able to ‘fill

in the gap’. To better handle clouds, we can use a cloud re-

moval model as proposed in [27] that utilizes 3 Sentinel-2

images over time in an area to generate cloud-free image of

the same area. Similarly to [27], we use 3 Sentinel-2 im-

ages over time and we can design a multi-task model that

segments parcel boundary/areas and generates a cloud-free

image jointly.

6.2.3 Error Analysis

While the pretrained Spatio-temporal performs reasonably

well across different shapes of farmland areas, the model

mislabels pixels for farm boundaries/areas as non-farm

boundaries/areas in certain cases. Specifically, for the

boundary segmentation task, the model often predicts ‘bro-

ken’ boundaries that should instead be connected. We no-

tice a similar phenomenon for the area segmentation task

in that the model incorrectly predicts smaller regions inside

the farmland area as non-farmland pixels. We observe many

of these errors in inputs where densely packed farmland re-

gions and cloud-covered areas are present as shown in Fig.

6 (g)-(i) and Fig. 6 (j)-(l). One reason for these errors may

have been due to the limitation of our dataset. An example

of this could be occasional misalignment of polygons from

the public dataset with the corresponding Sentinel-2 satel-

lite image. This slight misalignment arises since we use

3-month composites for the Sentinel-2 images and a simple

linear-based coordinate projection.

Furthermore, in Fig. 6 (j)-(k), where the different farm-

land regions have very similar colors, the model is not able

to delineate boundaries and segment areas well, especially

for smaller farmland areas. This error most likely arises

from the limitation of using only RGB bands from the satel-

lite images.

7. Conclusion

In this study, we proposed the use of deep learning

and open source datasets to segment farm parcel areas and

boundaries in satellite images. In particular, we trained vari-

ants of the U-Net model on the Sentinel-2 images given the

corresponding area/boundary masks. We showed that the

proposed Spatio-temporal U-Net achieves 83% Dice score

outperforming all Spatial-only models by around 3 − 5%.

This shows that the additional temporal data can better high-

light the faint boundaries of farmland parcels. As a fu-

ture work, to improve predictions, we will experiment with

other variations of U-Nets and models along with different

transfer learning approaches. To analyze more extensively

the impact of temporal information, we hope to experiment

with different levels of granularity of temporal information.

Finally, to further validate our results, we will apply our

models on other regions that may have vastly different agri-

cultural regions using a cross-spatial split.

The proposed use of deep learning and open source

datasets provides a further step towards efficient and cheap

automated cadastral data collection to provide faster and

more accurate land policies decisions on agriculture, and

climate change mitigation and adaptation.
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