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Abstract

Modeling the spatial structure of crop inputs is of great
importance for accurate yield prediction. It is a funda-
mental step towards optimizing the spatial allocation of re-
sources such as seed and fertilizer. We propose two dis-
tinct architectures of Multi-Stream Convolutional Neural
Network (MSCNN) - Late Fusion (LF) and Early Fusion
(EF) - to model yield response to seed and nutrient man-
agement. A study presents a comparison between proposed
models with conventional 2D and 3D CNN architectures,
and existing agronomy methods. The dataset used to train
and test the models is constructed using on-farm experiment
data from nine corn fields across the US together with multi-
spectral satellite images. Results show that the MSCNN-LF
achieved a 20% reduction of the prediction’s mean squared
error value when compared to a 3D CNN, and a 26% reduc-
tion when compared to a 2D CNN. An optimization algo-
rithm uses the MSCNN-LF model’s gradient to change the
manageable inputs variables in a way the expected profit is
maximized subject to resource constraints. It is shown that
an increase of up to 5.2% on expected crop yield return is
obtained when compared to usual management practices.

1. Introduction

Improving crop nutrient management is an essential step
towards solving the food security problem [12]. Traditional
farm management practices have led to excessive fertiliza-
tion of crops, generating a surplus nutrient flow that pol-
lutes the water system [7]. Additionally, this outdated man-
agement does not necessarily result in the highest possible
yield. Despite ongoing research in modeling and data gen-
eration, the improvement of decision tools is yet to reach
its full potential [3]. New methods are needed to take full
advantage of new field technologies (e.g., variable-rate ap-
plicators, and yield monitors) and create decision aid tools
to help farmers increase production while accounting for

environmental impacts [1].

In order to create decision tools, descriptive and predic-
tive models of the process are necessary. Many models have
been proposed that relate environmental and management
variables to crop yield [14]. They can be separated into sta-
tistical models [23, 16] and analytic crop models [2]. While
analytic crop models are dynamic system simulations based
on variables that may not be measurable by farmers, sta-
tistical models are constrained by the representativeness of
training dataset.

On-Farm Precision Experimentation (OFPE) is often
used to improve statistical models [21, 28] by generating
site-specific representative data. However, even at a field
scale, the spatial structure of environmental and manage-
ment variables may affect the yield through events such
as nutrient and water transportation [34]. Therefore, the
spatial structure of environmental and treatment variables
plays an important role when trying to create a predictive
model for yield. Moreover, the interaction among differ-
ent explanatory variables may depend on such spatial struc-
tures in a nonlinear way. Many spatial econometric models
were developed to account for data’s spatial structure on an
effort to better describe the relations between explanatory
and response variables [4]. For example, Generalized Least
Squares (GLS) models [27] account for spatial structure us-
ing a geostatistical semivariogram while performing linear
regressions. This approach, however, uses a fixed kernel to
model the influence of neighboring data in a particular sam-
ple based only on the distance between them rather than on
the spatial structure of the data. Hence, a way to extract rel-
evant spatial features from the data is needed to overcome
this limitation.

A similar spatial feature extraction problem is also
present in image recognition software, where Convolutional
Neural Networks (CNNs) have demonstrated significantly
higher performance over other methods [ 8]. Convolutional
layers can be trained to encode relevant visual (and here we
can also use the term “’spatial”) features of varying com-
plexity. In agriculture, applications of CNNs [24] usually



focus on disease [13, 20] and plant [19] classification, and
image-based estimation, such as soybean leaf defoliation
level [8]. To the best knowledge of the authors, the usage
of CNNss to learn relevant spatial features from different ex-
planatory variables, and model the interactions among them
as a regression problem has not been explored yet.

