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Abstract

Modeling the spatial structure of crop inputs is of great

importance for accurate yield prediction. It is a funda-

mental step towards optimizing the spatial allocation of re-

sources such as seed and fertilizer. We propose two dis-

tinct architectures of Multi-Stream Convolutional Neural

Network (MSCNN) - Late Fusion (LF) and Early Fusion

(EF) - to model yield response to seed and nutrient man-

agement. A study presents a comparison between proposed

models with conventional 2D and 3D CNN architectures,

and existing agronomy methods. The dataset used to train

and test the models is constructed using on-farm experiment

data from nine corn fields across the US together with multi-

spectral satellite images. Results show that the MSCNN-LF

achieved a 20% reduction of the prediction’s mean squared

error value when compared to a 3D CNN, and a 26% reduc-

tion when compared to a 2D CNN. An optimization algo-

rithm uses the MSCNN-LF model’s gradient to change the

manageable inputs variables in a way the expected profit is

maximized subject to resource constraints. It is shown that

an increase of up to 5.2% on expected crop yield return is

obtained when compared to usual management practices.

1. Introduction

Improving crop nutrient management is an essential step

towards solving the food security problem [12]. Traditional

farm management practices have led to excessive fertiliza-

tion of crops, generating a surplus nutrient flow that pol-

lutes the water system [7]. Additionally, this outdated man-

agement does not necessarily result in the highest possible

yield. Despite ongoing research in modeling and data gen-

eration, the improvement of decision tools is yet to reach

its full potential [3]. New methods are needed to take full

advantage of new field technologies (e.g., variable-rate ap-

plicators, and yield monitors) and create decision aid tools

to help farmers increase production while accounting for

environmental impacts [1].

In order to create decision tools, descriptive and predic-

tive models of the process are necessary. Many models have

been proposed that relate environmental and management

variables to crop yield [14]. They can be separated into sta-

tistical models [23, 16] and analytic crop models [2]. While

analytic crop models are dynamic system simulations based

on variables that may not be measurable by farmers, sta-

tistical models are constrained by the representativeness of

training dataset.

On-Farm Precision Experimentation (OFPE) is often

used to improve statistical models [21, 28] by generating

site-specific representative data. However, even at a field

scale, the spatial structure of environmental and manage-

ment variables may affect the yield through events such

as nutrient and water transportation [34]. Therefore, the

spatial structure of environmental and treatment variables

plays an important role when trying to create a predictive

model for yield. Moreover, the interaction among differ-

ent explanatory variables may depend on such spatial struc-

tures in a nonlinear way. Many spatial econometric models

were developed to account for data’s spatial structure on an

effort to better describe the relations between explanatory

and response variables [4]. For example, Generalized Least

Squares (GLS) models [27] account for spatial structure us-

ing a geostatistical semivariogram while performing linear

regressions. This approach, however, uses a fixed kernel to

model the influence of neighboring data in a particular sam-

ple based only on the distance between them rather than on

the spatial structure of the data. Hence, a way to extract rel-

evant spatial features from the data is needed to overcome

this limitation.

A similar spatial feature extraction problem is also

present in image recognition software, where Convolutional

Neural Networks (CNNs) have demonstrated significantly

higher performance over other methods [18]. Convolutional

layers can be trained to encode relevant visual (and here we

can also use the term ”spatial”) features of varying com-

plexity. In agriculture, applications of CNNs [24] usually
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focus on disease [13, 20] and plant [19] classification, and

image-based estimation, such as soybean leaf defoliation

level [8]. To the best knowledge of the authors, the usage

of CNNs to learn relevant spatial features from different ex-

planatory variables, and model the interactions among them

as a regression problem has not been explored yet.