This work proposes a Multi-Stream CNN (MSCNN) ar-
chitecture to learn relevant spatial structures in different
explanatory variables and use them to model the yield re-
sponse to nutrient and seed rate prescriptions. Unlike multi-
channel CNNs, the MSCNN does not stack inputs as chan-
nels and allows nonlinear combinations among them, which
is a fundamental property of the phenomena being mod-
eled [11]. We present two realizations (LF and EF) of the
MSCNN combining the independent 2D input variables at
different layer depths in the network. Data from nine corn
fields across the US were used to test and compare the pro-
posed architectures. Such fields are part of an OFPE with
randomized nitrogen and seed rates prescription. The mod-
els are trained in a supervised fashion, tested, and a thor-
ough comparative study is performed. Inspired by the back-
propagation algorithm, the gradient of the MSCNN is used
to derive a gradient of the profit with respect to the manage-
able inputs, taking network weights as constants. Finally, a
gradient ascent with momentum algorithm uses the derived
gradient to find the nitrogen and seed rate maps that maxi-
mize the expected yield for the next season.

The key contributions can be highlighted as: (i) a novel
spatial dependency modeling for yield prediction, (ii) a
framework for optimization using CNNs applied to patches
of the inputs, and (iii) a comparative study of the perfor-
mance of multi-stream CNNs. In our application, item (ii)
leads to the nitrogen and seed prescription maps that maxi-
mize crop yield return. The remaining sections in this paper
are organized as follows: Section 2 details the construction
of the dataset used for testing the models; the MSCNN ar-
chitecture is proposed and analyzed in Section 3, while Sec-
tion 4 describes the optimization algorithm. Finally, Sec-
tion 5 presents the experiments, and conclusions are made
in Section 6.

2. Dataset Construction

This paper uses data from the Data Intense Farm Man-
agement (DIFM) project [0], recorded during the 2017 sea-
son. This experiment is the first large-scale OFPE with high
variability in the nitrogen and seed rates. Its database con-
tains georeferenced management and environmental data,
as well as the resulting yield map. Each field in the database
has on average 40 ha and 200 experimental units, repre-
sented by 85 m long and 18 m wide polygons. Nine fields
were selected, from which six are rain-fed fields in Illinois
(Fields 2, 4, 7, 8, and 9) and Ohio (Field 5), and three are ir-
rigated fields in Nebraska (Fields 3 and 6) and Kansas (Field
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Figure 1. Rasters representing five different input variables at the
same point: nitrogen rate (a), seed rate (b), elevation map (c), soil’s
electroconductivity (d), and satellite image (e).

1). Nitrogen and seed rates were randomly assigned from
four different levels to each experimental unit in a field, ex-
cept for field 1, where the nitrogen rate is constant. The
explanatory variables in the database are nitrogen and seed
rates prescription maps, elevation map, and soil’s shallow
electroconductivity, which is a proxy of the organic matter
in the soil. A cloud-free Planet Labs [26] PSSE4 multispec-
tral image (converted to a single grayscale channel) from
each field and taken during pre-season is also used as an ad-
ditional variable. This image may highlight different soil’s
composition and accumulation of water in the soil before
planting. Yield data is used as the response variable and was
collected by yield monitors during harvesting. The data was
standardized variable-wise, and samples more than 3 stan-
dard deviations away from the mean were removed. Notice
that all explanatory variables are available at the beginning
of the season, so one can use the model for future optimiza-
tion of nitrogen and seed rates before applying them. As
each field had its data recorded using different equipment
and software, a way to put each variable from all fields into
the same support is first needed. The smallest unit of anal-
ysis is chosen to be a square with a side of five meters and
is represented by a single element in a larger raster span-
ning the field. Variables stored as polygon data (prescrip-
tion maps) were sampled for each element in the raster (us-
ing the mean method), while the ones stored as point data
(elevation map and soil’s electroconductivity) were first in-
terpolated using kriging [27] and then rasterized to the de-
sired support (5 x 5Sm cell). The satellite picture was simply
resampled to the desired support since it is already a raster.
The key assumption of this work is that the yield at a
single unit of analysis depends on the spatial structure of
observed explanatory variables around it. It is fair to as-
sume however that the influence of neighbor data over a
unit is limited to a certain range. So, by finding such range,
models’ complexity can be reduced without losing valuable
data, which makes the model easier to train and more data-
efficient. Therefore, a variogram containing the averaged
variability from all explanatory variables is constructed to
compute the range that better describes the data. For the
selected fields the computed range is approximately 100m,
indicating that no significant higher variability is obtained
when considering a greater distance between two points.
Then, a sample used as input for the proposed MSCNN



model described in the next section is defined as a set
of 21x21 elements rasters (one for each of the five in-
put variables), spanning a square of 100x 100m around the
unit where the yield value is being considered (Figure 1).
Then, to construct a dataset, rasters (with dimension equal
to 21x21) are cropped from the original raster variables
around each non-zero cell in the yield map. Such proce-
dure results in a set of samples containing five rasters each
and the value of yield at their respective center cell.