This work proposes a Multi-Stream CNN (MSCNN) ar-

chitecture to learn relevant spatial structures in different

explanatory variables and use them to model the yield re-

sponse to nutrient and seed rate prescriptions. Unlike multi-

channel CNNs, the MSCNN does not stack inputs as chan-

nels and allows nonlinear combinations among them, which

is a fundamental property of the phenomena being mod-

eled [11]. We present two realizations (LF and EF) of the

MSCNN combining the independent 2D input variables at

different layer depths in the network. Data from nine corn

fields across the US were used to test and compare the pro-

posed architectures. Such fields are part of an OFPE with

randomized nitrogen and seed rates prescription. The mod-

els are trained in a supervised fashion, tested, and a thor-

ough comparative study is performed. Inspired by the back-

propagation algorithm, the gradient of the MSCNN is used

to derive a gradient of the profit with respect to the manage-

able inputs, taking network weights as constants. Finally, a

gradient ascent with momentum algorithm uses the derived

gradient to find the nitrogen and seed rate maps that maxi-

mize the expected yield for the next season.

The key contributions can be highlighted as: (i) a novel

spatial dependency modeling for yield prediction, (ii) a

framework for optimization using CNNs applied to patches

of the inputs, and (iii) a comparative study of the perfor-

mance of multi-stream CNNs. In our application, item (ii)

leads to the nitrogen and seed prescription maps that maxi-

mize crop yield return. The remaining sections in this paper

are organized as follows: Section 2 details the construction

of the dataset used for testing the models; the MSCNN ar-

chitecture is proposed and analyzed in Section 3, while Sec-

tion 4 describes the optimization algorithm. Finally, Sec-

tion 5 presents the experiments, and conclusions are made

in Section 6.

2. Dataset Construction

This paper uses data from the Data Intense Farm Man-

agement (DIFM) project [6], recorded during the 2017 sea-

son. This experiment is the first large-scale OFPE with high

variability in the nitrogen and seed rates. Its database con-

tains georeferenced management and environmental data,

as well as the resulting yield map. Each field in the database

has on average 40 ha and 200 experimental units, repre-

sented by 85 m long and 18 m wide polygons. Nine fields

were selected, from which six are rain-fed fields in Illinois

(Fields 2, 4, 7, 8, and 9) and Ohio (Field 5), and three are ir-

rigated fields in Nebraska (Fields 3 and 6) and Kansas (Field

Figure 1. Rasters representing five different input variables at the

same point: nitrogen rate (a), seed rate (b), elevation map (c), soil’s

electroconductivity (d), and satellite image (e).

1). Nitrogen and seed rates were randomly assigned from

four different levels to each experimental unit in a field, ex-

cept for field 1, where the nitrogen rate is constant. The

explanatory variables in the database are nitrogen and seed

rates prescription maps, elevation map, and soil’s shallow

electroconductivity, which is a proxy of the organic matter

in the soil. A cloud-free Planet Labs [26] PSSE4 multispec-

tral image (converted to a single grayscale channel) from

each field and taken during pre-season is also used as an ad-

ditional variable. This image may highlight different soil’s

composition and accumulation of water in the soil before

planting. Yield data is used as the response variable and was

collected by yield monitors during harvesting. The data was

standardized variable-wise, and samples more than 3 stan-

dard deviations away from the mean were removed. Notice

that all explanatory variables are available at the beginning

of the season, so one can use the model for future optimiza-

tion of nitrogen and seed rates before applying them. As

each field had its data recorded using different equipment

and software, a way to put each variable from all fields into

the same support is first needed. The smallest unit of anal-

ysis is chosen to be a square with a side of five meters and

is represented by a single element in a larger raster span-

ning the field. Variables stored as polygon data (prescrip-

tion maps) were sampled for each element in the raster (us-

ing the mean method), while the ones stored as point data

(elevation map and soil’s electroconductivity) were first in-

terpolated using kriging [27] and then rasterized to the de-

sired support (5 × 5m cell). The satellite picture was simply

resampled to the desired support since it is already a raster.

The key assumption of this work is that the yield at a

single unit of analysis depends on the spatial structure of

observed explanatory variables around it. It is fair to as-

sume however that the influence of neighbor data over a

unit is limited to a certain range. So, by finding such range,

models’ complexity can be reduced without losing valuable

data, which makes the model easier to train and more data-

efficient. Therefore, a variogram containing the averaged

variability from all explanatory variables is constructed to

compute the range that better describes the data. For the

selected fields the computed range is approximately 100m,

indicating that no significant higher variability is obtained

when considering a greater distance between two points.

Then, a sample used as input for the proposed MSCNN



model described in the next section is defined as a set

of 21×21 elements rasters (one for each of the five in-

put variables), spanning a square of 100×100m around the

unit where the yield value is being considered (Figure 1).

Then, to construct a dataset, rasters (with dimension equal

to 21×21) are cropped from the original raster variables

around each non-zero cell in the yield map. Such proce-

dure results in a set of samples containing five rasters each

and the value of yield at their respective center cell.

3. MSCNN Model

Information from five different fields’ attributes is used

to model yield response to nitrogen and seed rates manage-

ment. Defining how such different sources of information

are combined through the network has a direct impact on

model’s performance [10]. Previous papers have addressed

this problem in different research areas. A CNN was pro-

posed in [30] for flower grading, where three images are

necessary for full flower’s description, and authors merged

the result of independent convolutions from each image be-

fore performing sub sequential convolutions. Different ar-

chitectures were also proposed to identify human actions in

video data. A multi-stream architecture in [29], where in-

puts are combined late in the network have demonstrated

better performance over models that used stacked frames as

inputs [15]. A 3D convolutional neural network architecture

was proposed by [31], where 3D kernels were convolved

with adjacent input frames, demonstrating results compa-

rable to the state of the art techniques. In this section we

introduce the Early Fusion and Late Fusion realizations of

the MSCNN and compare them to standard CNNs.

3.1. Architectures

In this work four different CNN architectures have their

performance tested and compared: (i) a stacked model (ST)

that combines inputs by stacking them as a multi-channel

image for further 2D convolutions (Figure 2(a)), (ii) a 3D

CNN using the same stack as input (Figure 2(b)), (iii) a

multi-stream early fusion (MSCNN-EF) network that con-

catenates flattened max-pooling layers from independent

convolutional layers before the fully connected layers (Fig-

ure 2(c)), and (iv) a multi-stream late fusion (MSCNN-

LF) network that concatenates the outputs from single neu-

rons coming from independent convolutional layers (Figure

2(d)).

To create a baseline, most commonly used models [25]

for yield prediction were also tested together with all four

architectures described. Such models are a multiple linear

regression model (MLR), a fully connected artificial neu-

ral network (FC), which has received significant attention

from agronomy community over the last decade [9][32][5],

a support vector machine (SVM), and a random forest (RF).
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(a) CNN-ST architecture.
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(b) CNN-3D architecture.

Input

21x21

C1

8@19x19

S1

8@9x9

F1

16@1x1

Output

1@1x1

3x3	Convolution 2x2	Max-Pooling Full	Connections

(c) MSCNN-EF architecture.

Input

21x21

C1

8@19x19

S1

8@9x9

F1

16@1x1

F2

1@1x1

F3

16@1x1

Output

1@1x1

3x3	Convolution 2x2	Max-Pooling Full	Connections

(d) MSCNN-LF architecture.

Figure 2. Comparison between architectures

Hyperparameters of each baseline model were fine tuned to

obtain the best performance for comparison.



Table 1. Crossvalidation averaged Mean Squared Error (MSE) over test dataset, yield standard deviation, and yield mean.