3. MSCNN Model

Information from five different fields’ attributes is used
to model yield response to nitrogen and seed rates manage-
ment. Defining how such different sources of information
are combined through the network has a direct impact on
model’s performance [10]. Previous papers have addressed
this problem in different research areas. A CNN was pro-
posed in [30] for flower grading, where three images are
necessary for full flower’s description, and authors merged
the result of independent convolutions from each image be-
fore performing sub sequential convolutions. Different ar-
chitectures were also proposed to identify human actions in
video data. A multi-stream architecture in [29], where in-
puts are combined late in the network have demonstrated
better performance over models that used stacked frames as
inputs [15]. A 3D convolutional neural network architecture
was proposed by [31], where 3D kernels were convolved
with adjacent input frames, demonstrating results compa-
rable to the state of the art techniques. In this section we
introduce the Early Fusion and Late Fusion realizations of
the MSCNN and compare them to standard CNNS.

3.1. Architectures

In this work four different CNN architectures have their
performance tested and compared: (i) a stacked model (ST)
that combines inputs by stacking them as a multi-channel
image for further 2D convolutions (Figure 2(a)), (ii) a 3D
CNN using the same stack as input (Figure 2(b)), (iii) a
multi-stream early fusion (MSCNN-EF) network that con-
catenates flattened max-pooling layers from independent
convolutional layers before the fully connected layers (Fig-
ure 2(c)), and (iv) a multi-stream late fusion (MSCNN-
LF) network that concatenates the outputs from single neu-
rons coming from independent convolutional layers (Figure
2(d)).

To create a baseline, most commonly used models [25]
for yield prediction were also tested together with all four
architectures described. Such models are a multiple linear
regression model (MLR), a fully connected artificial neu-
ral network (FC), which has received significant attention
from agronomy community over the last decade [9][32][5],
a support vector machine (SVM), and a random forest (RF).

Input C1 S1 F1 F1 Output
16@19x19

5x21x21

=

3x3 Convolution

16@9x9 512@1x1 512@1x1 l@1ix1

2x2 Max-Pooling Full Connections

(a) CNN-ST architecture.
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(b) CNN-3D architecture.
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(c) MSCNN-EF architecture.
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(d) MSCNN-LF architecture.

Figure 2. Comparison between architectures

Hyperparameters of each baseline model were fine tuned to
obtain the best performance for comparison.



Table 1. Crossvalidation averaged Mean Squared Error (MSE) over test dataset, yield standard deviation, and yield mean.

Field MSE Yield [Kg/ha]
MLR FC LF EF 3D ST SVM RF Stdv. Mean

1 1.53 097 066 073 0.75 0.69 086 092 3240 12500

2 1.29 0.88 083 086 0.87 088 086 090 2290 10700

3 1.90 0.63 058 058 059 060 086 059 1230 14400

4 1.03 076 0.75 0.78 0.77 077 077 0.76 900 12200

5 074 072 070 0.72 0.75 0.73 0.76 0.70 1360 14500
6 1.09 0.51 048 051 053 056 058 052 1140 14700
7 075 0.72 0.69 070 0.71 0.73 076 0.73 1150 15700

8 1.11 094 094 094 094 094 089 096 2267 14100
9 .10 0.69 0.63 0.65 0.66 066 067 063 1140 12600
Avg. 1.17 076 0.70 0.72 0.73 0.73 0.78 0.75 1635 13489

3.2. Evaluation

Yield response to nutrient management also depends on
other environmental factors and management practices with
whole field impact (e.g., solar radiation, planting date, seed
genetics, among others). These factors vary from one field
to another while being constant within the same field. Us-
ing site-specific data is a way to reduce the input space and
increase the representativeness of the data aiming better rec-
ommendations to each farmer individually. So, we train and
test a different model for each of the nine fields (described
in Section 2) rather than creating a single model to work
in all fields. However, data within a single field is often
spatially autocorrelated and may lead to model over-fitting
depending on the way the test set is chosen. For instance, a
random partition of the data results in training and test sets
with very similar samples, which overcasts the generaliza-
tion power of the model. So, we spatially partition the data
to account for this problem as proposed by [33].