Field
MSE Yield [Kg/ha]

MLR FC LF EF 3D ST SVM RF Stdv. Mean

1 1.53 0.97 0.66 0.73 0.75 0.69 0.86 0.92 3240 12500

2 1.29 0.88 0.83 0.86 0.87 0.88 0.86 0.90 2290 10700

3 1.90 0.63 0.58 0.58 0.59 0.60 0.86 0.59 1230 14400

4 1.03 0.76 0.75 0.78 0.77 0.77 0.77 0.76 900 12200

5 0.74 0.72 0.70 0.72 0.75 0.73 0.76 0.70 1360 14500

6 1.09 0.51 0.48 0.51 0.53 0.56 0.58 0.52 1140 14700

7 0.75 0.72 0.69 0.70 0.71 0.73 0.76 0.73 1150 15700

8 1.11 0.94 0.94 0.94 0.94 0.94 0.89 0.96 2267 14100

9 1.10 0.69 0.63 0.65 0.66 0.66 0.67 0.63 1140 12600

Avg. 1.17 0.76 0.70 0.72 0.73 0.73 0.78 0.75 1635 13489

3.2. Evaluation

Yield response to nutrient management also depends on

other environmental factors and management practices with

whole field impact (e.g., solar radiation, planting date, seed

genetics, among others). These factors vary from one field

to another while being constant within the same field. Us-

ing site-specific data is a way to reduce the input space and

increase the representativeness of the data aiming better rec-

ommendations to each farmer individually. So, we train and

test a different model for each of the nine fields (described

in Section 2) rather than creating a single model to work

in all fields. However, data within a single field is often

spatially autocorrelated and may lead to model over-fitting

depending on the way the test set is chosen. For instance, a

random partition of the data results in training and test sets

with very similar samples, which overcasts the generaliza-

tion power of the model. So, we spatially partition the data

to account for this problem as proposed by [33].

Data from each field was spatially partitioned in five

stripes perpendicularly to the longest dimension of the field

to maximize the distance between samples from two differ-

ent partitions. Three stripes (60% of the data) were used for

training the model, one (20% of the data) for validation, and

one (20% of the data) for tests. A grid search was performed

to define hyperparameters such as the number of filters in

the convolutional layers, the number of layers and neurons

in the fully connected layers, and the dropout regularization

probability for all models. Each architecture was trained

over the same database using Adam optimizer [17], and the

validation set was used online as an early stop criterion (al-

lowing at most eight consecutive iterations of increase in the

validation loss) to avoid over-fitting the data. The loss func-

tion is given by the Mean Squared Error (MSE) between

yield predictions and true yield values at every raster’s po-

sition in the batch.

Cross-validation was used to evaluate the model using

five folds according to the spatial partitioning. Table 1

shows the averaged MSE over the five test sets for each

model in each field. Notice that since yield data is standard-

ized, the MSE value is a fraction of the standard deviation

from the original yield values.

3.3. Model Analysis

The MSCNN-LF model is the one with lowest MSE

value over the test dataset in eight out of nine tested fields.

Field three is the exception, showing a slightly higher MSE

value when compared to the other CNN models. The bet-

ter performance of MSCNN-LF may be explained by the

way each architecture combines the input variables in the

network as described next.

The CNN-ST model linearly combines the inputs

element-wise at the very first convolutional layer, suppress-

ing any possible nonlinear interaction between different at-

tributes in the field. To make this clear, suppose a n × n

kernel convolved with an L-channel input, and let wij be

the kernel’s weights, yuv the convolution output at posi-

tion (u, v), and xkij be the input value at channel k that

is aligned with (i, j) kernel’s position. Then we have that

yuv is given by (1)

yuv =

L∑

k=1

n∑

i=1

n∑

j=1

(wijxkij). (1)

It is evident the output of the convolutional layer only

contains a linear combination of the values from each in-

put, and that the information from each separate input is

not preserved. As a consequence, any nonlinear interac-

tion between the input variables will not be modeled at the

fully connected layers. One possible solution to overcome

this limitation is to convolve the filter input-wise so the in-

formation from each input is carried separately through the

convolutional layer. In fact, the proposed CNN-3D archi-

tecture considers the stacked different inputs as a third di-

mension to convolve the filter. However, even if this archi-

tecture solves the problem of carrying the information from

each input and combining it in the fully connected layers,
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Figure 3. Groundtruth Yield map, predicted yield map using MSCNN-LF, predicted yield map using FC, residuals for both models, and

difference of residuals for field 4

it introduces a new undesired feature. By using this archi-

tecture, the output of the convolutional layer increases with

the number of inputs, since the filters are convolved with

all inputs independently. This may lead to an unnecessary

increase in the number of parameters in the network, if we

assume that the same filter may not be relevant (as feature

extractors) for all input variables, resulting in a model with

lower data efficiency.

The multi-stream architecture addresses both problems

discussed above. It performs independent convolutions with

the inputs while using a different set of filters for each one.

When comparing the LF and EF models it is reasonable to

say that LF focuses on better feature extraction from in-

puts while EF can model more complex interaction between

variables. In addition, by reducing the dimension of each

input before combining them, the LF model becomes easier

to train, leading to higher data efficiency.

To construct a predicted yield map, the yield value at

each position in the output raster is obtained using the

MSCNN-LF model and the input maps. Figure 3 shows a

qualitative comparison between predicted yield maps using

the MSCNN-LF and FC model in field four. It is possi-

ble to observe that the spatial structure of the data is better

captured by the MSCNN-LF model, while FC results in a

”blurrier” map. The difference between the residual maps

from both models shows a spatial structure that resembles

the spatial distribution observed on the true yield map, in-

dicating that the main difference between both predictions

lies indeed on the spatial structure of the data. Moreover,

one can observe that most of the higher values in the resid-

uals maps are located closer to field’s borders. The data in

such regions are expected to have more noise due to yield

monitoring system errors caused by the change in harvester

speed and direction, and cannot be explained by the selected

explanatory variables.

4. Optimization Algorithm

Choosing the optimal rates of nitrogen and seeds is one

of the main reasons to create a good yield prediction model.

The complexity of optimizing these rates depends on the

chosen model, and the MSCNN-LF introduces a much

larger input search space since it maps patches of the in-

put maps to a predicted yield value at a single point in the

field. Also, such patches overlap between themselves, mak-

ing the sequential optimization of each point in the field not

possible. Then, we present an optimization framework for

the MSCNN-LF model to find the spatial allocation of nitro-

gen and seeds that result in the maximum expected profit to

the farmer. We propose a gradient ascent with momentum

algorithm under the assumption that this is a non-convex op-

timization problem. The first step is to derive the gradient

of yield return (total yield value discounting nitrogen and

seeds costs) with respect to nitrogen and seed rate maps.

Let A,B ∈ R
m×n be the matrices representing the

applied nitrogen and seed rates maps respectively. Now, let

N ,S ∈ R
l×l be sets of matrices cropped from matrices

A and B such that l < n < m. We define a function
f̃(N,S) : R

l×l × R
l×l −→ R, such that N ∈ N , and



S ∈ S , that represents the MSCNN-LF model mapping a
patch from nitrogen and seed rate maps to a yield value,
taking environmental attributes as constants. The total crop

yield is then given by f(A,B) =
∑i

f̃(Ni, Si), where i is
the index of each element in the yield map. Then, we want
to derive ∇f(A,B) as in (2)

∇f(A,B) =

(

∂
∑i f̃(Ni, Si)

∂A
,
∂
∑i f̃(Ni, Si)

∂B

)

. (2)

Now, define a cropping function g(C, i) : Rm×m × N −→
R

l×l that crops a l × l matrix from C around the ele-
ment indexed by i. We also define a zero padding function
z(c, i) : Rl×l × N −→ R

m×n that centers the original l × l
matrix at element i in a m × n matrix, and completes the
remaining elements with zero. Then, we have that:

∂
∑i

f̃(Ni, Si)

∂A
=

i
∑

z

(

∂f̃(Ni, Si)

∂Ni

, i

)

=

i
∑

z





















∂f̃(Ni,Si)
∂Ni11

. . .
∂f̃(Ni,Si)

∂Ni
1l

...
. . .