Data from each field was spatially partitioned in five
stripes perpendicularly to the longest dimension of the field
to maximize the distance between samples from two differ-
ent partitions. Three stripes (60% of the data) were used for
training the model, one (20% of the data) for validation, and
one (20% of the data) for tests. A grid search was performed
to define hyperparameters such as the number of filters in
the convolutional layers, the number of layers and neurons
in the fully connected layers, and the dropout regularization
probability for all models. Each architecture was trained
over the same database using Adam optimizer [17], and the
validation set was used online as an early stop criterion (al-
lowing at most eight consecutive iterations of increase in the
validation loss) to avoid over-fitting the data. The loss func-
tion is given by the Mean Squared Error (MSE) between
yield predictions and true yield values at every raster’s po-
sition in the batch.

Cross-validation was used to evaluate the model using
five folds according to the spatial partitioning. Table 1
shows the averaged MSE over the five test sets for each

model in each field. Notice that since yield data is standard-
ized, the MSE value is a fraction of the standard deviation
from the original yield values.

3.3. Model Analysis

The MSCNN-LF model is the one with lowest MSE
value over the test dataset in eight out of nine tested fields.
Field three is the exception, showing a slightly higher MSE
value when compared to the other CNN models. The bet-
ter performance of MSCNN-LF may be explained by the
way each architecture combines the input variables in the
network as described next.

The CNN-ST model linearly combines the inputs
element-wise at the very first convolutional layer, suppress-
ing any possible nonlinear interaction between different at-
tributes in the field. To make this clear, suppose a n X n
kernel convolved with an L-channel input, and let w;; be
the kernel’s weights, y,, the convolution output at posi-
tion (u,v), and zy,; be the input value at channel % that
is aligned with (i, j) kernel’s position. Then we have that
Yup 18 given by (1)

n

L n
Yur = DD D (Wigis)-
k=

1i=1 j=1

)]

It is evident the output of the convolutional layer only
contains a linear combination of the values from each in-
put, and that the information from each separate input is
not preserved. As a consequence, any nonlinear interac-
tion between the input variables will not be modeled at the
fully connected layers. One possible solution to overcome
this limitation is to convolve the filter input-wise so the in-
formation from each input is carried separately through the
convolutional layer. In fact, the proposed CNN-3D archi-
tecture considers the stacked different inputs as a third di-
mension to convolve the filter. However, even if this archi-
tecture solves the problem of carrying the information from
each input and combining it in the fully connected layers,
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Figure 3. Groundtruth Yield map, predicted yield map using MSCNN-LF, predicted yield map using FC, residuals for both models, and

difference of residuals for field 4

it introduces a new undesired feature. By using this archi-
tecture, the output of the convolutional layer increases with
the number of inputs, since the filters are convolved with
all inputs independently. This may lead to an unnecessary
increase in the number of parameters in the network, if we
assume that the same filter may not be relevant (as feature
extractors) for all input variables, resulting in a model with
lower data efficiency.

The multi-stream architecture addresses both problems
discussed above. It performs independent convolutions with
the inputs while using a different set of filters for each one.
When comparing the LF and EF models it is reasonable to
say that LF focuses on better feature extraction from in-
puts while EF can model more complex interaction between
variables. In addition, by reducing the dimension of each
input before combining them, the LF model becomes easier
to train, leading to higher data efficiency.

To construct a predicted yield map, the yield value at
each position in the output raster is obtained using the
MSCNN-LF model and the input maps. Figure 3 shows a
qualitative comparison between predicted yield maps using
the MSCNN-LF and FC model in field four. It is possi-
ble to observe that the spatial structure of the data is better
captured by the MSCNN-LF model, while FC results in a
“blurrier” map. The difference between the residual maps
from both models shows a spatial structure that resembles
the spatial distribution observed on the true yield map, in-
dicating that the main difference between both predictions
lies indeed on the spatial structure of the data. Moreover,

one can observe that most of the higher values in the resid-
uals maps are located closer to field’s borders. The data in
such regions are expected to have more noise due to yield
monitoring system errors caused by the change in harvester
speed and direction, and cannot be explained by the selected
explanatory variables.