...
∂f̃(Ni,Si)

∂Nil1

. . .
∂f̃(Ni,Si)

∂Nill











, i











.

Similarly,

∂
∑i

f̃(Ni, Si)

∂B
=

i
∑

z





















∂f̃(Ni,Si)
∂Si11

. . .
∂f̃(Ni,Si)

∂Si
1l

...
. . .

...
∂f̃(Ni,Si)

∂Sil1

. . .
∂f̃(Ni,Si)

∂Sill











, i











.

Fortunately, all elements of
∂f̃(Ni,Si)

∂Ni

and
∂f̃(Ni,Si)

∂Si

are

easily obtained from the MSCNN-LF model’s gradients
computed for the backpropagation algorithm. With (2) de-
rived, our final goal is to maximize the crop yield return
discounting the costs from nitrogen and seeds, which can
be formulated as:

max
A,B

(

pV f(A,B)− pN

u,v
∑

A(u,v) − pS

u,v
∑

B(u,v)

)

(3)

subject to: Nmin ≤ Auv ≤ Nmax, ∀ (u, v)

Smin ≤ Buv ≤ Smax, ∀ (u, v),

where pV , pN , and pS are the prices per smallest unit
area of corn, nitrogen, and seed, respectively, and the rates
of nitrogen and seed are bounded by minimum and maxi-
mum values. The boundary values come from the rates ap-
plied during the on-farm experiment, since the MSCNN-LF
model is not trained with values above or below them. Fi-
nally, let PN and PS be m× n matrices containing all their
elements equal to pN and pS respectively. Then we write
the gradient of (3) as:

∇Y (A,B) =

(

pV

i
∑

z

(

∂f̃(Ni, Si)

∂Ni

, i

)

− PN ,

pV

i
∑

z

(

∂f̃(Ni, Si)

∂Si

, i

)

− PS

)

. (4)

In order to ensure our optimization algorithm is based
on a model where the manageable variables (i.e. nitrogen
and seed rates) are really relevant (and not vanished by
more relevant environmental inputs), a sensitivity index
based on partial derivatives [22] is obtained by (5):

ζi =
1

L

√

√

√

√

L
∑

k=1

(

∂f̃

∂ik
(Nk, Sk)

)2

, (5)

where L is the number of available training samples, and

i is the input label. In our experiment, i indexes the set

{NR, SR,Elev.,EC., Soil}. As the value of the partial

derivative depends on the point of the input space it is being

evaluated, our sensitivity index takes in account the partials

for every sample in our training dataset. Notice that each el-

ement ik in the input map i has its gradient dependent on the

cropped inputs (Figure 4), with Nk and Sk being the only

manageable inputs. Table 2 shows the index ζ for each in-

put for the nine studied fields, revealing that the model is in

fact sensitive to the selected manageable variables. Field 1

is an exception, showing an index of zero for nitrogen rate,

which is expected since a constant rate was used for this

field during the OFPE.

Map 𝑖𝑖𝑘 cropped inputs

Figure 4. Region for gradient evaluation of ik.

Table 2. Sensitivity index ζ for each input.

Field NR SR Elev. EC. Soil

1 0.00 2.86 0.84 0.14 0.45

2 1.98 1.54 1.22 0.65 0.71

3 1.22 5.23 0.11 0.25 0.56

4 0.86 1.11 1.48 0.74 0.31

5 0.76 0.22 0.83 0.47 0.38

6 2.81 3.51 0.17 0.29 0.29

7 1.45 0.92 0.38 0.22 0.46

8 0.63 0.55 2.32 0.02 0.17

9 1.16 0.50 0.04 0.32 0.06



Figure 5. Optimized nitrogen map (UAN28/acre) showing low re-

sponse areas on field 7.

With the model’s gradient derived in (4), a gradient as-

cent with momentum algorithm is used in an attempt to find

the global maxima. Maps A and B are initialized with the

constant values usually applied by farmers and then updated

according the algorithm based on the gradient in (4).

5. Experiments and Results

Experiments were conducted with the same nine fields

used in Section 3 to demonstrate the monetary potential of

the proposed optimization algorithm. The total profit (i.e.

yield discounting costs of nitrogen and seed) is estimated

for the initial condition (usual rates applied by the farmer)

and for the resulting maps. Table 3 shows the total percent

change on expected profit, nitrogen, seed, and yield values

after optimization.

Table 3. Change in profit, nitrogen, seed and yield after optimiza-

tion.

Field Id Profit Nitrogen Seed Yield

1 3.6% 0% 10.5% 4.6%

2 5.2% -17.3% -18.2% -0.9%

3 3.8% 18.0% 13.4% 5.6%

4 4.2% -20.8% -11.4% -0.2%

5 2.7% -12.8% -11.8% 0.0%

6 1.8% 10.1% 4.6% 2.4%

7 2.2% -30.4% -17.6% -0.7%

8 3.7% -42.3% -13.0% 0.1%

9 4.1% -12.7% -11.7% -0.2%

Results show a 3.5% average increase in the expected

profit, with field 2 going up to 5.2%. It can be observed that

the profit increase is obtained through different strategies,

depending on the field. For some fields, the rate of nitro-

gen and seeds was increased to generate more yield, while

others showed to be unresponsive to high rates of nutrients.

In such cases, the algorithm was able to select areas where

nutrient could be reduced without reducing the yield. Field

7 is a good example of how the algorithm reduced the ni-

trogen rate at unresponsive areas. Figure 5 shows the final

nitrogen map for this field.

With tested values for the step size and momentum

terms, the algorithm converged within an average of 30 it-

erations. Additional experiments were made initializing the

input maps with random values. In such experiments, the

optimization algorithm also converged within 30 iterations

to very similar maps to the ones obtained with different ini-

tial conditions. These results indicate that the algorithm is

able to find either the global maxima or a flat local max-

ima. The second case could be considered even better than

a sharp global maxima since it is more robust to undesired

variations during the nitrogen application process.

Notice that the results depend on the initial conditions

and are based on the model’s predictions, rather than on real

experiments. Nevertheless, this experiment aims to evaluate

the optimization framework regarding its ability to drive the

output of the yield prediction model to maximize an objec-

tive function. The performance of this algorithm in real ex-

periments will depend on the model’s accuracy, which was

evaluated in Section 3 and showed to be better than other

machine learning methods.

6. Conclusions

A novel spatial dependency model for yield prediction

based on pre-season treatments and environmental variables

was proposed. Such model leverages a multi-stream ar-

chitecture of CNN in order to model nonlinear dependen-

cies among input variables, while accounting for variable-

wise feature extraction. We provided experimental evi-

dence to show the superior performance of the LF real-

ization of the MSCNN, achieving a reduction up to 26%

on the MSE value when compared to a conventional 2D

CNN with stacked input channels. The MSCNN-LF archi-

tecture is also appropriate for using transfer learning since

the multi-stream approach works as a feature extractor for

each individual input. So, a good performance is expected

when using a pre-trained MSCNN-LF to model a field even

when the dataset is limited.

We presented an optimization framework to find the

manageable inputs of the MSCNN-LF that maximize the

expected yield return. When compared to traditional farm-

ing practices, this framework showed an increase in crop

yield return discounting the costs for all fields. The ben-

efits of decreasing nitrogen while maintaining yield are of

great importance to subdue environmental impact caused by

water pollution. Future work includes investigating the pro-

posed optimization framework as a CNN analysis tool.
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