4. Optimization Algorithm

Choosing the optimal rates of nitrogen and seeds is one
of the main reasons to create a good yield prediction model.
The complexity of optimizing these rates depends on the
chosen model, and the MSCNN-LF introduces a much
larger input search space since it maps patches of the in-
put maps to a predicted yield value at a single point in the
field. Also, such patches overlap between themselves, mak-
ing the sequential optimization of each point in the field not
possible. Then, we present an optimization framework for
the MSCNN-LF model to find the spatial allocation of nitro-
gen and seeds that result in the maximum expected profit to
the farmer. We propose a gradient ascent with momentum
algorithm under the assumption that this is a non-convex op-
timization problem. The first step is to derive the gradient
of yield return (total yield value discounting nitrogen and
seeds costs) with respect to nitrogen and seed rate maps.

Let A,B € R™*" be the matrices representing the
applied nitrogen and seed rates maps respectively. Now, let
N,S € R™! be sets of matrices cropped from matrices
A and B such that I < n < m. We define a function
f(N,S) : R>! x RI*! — R, such that N € N, and



S € &, that represents the MSCNN-LF model mapping a
patch from nitrogen and seed rate maps to a yield value,
taking environmental attributes as constants. The total crop
yield is then given by f(A, B) = > f(N;, S;), where i is
the index of each element in the yield map. Then, we want
to derive V f(A, B) as in (2)

2

V(A B) = (azi FNi, 8i) 0% f(Ni,Si)> .

0A ’ OB

Now, define a cropping function g(C, i) : R™*™ x N —
R that crops a [ x | matrix from C' around the ele-
ment indexed by <. We also define a zero padding function
z(e,i) : R x N — R™*" that centers the original | x [
matrix at element ¢ in a m X n matrix, and completes the
remaining elements with zero. Then, we have that:
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Fortunately, all elements of of (Ak,’s ) and of (Né’s ) are

easily obtained from the MSCNN- LF model’s gradients
computed for the backpropagation algorithm. With (2) de-
rived, our final goal is to maximize the crop yield return
discounting the costs from nitrogen and seeds, which can
be formulated as:

max <pvf A,B) —pNn ZA<M pSZB(u,v)> 3

subject to: Nimin < Auv < Nmaz,V (ua U)
Smin S Buv S Sma17v (ua ’U),

where py, pn, and pg are the prices per smallest unit
area of corn, nitrogen, and seed, respectively, and the rates
of nitrogen and seed are bounded by minimum and maxi-
mum values. The boundary values come from the rates ap-
plied during the on-farm experiment, since the MSCNN-LF
model is not trained with values above or below them. Fi-
nally, let Py and Ps be m X n matrices containing all their
elements equal to py and pg respectively. Then we write
the gradient of (3) as:

wvinm - (3 (4005 -y
vy 2 <8fN“S),i>—Ps>. “)

In order to ensure our optimization algorithm is based
on a model where the manageable variables (i.e. nitrogen
and seed rates) are really relevant (and not vanished by
more relevant environmental inputs), a sensitivity index
based on partial derivatives [22] is obtained by (5):

2

where L is the number of available training samples, and
1 is the input label. In our experiment, ¢ indexes the set
{NR, SR, Elev.,EC.,Soil}. As the value of the partial
derivative depends on the point of the input space it is being
evaluated, our sensitivity index takes in account the partials
for every sample in our training dataset. Notice that each el-
ement 7 in the input map ¢ has its gradient dependent on the
cropped inputs (Figure 4), with N and S}, being the only
manageable inputs. Table 2 shows the index ( for each in-
put for the nine studied fields, revealing that the model is in
fact sensitive to the selected manageable variables. Field 1
is an exception, showing an index of zero for nitrogen rate,
which is expected since a constant rate was used for this
field during the OFPE.

Mapi|—

b cropped inputs

Figure 4. Region for gradient evaluation of .

Table 2. Sensitivity index ¢ for each input.

Field NR SR Elev. EC. Soil
0.00 286 0.84 0.14 045
198 154 122 0.65 0.71
122 523 0.11 025 0.56
0.86 1.11 148 0.74 031
076 022 0.83 047 0.38
281 351 017 029 0.29
1.45 092 038 0.22 046
0.63 055 232 0.02 0.17
1.16 050 0.04 032 0.06
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Figure 5. Optimized nitrogen map (UAN28/acre) showing low re-
sponse areas on field 7.

With the model’s gradient derived in (4), a gradient as-
cent with momentum algorithm is used in an attempt to find
the global maxima. Maps A and B are initialized with the
constant values usually applied by farmers and then updated
according the algorithm based on the gradient in (4).

5. Experiments and Results

Experiments were conducted with the same nine fields
used in Section 3 to demonstrate the monetary potential of
the proposed optimization algorithm. The total profit (i.e.
yield discounting costs of nitrogen and seed) is estimated
for the initial condition (usual rates applied by the farmer)
and for the resulting maps. Table 3 shows the total percent
change on expected profit, nitrogen, seed, and yield values
after optimization.

Table 3. Change in profit, nitrogen, seed and yield after optimiza-
tion.

FieldId Profit Nitrogen  Seed Yield

1 3.6% 0% 10.5% 4.6%
2 52% -173% -182% -0.9%
3 3.8% 18.0% 134%  5.6%
4 42%  -208% -114% -0.2%
5 27%  -128% -11.8% 0.0%
6 1.8% 10.1% 4.6% 2.4%
7 22%  -304% -17.6% -0.7%
8 37%  -423% -13.0% 0.1%
9 41%  -127% -11.7% -0.2%

Results show a 3.5% average increase in the expected
profit, with field 2 going up to 5.2%. It can be observed that
the profit increase is obtained through different strategies,
depending on the field. For some fields, the rate of nitro-
gen and seeds was increased to generate more yield, while
others showed to be unresponsive to high rates of nutrients.
In such cases, the algorithm was able to select areas where
nutrient could be reduced without reducing the yield. Field

7 is a good example of how the algorithm reduced the ni-
trogen rate at unresponsive areas. Figure 5 shows the final
nitrogen map for this field.

With tested values for the step size and momentum
terms, the algorithm converged within an average of 30 it-
erations. Additional experiments were made initializing the
input maps with random values. In such experiments, the
optimization algorithm also converged within 30 iterations
to very similar maps to the ones obtained with different ini-
tial conditions. These results indicate that the algorithm is
able to find either the global maxima or a flat local max-
ima. The second case could be considered even better than
a sharp global maxima since it is more robust to undesired
variations during the nitrogen application process.

Notice that the results depend on the initial conditions
and are based on the model’s predictions, rather than on real
experiments. Nevertheless, this experiment aims to evaluate
the optimization framework regarding its ability to drive the
output of the yield prediction model to maximize an objec-
tive function. The performance of this algorithm in real ex-
periments will depend on the model’s accuracy, which was
evaluated in Section 3 and showed to be better than other
machine learning methods.

6. Conclusions

A novel spatial dependency model for yield prediction
based on pre-season treatments and environmental variables
was proposed. Such model leverages a multi-stream ar-
chitecture of CNN in order to model nonlinear dependen-
cies among input variables, while accounting for variable-
wise feature extraction. We provided experimental evi-
dence to show the superior performance of the LF real-
ization of the MSCNN, achieving a reduction up to 26%
on the MSE value when compared to a conventional 2D
CNN with stacked input channels. The MSCNN-LF archi-
tecture is also appropriate for using transfer learning since
the multi-stream approach works as a feature extractor for
each individual input. So, a good performance is expected
when using a pre-trained MSCNN-LF to model a field even
when the dataset is limited.

We presented an optimization framework to find the
manageable inputs of the MSCNN-LF that maximize the
expected yield return. When compared to traditional farm-
ing practices, this framework showed an increase in crop
yield return discounting the costs for all fields. The ben-
efits of decreasing nitrogen while maintaining yield are of
great importance to subdue environmental impact caused by
water pollution. Future work includes investigating the pro-
posed optimization framework as a CNN analysis tool.
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